PROforma documentation

FROGS, Professional & Graphical Sofiware

D Frans Hemerijekxiaan {5 11

2050 Bdegam

BELCIUM

tel » +32 (D35 457 84 88 fax » +32 (V354585 62 07 e-mail ! joackim@elubinnet. be
www B S eclubinnel befveard 827

1. Intreduction
1. What 1z PEOforma
2. This manual
3. Present, Past an Future
4. Installaben
Confiouration
PEOforma Concepts
Imaging Mo del
hir
Gstate
Drivers
Transformation matrs:

Lho e le
F)
]
=

Dirawing parameters

Clipping path

Bulding a path

Controlling the wisible area
Controlling the page
Dizplaying pictures

10, Windowing aids

6. Font Management
1. Font Loading

Font Information
Lyalable Fonts

Text display

String handling
suppotted character set

e . E R S B S

ety

e

PROforma documentation

PROGS, Professional & Graphical Software

Dr. Frans Hemerijckxlaan 13 /1

2650 Edegem

BELGIUM

tel : +32(0)3/457 84 88 fax : +32 (0)3/ 458 62 07 e-mail :
joachim@club.innet.be

www : http://www.club.innet.be/~year2827

1. Introduction
1. What is PROforma
2. This manual
3. Present, Past an Future
4. Installation
2. Configuration
3. PROforma Concepts
4. Imaging Model
5. Graphics
1. Gstate
Drivers
Transformation matrix

Drawing parameters

Clipping path
Building a path

Controlling the visible area

Controlling the page
Displaying pictures
10. Windowing aids

6. Font Management

1. Font Loading
2. Font Information

3. Available Fonts
4. Text display

LCONSORAWN

5. String handling
6. Supported character set
7. Cache handling

8. Charpaths
7. PROforma sessions

8. Functions
9. Writing your own ...
1. ... bitmap drivers

2. ... printer drivers
3. ... picture drivers

PROGS, Professional & Graphical Software
last edited February 14, 1996

PROforma introduction

What is PROforma
This manual

Present, Past and Future
Installation

What is PROforma

PROforma is short for 'PROGS Font & Raster Manager', and it does exactly
what this name suggest. It is a library of routines to manage and display
vector graphics and fonts on (raster) devices like screens and printers.

The availability of a separate program to manage graphics and fonts has
several advantages. It allows application developers to create output of equal
quality (resolution permitting) on several devices, and they can share
resources. In short this means that the PROforma library only has to be
loaded once, independent of the number of applications which use it. Also
fonts only have to be loaded once, and can be shared between applications.

PROforma was originally developed as the graphics library for LINEdesign.
That does not mean that this is the only kind of application for which
PROforma is of use. PROforma is perfectly suitable as well for desktop
publishers, word processors, business graphics and all applications which
want high quality output (which must be just about every application except
compilers and games). Actually, even at the time of writing there are things
which are possible with PROforma and can't be accessed through
LINEdesign.

More recently PROforma has been redesigned to a great extent, to make it
even more future proof, easier to extend (both internally, and by writing
drivers). There have been some changes to make it easier to write a window
manager (for ProWesS) and complete support of colour has been added.

As a library, PROforma has the form of dynamic link library (DLL) (if you
don't know what that is, don't worry).

This manual

This manual is intended to explain in detail what PROforma is about, how it
operates, how it should be used and how it can be extended. For some
specific details like possible errors of the access routines, we would like to
refer to the PROforma_ddf DATAdesign file.

We (and everybody who uses this manual) would like it very much if you
could send us any comments about this manual, like

omissions

inaccuraties or mistakes

typing and/or spelling mistakes

making this manual better English

anything else (positive comments are also always appreciated)

At the bottom of each page is mentioned when the HTML document was last
modified. I will try to keep this date correct, however it is only meant to
indicate changes in the information provided, I will not change that date
when correcting spelling mistakes or HTML errors.

Present, Past and Future

PROforma is originally developed as the graphics library for LINEdesign.
When we started developing LINEdesign v2, we felt that the graphics
routines we used were too slow, and also too restrictive. On the other hand,
LINEdesign v1 was quite greedy on memory. Therefore, we threw away all
the old routines, and started writing a new, more powerful and faster set of
routines. During this development, we even introduced some concepts (like
the clipping path), which are not used in LINEdesign. On the other hand, the
graphics library was expanded to allow efficient editing on screen.

So what do we have now ??

We have a system that can efficiently render and display fonts. All fonts can
be shared among applications. A font cache is used to speed up the handling
of fonts. Even the font cache and everything in it is shared amongst
applications. Fonts are rendered using proper hinting (if the font includes the
hints).

The system can draw lines and curves either stroked (with given accuracy
and thickness), or filled (using either in/out or winding rule).

Anything can be displayed in any gray shade or colour. If wanted, everything
can also be clipped by regular or irregular shapes. Transformation matrices
can be applied on the page.

The user can define which part of the coordinate space is actually visible on
page (or screen).

Bitmapped pictures can be directly displayed. This allows the user to include
screens in his or her output.

Possibilities for the future ??

We want to improve the control over how colour is produced, allowing the
user to define how the colour patterns are formed. We also want to make it
possible to use a pattern (drawn using PROforma of course) to be used as
"colour". Also, we want to add dashed lines, and some variations on line
caps, line joins and maybe even some kinds calligraphic lines.

