Directories - David Denham

What is a directory?

Think of your computer as a filing cabinet with several drawers. Each drawer is one of your drives.
Within each drawer you can have several folders each holding groups of files. The term "directory" is
synonymous with the term "folder" as far as we are concerned.

Within each drive you can have several folders each holding groups of files. For example, one could
contain all your letters, another could hold all your spreadsheets, while another could hold your
SuperBASIC programs.

Each folder or directory can contain further folders. For example, the one containing your
SuperBASIC programs can be further split into Games, Utilities, Music programs and so on.
Directories within directories like this are referred to as Sub-Directories.

On an original QL, all files were just lumped together without any real form of grouping. This wasn't
too bad when all we had was microdrive cartridges holding about 100 kilobytes each. Then we got
floppy disks which could potentially hold dozens if not hundreds of small files. As we filled the disks
up, a DIR command could give a very long list of files making it harder and harder to find the file we
want. Imagine a disk containing over a hundred files - such long lists of files quickly become
unmanageable!

When hard disk systems came along for QLs things got even worse. Now you could probably save
hundreds if not thousands of files - something had to change.

And change it did. Add-ons like the Miracle Systems hard disc drive introduced us to Level 2 Filing
Systems for the QL. The term Level 2 simply means the next level of QL filing systems - directories.
The disc could be split into separate folders allowing you to group files together to make file
management a lot easier. Such directories were also called "hard directories". The name came about
since the original "soft directories" were just files with a prefix added to the name!

How Do | Know Which Systems Handle Directories?

First you have to know that your computer or emulator is able to handle these Level 2 directories. If
it has a MAKE_DIR command built in, chances are you can use directories. If the manual doesn't tell
you, check this with the EXTRAS command - the list should contain the MAKE_DIR command, or in
some cases an equivalent function called FMAKE_DIR.

The situation is perhaps not as simple as we might like though.

An original Trump Card doesn't support level 2 directories or "hard" directories, while later versions
supplied by Qubbesoft had an updated ROM allowing use of directories! The table below lists some
types of QL systems and whether or not they can support directories. The list is far from complete -
if it's not in the list | just don't know!

System Type Level 2 Directories?
Unexpanded QL No
Microdrives No

QL and Trump Card
QL and Gold Card/Super Gold Card
Other floppy disk systems

Aurora

Thor

Q40/Q60

Qubide

Miracle Systems Hard Disk
Qlay and QL2K
Qemulator

QPC

Smsqgmulater

Later versions only

Yes

Mostly no, although updated Level 2 ROM
could be fitted to some disk interfaces
Depends on disk card interface fitted
Some versions - yes, although non-standard
Yes

Yes

Yes

No

Registered version only

Yes

Yes

Here is a simple little test routine which will just test for the presence of the MAKE_DIR or

MAKE_DIR extensions on your system. It needs a ramdisc for the temporary file.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

DEFine PROCedure Level2_Test
LOCal testing,extension$
OPEN_NEW #3,ram1_tmp

EXTRAS #3

CLOSE #3

OPEN_IN #3,ram1_tmp

REPeat testing

IF EOF(#3)=1 THEN EXIT testing
INPUT #3,extension$

IF extension$ == 'MAKE_DIR' THEN
PRINT'MAKE_DIR command present'
END IF

IF extension$ == 'FMAKE_DIR' THEN
PRINT'FMAKE_DIR function present'
END IF

END REPeat testing

CLOSE #3

DELETE ram1_tmp

END DEFine Level2_Test

Just enter the command LEVEL2_TEST and it will look through the list of extensions for MAKE_DIR or
FMAKE_DIR, printing the name of whichever it encounters in the list.

If you prefer a function to test if there's MAKE_DIR or FMAKE_DIR on the system, try this:

PRINT IsltLevel2 will return 1 if there is a MAKE_DIR or FMAKE_DIR extension.