PROforma already contains three kinds of drivers : bitmap drivers, printer (or
screen) drivers, and picture drivers. At this point the bitmap drivers are only
used internally in PROforma, but we are thinking of making them accessible
from outside PROforma, so that general bitmap graphics routines can be
written using the primitive commands in the bitmap drivers.

Although PROforma already uses hinting when displaying the fonts, we
would like to examine whether we can further improve the quality of hinted

fonts at very small sizes (especially when displayed on screens, e.g. in
ProWesS).

Of course we continually try to improve PROforma's speed.

Installation

PROforma is a job which makes itself available to clients in the form of a
Dynamic Link Library (a thing with an efficient access method).

Some extensions have to be loaded for PROforma to run : the dynamic link
library manager and syslib.

PROforma has the shape of a job, and loads its configuration file
("PROforma_cfg") when it starts. A parameter can be given to PROforma to
specify the path where the configuration file can be found (e.g.
"winl_pf;flp1" to search on "winl1_pf_" and "flp1_" in that order). If no
parameter is given or the configuration file is still not found, then first the
program default and then the data default devices will be searched.

The fact that PROforma has the form of a job (and not a resident extension as
most libraries like the Menu Extensions), has certain advantages. Jobs can
always be loaded (if you have enough memory), and jobs can always be
removed. When loading a job it is possible to pass a parameter (like where to
find the configuration file), which is particularly useful. Also, no memory is
wasted if PROforma is loaded while a copy was already running. So if you
want to release the memory which is used by PROforma, you can just remove
the job. Of course the disadvantage of this scheme is that you can
accidentally remove the PROforma job, which is dangerous as all programs
which use PROforma will also be removed, so you could loose data that way
(in fact, as ProWesS uses PROforma, all jobs which use ProWesS would also
be removed).

PROGS, Professional & Graphical Software
last edited February 13, 1996

PROforma Configuration

1. Configuration file
2. Dynamic configuration

Configuration file

PROforma reads the initial configuration information from a special file
called PROforma_cfg. You can specify the directory where this file should be
searched when executing PROforma.

Each line in the configuration file is interpreted as a configuration command.
Empty lines are discarded as comments. All the other lines are divided in two
types, commands and definitions of configuration constants. The lines with a
command have a fixed format : the first character is the actual command, the
second character should be a space, and the rest of the line is the parameter.
All lines which don't have a space as second character are considered as
configuration constants.

The configuration commands currently supported by PROforma are :

l%l and l;'
the line is considered as comment and is discarded.

lSl
the parameter is now the searchpath for fonts. If the first character of the
new path is a plus sign, then the path will be added at the end of the
existing path.

to set the searchpath for drivers. If the first character of the new path is a
plus sign, then the path will be added at the end of the existing path.

will load the give PROforma driver. It is not necessary to know what
kind of driver it is. The names of PROforma driver files normally end in

'_pfd'. The file will be searched on the current searchpath for drivers (cfr

's").

allow you to specify the maximum amount of memory which can be
used by PROforma as buffer to render a page in. If the amount given is
negative, then that is the amount of memory which has to remain free
(both in bytes).

specify the size of the font cache. This consists of two numbers, the
actual size of the font cache, and the minimum number of different
font/size combinations that can be in the cache (one more combination
can be in the cache for each gstate). Each combination of font & size
uses about 1.5kB of memory, so this number should not be too big,
however, if you use a large fontcache, this number should also be
increased.

Define the size for the colour cache. In PROforma each gstate keeps a
few colours which were last used to make sure that the pattern which is
used to estimate the colour does not have to be recalculated all the time.
This causes a very big speed increase in some operations, especially for
drawing pictures. You can choose how many colours are retained in the
colour cache. The value is restricted to stay inside the 1..256 range. The
default value is 8.

load a font file as resident font. A resident font will always remain in
memory (unless PROforma is removed). The first resident font is
considered to be the builtin font (which is essential for proper
functioning). The characters from the builtin font are (also) displayed
when that character is not available in the current font. It is therefore
recommended that the builting font is as complete as possible.

The parameter is the name of the fontfile, which is searched on the
searchpath for fonts. If you also want to be able to choose the resident
fonts in te fontmap, then you should also include a 'P' command.

this command adds a font to the fontmap. The fontmap is a matching
between font names and their filename. The fontmap is also used to
figure out which fonts are available. The command has two parameters,

separated by a semicolon (';"), there should be no spaces before and after
the semicolon. The first parameter is the name of the font (which has to
be an exact match, including case). The second parameter is the name of
the font file. PROforma font files normally end in'_pff".

’d'
selects the default printer driver. The driver can be given either as the
driverid number (in ASCII, this starts with a minus sign as driverid's are
negative) or as the full (case sensitive) printer driver name.

IVl

this command should not be used in the PROforma configuration file.
The parameter is the minimum version number you want to use. An
error (ERR_ISYN) will be returned when the version of PROforma is
older than the version requested. An example of the use of this is v
1.14.

The configuration constants are only passed to the last loaded PROforma
printer driver (or if you just selected the default printer driver, than that driver
will get the configuration constants). Most printer drivers will normally
understand the following configuration constants :

DEFAULT-DEVICE
The parameter if the default device for the printer driver. Some
examples are serihr or pard. Note that PROforma only prints raw data,
so translates should be switched off, hence the 'r' in serihr and the 'd' in
pard.

PRINTABLE-AREA-SIZE
Allows you to set the size of the printable area for your printer. This is
the area where output can be visible on the page. The parameters are in
typographical points, which has a unit if 1/72 inch or approx. .35 mm.

PRINTABLE-AREA-ORIGIN
Allows you to set the origin of the printable area for your printer, or to
put it differently, the offset of the printable area from the left and top of
the page. The parameters are in typographical points, which has a unit if
1/72 inch or approx. .35 mm.

Dynamic configuration

PROforma can also be configured further while it is already active.
PROforma contains a special entry point which allows you to pass
configuration lines which are then processed.

The 'PROforma DLL' thing has a CNFG extension which is used for this
purpose. This extension accesses a function which accepts a character array
as parameter ("char *"). This string is handled as if it was a line in the
configuration file. It is thus possible (as mentioned in the previous section) to
add printer drivers or fonts, change the default driver etc.

The call to this routine can be done as follows :

#include "thing_h"
#include "PROforma_h"

Error err; /* the error returned by the config routine */
char *str; /* the config line which is passed */

err=THINGCall(PF_THING_NAME, PF_THING_CNFG, 1, str);
if (err) ... /* error handling */

PROGS, Professional & Graphical Software
last edited 4 December, 1997

Concepts

Graphics State - Gstate
Driver & Device
Path

Subpath
Path segment

Bezier curve

Clipping path

Transformation matrix
User space

Device space

Current point

PageBbox & PageOrigin
WindowSub

Font

Resident font

Builtin font

Fontmap
Fontlist

Font caching
Extended character set
Kerning

Ligatures

Tracking

Display mode

Graphics State - Gstate

All operations in PROforma need some kind of entry point, just to let
PROforma know which device has to be used, what parameters are currently
valid, how big the drawing board is etc. To prevent the client (that is the user,
or the application which wants to use PROforma) from having to pass these

details with every command, with all possibilities of mistakes, these
parameters are combined into a general, internal structure for PROforma.
This structure is a 'graphics state' or 'Gstate'. A gstate contains information
about :

e the device which is used (screen, printer) and the size of the usable area,
specification about how to draw on that device,...

e All parameters about the current drawing methods like colour, line
thickness,...

e All information about the fontlist, current font,...

e The current transformation matrix (CTM), list of saved CTM's, current
point,...

e All information about the current state of the iterators like device
iterator, fontmap iterator, charpath iterator,...

e Information about the current clipping path.

Driver & Device

A driver is a set of characteristics and routines which describe the behaviour
of a certain output device (like a printer, or the screen). This usually includes
details as size, resolution, available colours... On the other hand you can
probably attache your printer both to a serial port, or a parallel port, or maybe
you just want your image to to output to a file. Therefore, you always have to
specify the driver (how to draw), and a device (where to draw) when you
allocate a gstate.

PROforma acually works with three kinds of drivers, and one of these has
two variants. The most important kind is a printer driver, which is used to
actually make everything visible (create the output). A variant of this is a
screen driver. This similar to a printer driver with as only difference that the
output is produced by your monitor instead of your printer. (In this manual
the term printer driver always includes the screen drivers, and the word page
can be replaced by screen when a screen driver is used).

Another type of driver is a bitmap driver, which is used by PROforma to
draw in a buffer which is later copied to the actual output device.

Picture drivers are the third and last kind of drivers. They are used to display
bitmapped pictures in PROforma. They are a separate kind of driver because
there are so many graphics formats in the world.

In this manual, when the general term driver is used, without specifying
which kind of driver, it normally means a printer driver.

On devices : we strongly recommend the use of the parallel printer port and
not the serial port. Serial ports are extremely slow and the amount of data
which has to be sent to a printer can be huge. Of course we try to send as
little data as possible, but not too many printers can handle compressed data.
You should also be aware that serial to parallel converters do NOT speed the
transfer of data up. The serial port can handle a certain speed and not more.
For instance try sending an A4 page of 300 dpi data on a 9600 baud serial
port (standard). This A4 page would need about 966k of data and this would
take at least 13 minutes without control bits or correction of control bits (and
without handshaking). In short, it will take MORE than 13 minutes to send
this data. Luckily, PROforma will normally send less than 966k.

Path

There are actually two meanings for this term, a device interpretation and a
graphical interpretation.

e device : a device name, possibly including directory, where files can be
found. In PROforma we also allow semicolons in a path name to
distinguish between several paths to form a searchpath (that is all paths
are tested from left to right until the requested file is found). For
example winl_fonts_;flp1_ will search the file first on
winl1_fonts_font_pff and later (if not found) on flp1_font_pff

e graphical : a collection of subpaths.

Subpath

A move (to define the origin of the subpath) followed by a sequence of path

segments. A subpath can be open, or closed.

Path segment

A path segment is either a line or a bezier curve. Circular arcs are converted
to bezier path segments.

Bezier curve

Bezier is a French mathematician who works for Renault and who "invented"
a description/display method for curves based on Bernstein polynomials.

In PROforma we only use cubic bezier curves. That is curves which consist
of four points: the two endpoints (which are on the curve), and two

controlpoints (which are off the curve).
Clipping path

A clipping path is a special path which is not actually drawn, but which is
used as a mask for all drawing operation (except text when the cache is used,
see later). So the path itself is not drawn, but instead only the places which
would be coloured by drawing the path are candidates for all future drawings

until the clipping path is cleared.

Transformation matrix

This is a structure (actually a matrix), which explains how the coordinates
which are passed to PROforma will be transformed to default user space.