2000 DEFine FuNction IsltLevel2
2010 LOCal testing,extension$

2020 OPEN_NEW #3,ram1_tmp
2030 EXTRAS #3

2040 CLOSE #3

2050 OPEN_IN #3,ram1_tmp

2060 lev2=0

2070 REPeat testing

2080 IF EOF(#3)=1 THEN EXIT testing
2090 INPUT #3,extension$

2100 IF extension$ == 'MAKE_DIR' OR extension$ == 'FMAKE_DIR' THEN
2110 lev2 =1: EXIT testing

2120 ENDIF

2130 END REPeat testing

2140 CLOSE #3

2150 DELETE ram1_tmp

2160 RETurn lev2

2170 END DEFine IsltLevel2

Creating Directories

Directories are created with the MAKE_DIR command like this:

MAKE_DIR drive_directory

So to make a directory on FLP1_ to hold BASIC programs we use:

MAKE_DIR FLP1_BASIC_

If the system has the FMAKE_DIR function, it makes it easier to cope with error trapping:

LET errorcode=FMAKE_DIR(FLP1_BASIC)

FMAKE_DIR will return a negative error code if something went wrong. This error code may be one
of the following:

-7 = Not Found (drive not available)

-8 = Already Exists (directory of that name exists already)

-9 = In Use (directory of that name exists already)

-15 = Bad Parameter (cannot handle directories on this drive)

Some Rules
A few rules to note:

1. The directory name should end with an underscore character, although many systems will add this
automatically if it is missing.

2. The name of the drive and directory does not have to be in quotes unless it contains a non-ascii
character such as a full stop or space. The name can always be in quotes if you prefer, or may also be
a string variable, e.g. LET d$="Flp1_Games_":MAKE_DIR d$

3. Most systems will let you include an underscore within the directory name, but this is poor
practice. An underscore may mean the end of a directory name, so on some systems it may cause a
mild confusion as to where the directory name ends. | tend to steer clear of underscore characters
within a directory name. It makes life easier if you just use letters and numbers.

Most systems will allow spaces if you want to make long name more readable, but of course the
name has to be in quotes. | find it best to avoid spaces and other non-alphanumeric characters.

4. Name lengths. The sum length of both the directory name and a file name may not exceed 36
characters. So it is best to keep directory names short and meaningful, especially when using sub-
directories within other directories, remembering that the underscore characters also count towards
the maximum length of 36.

5. Like QL filenames, directory names are usually case insensitive - it doesn't matter if you use upper
case, lower case or a mix. The only exception is some emulators which are subject to the case
sensitivity of the file system on which they run. Linux, for example.

Saving Files To Directories

To save a file to a directory, we just include the directory name before the filename. We can save a
BASIC program called mygame_bas into a directory called BASIC on drive WIN1_

SAVE winl_Basic_MyGame_bas or, of course SAVE "winl_Basic_MyGame_bas"
Copying a file from floppy disc to hard disc is just as simple:
COPY Flpl_MyGame_bas TO winl_Basic_MyGame_bas

If your system has the WCOPY command, you can use this to bulk copy files, e.g. to copy all files
from Flp1l_to Winl1_Basic_ just use:

WCOPY Flpl_TO Winl_Basic_

Equally, if you wanted to copy files back from a hard disc directory back to a floppy disc:
WCOPY Winl1_Basic_ TO FLP1_

What the command does is try to work out the differences between where the files are stored and
copied to and change the full filename accordingly.

WCOPY can also use a simple form of wild card name, so that only files matching that wild card are
copied. Supposing we have a disk full of all sorts of files and we wished to copy just the Quill
documents to a directory called Win1_Quill_ and just the Abacus spreadsheets to Win1l_Abacus_

WCOPY Flpl__doc TO Win1_Quill__doc
WCOPY Flpl__aba TO Winl_Abacus__doc

The wildcard is the extension - anything ending with _doc or _aba in these examples.
DIR List

When you DIR a disc containing directories, the name of a directory is shown on most systems by
having the "->" characters after a name.