User space

User space is the coordinate system which is used to tell PROforma where
and how to display path or text objects. The user space is converted into
default user space by PROforma. This user space divides an inch in 72 equal
parts, the axisses are horizontal (x) and vertical (y). The origin is at the top
left, and the axisses extend right and down. The unit of 1/72 inch is called a
point (pt). Note that a point can be defined slightly different depending on the
source: some say there are 72.27 points in an inch, others say 72.307 points
per inch.

Please note that PROforma allows to scale the default user space. This would
allow the user to specify all coordinates in inches, or centimetres,...

Device space

Internally, PROforma transforms all coordinates from user space to device
space. This resembles the position of the picture elements (pixels) of the
device. Thus PROforma can decide which pixels to turn on or off.

Current point

The current point is very important when building a path. All path
construction commands start at the current point, and set the current point to
their endpoint.

It is also the start position on the baseline for text, and set to the end of the
text. And it is also the position where a bitmap can be placed.

However, the current point is not always stable. For instance, the current
point can not handle changes in the CTM. To avoid this kind of problems, see
"PROforma sessions."

PageBbox & PageOrigin

PROforma has a special view on how things have to be visualised on the

chosen device. For starters there is the "page." This entity contains all path
and text objects which have to be drawn. The actual image of the object
depends on the CTM.

On the other hand, the page has to be visualised on the chosen device. Two
things are important for this, the PageBbox which gives the origin and size
(on the device) where the page (or part of) will be visualised. Which part of
the page will be shown is determined by the PageOrigin, which is the
coordinate (in default user space) of the point in the top-left corner of the
PageBbox.

WindowSub

Especially for writing such things as window manager which uses
PROforma, the concept of a subwindow is introduced. The concept is quite
similar to a pagebbox except that a pagebbox is used to redraw part of
something bigger (e.g. in interactive applications), and a subwindow is used
to draw an independent part of the screen. If the concept of a subwindow
would not exist in PROforma, you would have to open a Gstate for each part
of the window where you need to draw. Subwindows allow you to reduce a
lot of the overhead by using one Gstate for lots of smaller parts in a window.

Font

Collection of graphical shapes, which can usually be combined to give
readable text. The font files currently have a lot of similarity with the Adobe
Type I font format (slightly adopted for easier access, which also makes them
a bit shorter). However this may change in future if we choose to add a
different hinting scheme (as the hinting used in type I files is quite obscure,
and our current implementation quite unsatisfactory).

Fonts are handled quite efficiently. Each font will only be in memory once.
Clients have to state which font they want to use (load), or no longer want to
use (unload). Fonts are always referenced by their name. The name of the

font and where to find it are stored in the "fontmap." The fontmap is read
when PROforma is loaded. If a font is not in the fontmap, then it can't be
used.

PROforma automatically releases a font when there are no gstates which have
loaded it. Special routines are included to make sure this is always true (even
when a job is force removed). When a font is loaded it is placed in the
"fontlist" for that gstate.

Resident font

Normally, fonts are loaded when they are first requested to be usable by a
gstate, and they will be discarded when the font is no longer in use by any
gstate.

However, PROforma also contains the concept of a resident font. A resident
font remains loaded from when it is specified until PROforma is removed (or
a reset). A resident font is always available by all gstates, they don't have to
say that they are going to use that font. It is most practical when a user often
uses the same fonts. They are then always immediately accessible.

Builtin font

PROforma always needs at least one resident font, which is called the builtin
font (the first resident font). This font has a special purpose as it will alwys
be used when no ther font is selected. It is also intended that you should use a
complete font for the builtin. When PROforma displays a character, it will get
the shape from the current font. However, it is quite possible that the current
font does not contain a shape for the requested character. In that case,
PROforma will try to get the shape from the builtin font.

Fontmap

PROforma always keeps a table of all known fonts. This table is used to map
a fontname to a fontfile. If a client tries to access a font which is not in the

fontmap, then an error is returned.

The fontmap can not change after PROforma has been loaded (except by
removing the PROforma job and loading it again, alas this also removes all
clients of PROforma).

Naturally, the fontmap can be examined to find out which fonts can be loaded
(if the fontfile is available or fonts is already loaded of course).

Fontlist

Each gstate also keeps a list of the fonts which it can already access. A gstate
can only access fonts which are actually loaded. Therefore, when the client
request to load a font, it is added to the fontlist of the gstate. The fontlist can
be examined to find out which fonts can already be used by a gstate.

Font caching

To increase the drawing speed of text, often used characters are also kept in
an internal format which can be displayed much faster than the standard
representation on the font. This is called the font cache. There are two
limitations imposed by the font cache. The font cache is not capable to
display fonts with clipping. Only characters which are not slanted or rotated
(so only scaled) can be handled by the font cache. This actually means that
some fonts can never be cached (fonts which are internally slanted or
rotated). The font cache is also not used for the characters which are partly
invisible.

Because the font cache has a limited size, a replacement algorithm must be
used. In the case of PROforma, we make sure that only the least recently used
characters are removed from the font cache. PROforma makes sure that the
capacity of the font cache is not reduced because of fragmentation.

Unfortunately, the font cache doesn't use a magic trick. Although a cached
characters draw at least four times faster than a character which was not

cached, you can only gain speed if the character which is cached is used
again before it is removed. So if you now in advance that a certain character
will only be displayed once, switch off the cache ! This should be done
because actually placing a character in the font cache can be hard work !

Extended character set

Because typography uses many characters, PROforma uses a special
extended character set, which contains much more characters then the
standard character set which is supported by the operating system.

All character strings which are used to display text use an extended character
set, unicode. In unicode all characters are a word long (two bytes instead of
one).

Actually unicode is a character encoding, while PROforma needs a glyph
encoding.This means that some things are not supported by unicode which
PROforma needs and vice versa (e.g. ligatures). So PROforma uses only a
subset with some extra characters (the ff and fi ligatures). The characters
which PROforma considers as "supported" all have a proper character name
(which can be found in the PFCharNameTable).

Kerning

To increase the cohesion of a combination of characters, it is often not
enough to position all characters side by side, put some character
combinations have to be put closer together (or further apart) to make sure
that they are visually equally spaced (same amount of whitespace between
characters). This process is called kerning. A typical example is the word

"AWAY."

Ligatures

Another typesetting feature is that some characters sequences like "ff", "fi",

"f1", "ffi", "ffl" should be replaced by special characters which look better.
Ligatures are supported in the Extended Character Set and can therefore be

used by the client.

Tracking

Sometimes it may be interesting to add some extra space between all
characters. This is called tracking, and can be particularly useful for logo's.

Display mode

PROforma does all drawing inside a buffer. Only when the PFPageShow
command is called, is the buffer actually displayed to the user.

However, for interactive use, this is not an ideal situation. In fact, users find it
very annoying to wait for the drawing to complete, and time only passes very
slowly when you are waiting. Therefore, PROforma (and specifically the
screen driver) allows you to change the display mode from the default
behaviour, to an update mode where the screen is continually refreshed with
the current state of the drawing buffer. This refreshing is cancelled when the
PFPageShow command is called.

PROGS, Professional & Graphical Software
last edited June 21, 1996

Imaging Model

PROforma has it's own specific way look at pixels and pages, the two basic
entities in this system.

Pages

Pixels

CRT screen

dot matrix printer

inkjet or bubblejet printer

laser printer

Pages

Because not all devices are capable of changing their output (printers for
example), PROforma uses a buffered approach. So instead of drawing on a
page, all operators actually draw in a buffer, and this buffer can then be
displayed on the actual page (using PFPageShow). However, such a buffer can
be quite large (typically 1MB for a 300dpi mono A4 page), and there may not
be enough memory available for the entire page. Therefore, an actual page
can be split into several pieces, and transferring the buffer will only display
part of the page.

So pages are built in passes. The client knows how many passes are
necessary for each page and has to call the display operators for all visible
objects on the page once for each pass. When transferring the buffer to the
printer, PROforma immediately makes sure the buffer is ready for the next
pass of that page, or, if this was the last pass of the page, it makes sure the
buffer is ready for the first pass of the next page. The buffer is however not
cleared. This is done to allow small changes to be made in the buffer without
redrawing all the other stuff (which is only relevant if the page is produced in
one pass and can be particularly useful for interactive use and mailmerging).

The buffered approach is actually taken one step further in PROforma. It also
applies to paths. Although all parameter about how to draw the path have to
be known in advance, the path is not actually drawn while it is built. The path
is only drawn when you call a command to do so.

To be 100% correct, we must state that some device drivers (possibly in some
versions and with some parameters) may actually bypass the buffer(s).
However, this can only explain some 'unexpected' behaviour in some cases
(like marks on the page when the page or path is not drawn). It should never
be assumed. In fact you could consider the commands to draw a page or path
as end of page or end of path markers, they have to be there !

Pixels

PROforma has it's own convention on pixels. It assumes that pixels are
rectangles, and that they are positioned between the grid lines.

In this picture you see the grid lines, the pixel centres, and the actual pixels.
On the right, there is a filled triangle drawn. As you can see, pixels are only
drawn when the centre lies inside the triangle. A boundary situation occurs
when the edge of the triangle coincides with a pixel centre. In this case the
edge is shifted to the right over in infinitely small amount.

This also means that areas which have a thickness of less than a pixel may be
(partly) invisible if no pixel centres fall inside the path. ' In the picture you
see a line which is less than a pixel wide (and not hairline), and which pixels
would be drawn.

The same rules apply to stroked paths. However when the linewidth is less
than one pixel, the path will be drawn hairline. A hairline is a line with a
uniform width of one pixel.

Unfortunately, the view that PROforma has on pixels is ideal and does not
conform with most output devices (none probably) There are two differences
possible.

For starters, some devices don't draw their pixels as PROforma does it, but at

the actual crossing of the grid lines. This is no problem as it only means there
is a shift of half a pixel for the entire page. This causes no problems at all.

On the other hand, pixels are usually round, and they often overlap. To make
matters even worse, some printers don't even have a consistent pixel size. We
will just explain what the problems are with a few types of devices.

CRT screen

These are the common monitors, and we are lucky. Monitors draw in white,

which has the effect that white pixels are larger than black pixels. However,

the difference in size is not too large. The average size of the dots is slightly

bigger than the addressable resolution. This is quite a good approximation of
the PROforma model.

dot matrix printer

Dot matrix printer have round dots which are always equal in size. Dots are
usually much larger than the resolution at which they are positioned.
Although this produces smoother results, it also meant than output is usually
more black than is intended. For instance the difference between a one or two
pixel wide line can be very small, even if this is a relatively big difference in

user coordinates.