DIR WIN1_
might give

WIN1 QDOS
35840/40960 sectors
Boot

Basic ->

Games ->

Xchange ->

In this example, | have a boot program written in Superbasic plus three directories called Basic,
Games and Xchange. Note how the directories have -> after the name, and how the last'_'is not
normally shown.

It is quite normal not to put important system files such as a boot program not into any directory.
This is called putting a file in the 'root directory' or 'base directory'.

You may also come across some programs which may not work correctly from a directory, so these
can be put in a root directory if required as long as you remember to keep the number of files down
to reduce clutter.

Sub-Directories

If we want to create sub-directories within an existing directory, that's quite easy. Just work out
what you want and make sure the main directory exists first. In an example, I'm going to create a
directory to hold a copy of Xchange, and within that, four sub-directories to hold Quill, Abacus, Easel
and Archive files.

First, | create the main directory called Xchange:
MAKE_DIR Winl_Xchange_

Next, | create the four sub-directories to go inside the Xchange directory, simply by adding the
names of the sub-directories to the name of the main one. I'll call these sub-directories Quill_,
Abacus_, Archive_ and Easel_

MAKE_DIR Winl1_Xchange_Abacus_
MAKE_DIR Winl1l_Xchange_Archive_
MAKE_DIR Winl1_Xchange_ Easel
MAKE_DIR Win1_Xchange_Quill_

| happened to put those in alphabetical order, but there is no real need to do this unless you want
them to appear in alphabetical order in a DIR list.

If now do a DIR of Win1_ the list is still shown the same as the first example above. But if | now do a
DIR of Win1_Xchange_ | see the new sub-directories:

WIN1 QDOS
35840/40960 sectors
Xchange_Abacus ->
Xchange_Archive ->
Xchange_Easel ->
Xchange_Quill ->

So you can see that if you use DIR to list the content of a directory, it shows what's in that directory
and not anything in the main directory before it. This brings us to their hierarchy - the first directory
is referred to as the "top level" directory.

When you have directories within directories, you can think of the whole structure as a "tree", with

various branches leading away from the root or top level. You can draw a diagram a bit like a family

tree (an upside down tree) like this. This will help us envisage what a directory structure is like when
it comes to "navigation".

WIN

Basic_ Xchange_ Games_

Abacus_ Archive_ Easel_ Quill_

Sub-directories within other directories are sometimes referred to as "nested directories".

Deleting Directories

From time to time we may need to delete a directory, either because we have finished using it, or
we have realised we made a typing mistake and misnamed it. Suppose I'd intended to create a
directory called Winl_Toys_ and accidentally typed MAKE_DIR Winl_Tyos_. The directory can be
deleted with a simple DELETE command as long as you take care to type the name correctly to avoid
accidentally deleting a similarly named directory!

DELETE Win1_Tyos_

However, you cannot normally delete a directory name if it already contains some files. You would
need to delete those files first. So if | had a directory named Winl_Texts_ which contained three
plain text files, I'd need to delete all three of those files before | could delete the directory called
Winl_Texts_. A quick but potentially dangerous way of deleting them would be to use the WDEL
(Wildcard Delete) command to delete all its files first:

WDEL Winl_Texts_
then DELETE Win1_Texts_

If you have sub-directories within a directory, you will need to delete the content of the deepest
directories first, then delete the sub-directory names, then delete all the files in the parent or higher
directory and work your way backward until you reach the one you want to remove. Taking
Win1_Xchange_ in the example tree above, in order to remove Win1_Xchange_you'd need to
delete the content of all four sub-directories first, then delete all four sub-directories, then delete
any remaining files in Win1_Xchange_ before finally removing Win1_Xchange_. It is a bit tedious
with a lot to type in, but perhaps that's no bad thing as it forces you to do it step by step to avoid
accidentally deleting everything!

The sequence of BASIC commands you would need to delete Win1_Xchange_ above would be:
1. Remove sub-directory content:

WDEL Winl1l_Xchange_ Abacus_
WDEL Win1_Xchange_Archive_

WDEL Win1_Xchange_Easel_
WDEL Winl_Xchange_Quill_

2. Delete sub-directories:
DELETE Win1_Xchange_Abacus_
DELETE Win1_Xchange_Archive_
DELETE Win1_Xchange_Easel_
DELETE Win1_Xchange_Quill_

3. Delete any other files left in Winl_Xchange_:
WDEL Winl_Xchange_

4. Finally delete Win1_Xchange_ itself:
DELETE Win1_Xchange_

Default Directories

It can be a bit tedious typing in very long drive and directory names, so Toolkit 2 added commands
to set default directories. There are three of them in all - one called PROG_USE to set default
directories for programs you can execute (e.g. Xchange or QL Quill), DATA_USE for ordinary data files
and BASIC programs and DEST_USE for the default destination when copying files.

1. PROG_USE drive_directory

Suppose you keep your executable programs in a directory called PROGS_ on Winl_. You can set
PROG_USE Winl1 Progs_to make EXEC and EX commands start the programs from there by
default without having to add a drive and directory. Let us compare two EX commands:

EX Winl_Games_MyGame_bin - this starts the game called MyGame_bin from
Winl_Games_, in other words you specified a drive and directory called Winl_Games_

EX Utility_Task - here you have specified no drive and directory, so it looks on the one
specified in the last PROG_USE statement automatically (called the Program Default
Directory), in this case Win1_Progs_. Saves a bit of typing when you have grouped all of your
programs in the same place.

2. DATA_USE drive_directory
Suppose you keep your BASIC programs in Winl_Basic_. After DATA_USE Win1_Basic_ the computer
will look for a Basic program or indeed any data file in this directory unless you explicitly state

where:

LOAD Win1_Xchange_MyBasicProg_bas - this one specifies a drive and directory, so it will
look for the file there.

LOAD MyBasicProg_bas - this doesn't specify a drive or directory, so it checks the DATA_USE
default value. In other words, it realises you didn't specify anything, looks up the default
(called the Data Default Directory) which was Win1_Basic_ so ends up loading the file from
there.

Given that data files are more likely to be spread across many directories, this is less useful in this
particular context, but another use is for the DIR command. If you had set DATA_USE WIN1_ then
enter the command DIR with no drive name, it looks up the Data Default Directory value (Winl_)
and tries to do a DIR of that, in this case like a DIR WIN1_.

3. DEST_USE drive_directory_

Sets the default destination directory when files are being copied, moved or renamed, usually when
these commands which would otherwise be used with two names this provides the second or
destination name. If the destination name does not end with a'_" it usually means it's a non-
directory device, such as a serial port or parallel printer port.

This can be useful. Set DEST_USE "PAR" on a system with a parallel printer port and this can be
useful for copying files to a printer, using either COPY or SPL (spooler) commands:

DEST_USE PAR

COPY winl_plain_txt (sends it to PAR printer port)

SPL winl_PLAIN_txt (uses the SPL spooler job to print a file to a PAR printer port in the
background).

| tend to find it best to group all my executable programs into one directory and point PROG_USE to
that one. | also set DATA_USE to point to my main drive, WIN1_. DEST_USE is just used for the
default printer port. My boot program contains lines like this:

200 PROG_USE Winl1_Progs_
210 DATA_USE Winl_
220 DEST_USE Par

Many systems impose a limit of 32 characters on a default name. This is in keeping with the
maximum filename length of 36 characters. After all, if you have a long 32 character default name, it
only leaves 4 characters for the rest of the filename, so you can understand why!

Checking The Settings

Sometimes you may forget what defaults you have set. This is where the three functions DATADS,
PROGDS and DESTDS come in. These request and return the relevant information from the system:

PRINT PROGDS returns the default set with PROG_USE
PRINT DATADS returns the default set with DATA_USE
PRINT DESTDS returns the default set with DEST_USE

An additional command DLIST prints a list of all three settings.