Another problem often encountered in dot matrix printers is banding. This
means that there is a regular repetition of lighter and darker horizontal bands.
This is mainly caused by the use of ink ribbons. They are also used for
printing text and therefore the area in the middle of the ribbon is used more
than the top or bottom. The less used area produces darker dots. On the other
hand the ribbon also rotates horizontally, and this may also cause a difference
in darkness (some parts were used more than others).

inkjet or bubblejet printer

This is generally speaking the same as a dot matrix printer. However, the ink
is fluid now, and it is usually absorbed by the paper. This causes an
additional problem as the size of the dots now also depends on the type of
paper. The shape of each dot can also change, and this also depends on the
paper (very local). Inkjet or bubblejet printer usually suffer a lot less of
banding (unless one of the jets is blocked). A major advantage of inkjet
printers is that they are very good at filling black regions, although the paper
may bend because of the wet ink.

laser printer

Laser printers either draw their page in black (most often) or in white (as
copiers do). This has certain effects on the result (making it either darker or
lighter), and pixels don't always have the same size (especially in corners,
this is sometimes corrected or used by the printer (so called resolution
enhancement).

Because of the technology used (toner which sticks to charged particles) laser
printers have got problems with small (or thin) areas (like hairline paths,
which fade away), and with large black areas (which become lighter in the
middle). On the other hand, laser printer have the highest real resolution
(smallest dots), and gives the highest quality output. Actually, a 300 dpi laser
printer giver better, crisper output than a 300 or 360 dpi dot matrix or inkjet
printer.

PROGS, Professional & Graphical Software
last edited February 13, 1996

Font Management

A very important part of PROforma concerns the manipulation and
displaying of vector fonts. The vector fonts which are used in PROforma are
a direct descendant of the Adobe Type I font format, but optimised for
efficient access, and low memory consumption. Programs exist to convert
Adobe Type 1 fonts for PROforma (pfb2pff).

Font [.oading
Font Information

Available Fonts

Text display

String handling
Supported character set
Cache handling
Charpaths

Font Loading

Fonts have to be loaded upon request of the client, and can also be released
from memory by the client. Fonts only take a little more memory than they
occupy on disk. Fonts are always referenced by their name. Font names are
case dependant ! If a font is loaded by several gstates, it is only kept in
memory once. So a font is not released from memory if there is at least one
gstate which has that font loaded (or the font is resident - resident fonts are
never released). A font which is not resident is always removed from memory
when there are no more gstates which have loaded that font.

Resident fonts never have to be loaded by a gstate. They are always available
(so they are always in the fontlist).

PFFontLoad
Load the given font file into memory, to make that font available to the

client. This command will automatically select the just loaded font (the
current fontsize is not affected by this call). This command needs a
fontname. The corresponding filename is searched in the fontmap. So
only fonts which are in the fontmap can be used. Font files are searched
'as is', and on the configured path.

PFFontUnLoad
Stop using the given font. After PFFontUnLoad the current font is no
longer defined. If the font is not loaded by any other gstate (and the font
is not resident), then the memory which this font occupies will be
released. This actually allows PROforma to release the font. The client
can no longer use that font, unless it is loaded again.

PFFontSelect
Select the font with given name as current font. The new font will be at
the current fontsize.

PFFontScale
Scale the current font to the given point size. Scaling a font is always
relative with the CTM.

Font Information

PFFontNameGet
Get name of current font.

PFFontFamilyGet
Get name of font family of current font.

PFFontVersionGet
Get version of current font.

PFFontWeightGet
Get weight of current font.

PFFontNoticeGet
Get notice of current font. This usually includes details about creator
and/or copyright on the font.

PFCharAuvailable
Routine to allow the client to know whether a character (with given
unicode) is available in the current font. Note that the character is only
searched in the current font. It may actually be displayed when the
character is displayed because the character may be extracted from the

builtin font.

PFWidth, PFStringWidth
Get the width of a string.

PFWidthKern, PFStringWidthKern
Get the width of a string, when displayed with kerning.

PFFontBbox, PFPFontBbox
Get the FontBbox. This allows you to find out the maximum amount a
character can extend to the right and top, and to the left and bottom.
PFPFontBbox works slightly different. It tries to approximate the
fontbbox in pixels by determining a bbox in which the letters 'W', 'f', 'g',
'm' fit. As it is possible for some characters to extend further in any
direction as these letters, you can also add an extra character to the
approximation. In general, this returns a bbox which fits most characters

(capitals with accents probably not though).

Available Fonts

Information about all the available fonts. This allows the client to know
which fonts are loaded and can be used.

PFFontCount
Get the number of fonts which are loaded (in the fontlist).

PFFontNext
Select the next font in the list of fonts as the current font. If the last font
in the list was the current, an error will be returned (and the current font
is not changed).

And you can enquire about all the fonts which are in the fontmap.

PFFontCountAll
Get the number of fonts in the fontmap. Also makes sure that the next
enquiry with PFNextFontName will return the first font in the fontmap.
PFFontNextName
Get the name of the next font in the fontmap.

Text display

PROforma always uses UniCode character codes. These character code are
"short" in size (and not char). A char just didn't allow enough possible
characters.

All the routines to display text (or get the width thereof) are available in two
varaints. The first variant uses unicode characters directly (a unicode string is
the same as a c string, \0 is used as end of string marker). The other variant
(the commands which start with "PFString") use strings in the local character
set (ordinary strings).

The requested characters are retrieved from the current font at the current
fontsize. If the character is not available in the current font, the character will
be retrieved from the builtin font. If the builtin font also doesn't contain the
character, then an empty character (no width, not visible) is displayed.

PFShow, PFStringShow
Show the requested string at the current position. Characters are placed
proportional. The current position will now be the place where the next
character should be placed.

PFShowKern, PFStringShowKern
Show the requested string at the current position with kerning. The
current position will now be the place where the next character should
be placed.