Using these extensions you'll quickly realise that the system can only have one default for the entire
computer. In other words, when you set PROG_USE "Win1_" it applies to all programs. It is not
possible for each program to have a separate setting. Also, not all programs understand these
defaults - life is not always easy! In a future article I'll show how to work around these limitations
for awkward programs.

Default Defaults

When you first start a QL or emulator, these defaults are usually set to one of the drives in the
system and no directory. If your system has only floppy disc drives and no hard disc drive, it will
usually set PROG_USE to FLP1_and DATA_USE to FLP1_ (on some systems with two disc drives
DATA_USE may be set to FLP2_), and DESTDS is usually a serial port or printer device such as PAR or
SER1

Navigation

Some extensions are usually provided to navigate the defaults up and down a directory tree.
Personally, | rarely (if ever) find the need to use these, but they are there. Normally, these three
commands work on the DATA_USE default name, but if the PROG_USE name happens to be the
same they will affect that too.

DDOWN name - moves down the tree, adds the name given to the default, so if the default
happened to be Winl_and the command was DDOWN Xchange the default would now become
Winl1_Xchange_. A subsequent DDOWN Quill would change the default to Winl1_Xchange_Quill_

DUP - moves up the tree by removing the last directory name, so if the default was set to
Winl_Xchange_Abacus_, a DUP would make it Win1l_Xchange_and a second DUP would make
it just Winl_

DNEXT - moves up and then down a different part of the directory tree.
Separating Directory And Filename

In some ways, the QL filing system is a bit restrictive. Apart from the 36 character total name length
limit, it's also hard for a program to work out which part of a name is a directory and which is the
filename part.

Most operating systems use specific symbols in a filename to separate the directory and filename,
for example on Windows we might save something to C:\QLfiles\letter.txt. Here we know that the
drive name is C:, the directory name is indicated by the backslash characters (directory called
QlLfiles) and the filename is the bit after that last backslash, here "letter.txt". The QL is a bit more
simplistic in this respect and the directory separator character can also be part of the filename,

potentially making it hard to work out which is the directory name part, and which is the filename
part.

There is a solution, but it's not obvious and requires a little bit of devious code to ask the system
which is the directory, then subtract from the full filename (or full 'path' name as it's sometimes
referred to).

The answer lies in the use of the FNAMES function, which returns the name of a file normally, or of
the directory part if you open a channel using the FOP_DIR command:

LET f$="Win1_Xchange_test_doc"
LET channel=FOP_DIR(fS)

PRINT FNAMES(#channel)

CLOSE #channel

This prints Xchange, the name of the directory containing the file called TEST _doc. Note that it
doesn't return Xchange_ only the part before the underscore, so you need to take that into account.
Also, not including the drive name.

Separating the directory path and the filename needs a bit of juggling like this (I wrote an article
about Directory Names back in Volume 10 Issue 4 of QL Today).

First, we use FNAMES to return the full path and filename without the drive name:

LET f$="Win1_Xchange_test_doc"

LET ch=FOP_IN(f$)

LET fullname$S=FNAMES (#ch)

CLOSE #ch

LET ch=FOP_DIR(f$)

LET dirnameS=FNAMES (#ch)

IF dirnameS$<>"" THEN LET dirnameS$=dirnameS$&' '

CLOSE #ch

LET filenameS$S=fullnameS(LEN(dirname$)+1 TO LEN(fullname$)
PRINT filename$

which (eventually!) prints "test_doc"
Conclusion

Directories are a very useful and sometimes underused facility on modern QL systems. They take a
bit of getting used to but once you've got used to them you'll wonder how you ever managed
without them. The main advice is to remember that the length of a directory name and filename
combined must not exceed 36 characters and try to plan ahead what names you intend to use
because if you change your mind later it can be a very fiddly job to make big changes.