PFShowX, PFStringShowX
Show the requested string at the current position. The advance width of
the characters is overwritten with the given values. The vertical advance
width is taken as zero. The current position will now be the place where
the next character should be placed.

PFShowXY, PFStringShowXY
Show the requested string at the current position. The advance width of
the characters is overwritten with the given values. The current position
will now be the place where the next character should be placed.

PFShowTrack, PFStringShowTrack
Show the requested string at the current position. The current font size is
used, but characters are positioned in such a way to make sure that the

string has the given width (using tracking).

PFShowlJust, PFStringShowJust
Same as PFShow (resp. PFStringShow), except that some whitespace is
added or subtracted at the space characters, to make sure that the text is
displayed with full justification. The requested width of the line has to
be specified.

PFShowKernJust, PFStringShowKernJust
Same as PFShowKern (resp. PFStringShowKern), except that some
whitespace is added or subtracted at the space characters, to make sure
that the text is displayed with full justification. The requested width of
the line has to be specified.

Normally, PROforma always attempts to be completely device independent.
Unfortunately, when displaying text on screen, you often prefer quality above
device independence. The main problem is that spaces are usually too small
to seperate characters properly. Therefore, there are some special routines
which force the distance between all characters to be consistent (one pixel).
These commands should only be used on screen, as it would remove all
character spacing on devices with a higher resolution.

As these commands are only ment to be used on screen devices, they use the
PFP prefix. In fact, the string width commands actually return the width in
pixels.

PFPShow, PFPStringShow
Show the string using one pixel spaces between all characters.
PFPWidth, PFPStringWidth
Get the width a string occupies when displayed with PFPShow or
PFPStringShow commands. The width is given in pixels.

String handling

PFExtraEOS
All strings which are passed to PROforma are "\O' terminated c strings.
However, it may in some cases be useful to have an extra symbol which
can be interpretted as end of string marker. Such an extra marker can be

specified with this command. You can reset the extra marker by setting
itto "\0'

PEFPrintEscape
When strings which have to be displayed are passed using the local
character set, not all of the supported character set can be accessed.
Therefore, PROforma allows an escape sequence to specify all the
characters in the supported character set when normal strings are used.
You are then allowed to specify the character by putting the (case
dependent) name or (decimal) unicode between backslashes. However,
as this behaviour is not always wanted, you can switch it on or off.

Supported character set

PFCharNameTable
To be able to use the supported character set, PROforma gives you
access to a table which contains all the supported characters. Both the
name and unicode of each character is given. Please note that the name
of the supported characters is case dependent (for example to allow both
Egrave and egrave as character names).

PFASCII2UnicodeTable
Although PROforma allows you to use the local character set for most
of the font handling commands, it may sometimes be necessary to
convert characters in the local character set to unicode. Therefore, there
is this table which gives the unicode value for each character in the local
character set.

Cache handling

Normally all font display operators try to use the font cache. However, as
there are some problems with the usage of the font cache, the use of the font
cache can also be switched off. This can be done because all font display
operators work as if there is no clipping path when the cache is switched on !

PFCacheUse
Tell PROforma whether or not the fontcache should be used.

Charpaths

For drawing programs like LINEdesign it is interesting to be able to extract
the outline of a character from a font as this allows the user to make some
individual changes to the characters. Therefore this feature is supported by
PROforma. And consists of a loop like :

select character which should be converted
DO

get the next path operator

process it
UNTIL end of character

Note: the PFCharPathInit and PFCharPathEl commands should only be used
in such a loop, just as all the other iterators in PROforma (no other font
operators shoud be used inside the loop).

PFCharPathInit
Select the character for which the outline will be extracted. Selects that
character from the current font at the current size of that font.
PFCharPathEl
Get the next path element for that character. This can be a move, line,
curve, width or end of character command (which can be interpreted as a
PFPathDraw). The coordinates which are returned are absolute
coordinates, only the character origin has to be added.

PROGS, Professional & Graphical Software
last edited December 4, 1996

PROforma sessions

If you want to use PROforma, there are certain rules you have to follow to
assure correct operation. The most important rules concern the order in which
the operators have to be used. For instance, you should not change the
transformation matrix during the building and drawing of a path. This is done
because PROforma is built for efficiently. Everything has to be fast and
flexible. This unfortunately means that robustness is not one of PROforma's
strong points. Doing unexpected things may cause unexpected results.

To try to make things easier we will now give an outline of a common
procedure for programs which generate their output using PROforma. That is
for programs which are not interactive. A program which is interactive does
not produce pages as suggested here. Generally speaking, the scheme will be
very similar though.

The scheme listed here doesn't include two groups of operators. The
operators which request information from the system, as these can be used
between drawing commands, as they don't change anything in the system.
Also some commands like PFPageScroll and PFwindowMove are not listed.
These commands can also be used at about any moment.

There are some general notation used in the following scheme : command
Execute the command. { command } The command can be repeated zero or
more times. [command] The command can be executed at most once.
command]l | command?2 Either command1 or command2 will be executed. <
command > Composite command, elaborated somewhere else in the scheme.
Of course these rules can be combined to form a more elaborate scheme.

< PROforma session > =
PFInitGstate
[PFCopies]
/* FOR each page */
{

}

PFRemoveGstate

< Draw Page >

< Draw Page > =

< Draw
/*

/*

{

}

{
}

FOR each pass */

[PFPaperColourGray | PFPaperColourRGB | PFPaperColourCMY
PFPageClear

< Draw Pass >

PFPageShow

Pass > =
FOR each object */

< Draw Object >

< Draw Object > =

N

N

N

N

| W e | e A AN

2
@
~+

/e

PFPageScale]

PFPageBboxSet | PFPageOriginSet |
< Set Draw Parameters >]
PFSaveCTM]

< Draw Path > | < Draw Text > | < Draw Picture >

PFRestoreCTM | PFResetCTM]
PFPageBboxReset | PFPageBboxRestore]
PFClearClip |

Draw Parameters > =

< Change CTM >]

PFLineWidth]

PFColourGray | PFColourRGB | PFColourCMYK]

PFFlatness]

PFPathMethod | PFPathStroked | PFPathFilled | PFPathEOFille

Change CTM > =

{
}

PFCTMSet | PFCTMMove | PFCTMScale | PFCTMXScale | PFCTMYS

Draw Path > =
< Draw First Subpath >

{
}

[< Draw Subpath >]

PFPathDraw | PFPathClip | PFPathClear

Draw First Subpath > =

PFMoveTo
{

}
[PFPathClose]

PFLineTo | PFLineR | PFCurveTo | PFCurveR

< Draw Subpath > =
[PFMoveTo | PFMoveR]

{

}
[PFPathClose]

PFLineTo | PFLineR | PFCurveTo | PFCurveR

< Draw Text > =
[PFFontLoad]
[< Set Text Parameters >]
[PFCacheUse]
[PFPrintEscape]
[PFExtraEoS]

PFMoveTo

{
PFShow | PFStringShow
PFShowKern | PFStringShowKern
PFShowX | PFStringShowX
PFShowXY | PFStringShowXY
PFShowTrack | PFStringShowTrack
PFShowJust | PFStringShowJust
PFShowKernJust | PFStringShowKernJust

}

[PFFontUnLoad]
[PFCacheUse]

< Set Text Parameters > =
[PFFontSelect]
[PFFontScale]

< Draw Picture > =
PFMoveTo

PROGS, Professional & Graphical Software
last edited February 13, 1996

Functions

For a list of all the functions which are part of PROforma, including the
prototype, exact behaviour and possible errors, you should have a look at the
PROforma_ddf DATAdesign file.

Two kinds of PROforma access functions

There are two kinds of PROforma access functions. Most of them use
coordinates which are passed as fixpoint values in user space. These
functions all start with PF (for PROforma).

However, there are also commands which need parameters which are given
directly in device space or pixels. These functions always start with the PFpP
prefix (for PROforma Pixels). Some commands are only available in one of
the two flavours, and some in both. The PFP commands are mostly provided
for efficient access from a window manager (like ProWesS). The functions
which work in pixels, usually require you to pass the coordinates as integers.
However, for accuracy, the drawing operators will always work in fixpoint
representation.

Parameters

PROforma is a ¢ (c68) programming library. However, it can also be called
from other languages (e.g. assembler). The calling and register saving
conventions for c68 are valid. This means that parameters are actually passed
on the stack. All parameters are four bytes long and contain either an integer
(int), a pointer to a string, or a fixpoint number.

Strings

Contrary to the approach which is usually taken by the operating system, we

use null terminated strings (instead of preceding them by the length).

Another problem is that we use two kinds of strings. We have the C standard
null terminated strings which contain character codes using the local
character set (one byte per character), and we have unicode strings, in which
each character is represented by a word (2 bytes). The use of unicode allows
us to have character sets which contain more than 256 characters, and have
all characters at a fixed spot. Most general characters (about codes 32 to 126)
are at about the same position as in the ASCII character set.

fixpoint - pt

This is actually just a representation of a decimal character which can be
processed faster than standard floating points. This is done by dividing the
actual representation in two parts: an integer part and a fractional part. Each
part occupies two bytes in a long word. The most significant bytes are the
integer part, and the least significant bytes are the fractional part, expressed
as multiples of 1/65536. In binary representation, this means that there is an

imaginary dot between the two words in a long word.

Fixpoint numbers can be added and subtracted just as normal integers. A
special routine (fixmul) has to be used when you want to multiply them.
Some macros are available in "PROforma_h" to manipulate fixpoint values
more easily.

/*
most parameters which are passed to PROforma are fixpoints,
as they give more accuracy than integers, and more speed
than floats or doubles. A fixpoint number is actually a long,
with an imaginary dot between the two words. This convention
allows for fast adding and multiplication, without loosing
too much accuracy.

*/

#include "err_h"

typedef long pt;

#define pt_one 0x10000
#define pt_half 0x8000
#define pt_quarter 0x4000

#define
#define
#define
#define
#define

/*

pt_hundred 0x640000
ptmin OxcOOEOOOO

ptmax OX3fffffff
ptmagic 36045 /* .55 1in fixpoint */
ptcigam 29491 /* .45 in fixpoint */

Most operations can be done directly on fixed-points :
addition, subtraction, shifting, multiplication or
division by integer constants; assignment, assignment

with zero; comparison, comparison against zero.
Multiplication and division by floats is OK if the result
is explicitly cast back to fixed.

Conversion to and from int and float types must be done
explicitly. Note that if we are casting a fixed to a
float in a context where only ratios and not actual values

are

involved, we don't need to take the scale factor into

account: we can simply cast to float directly.

*/

#define
#define
#define
#define
#define
#define
#define
#define

long2pt(x) ((pt)((x)<<16))

short2pt(x) ((pt)(x)<<16)

pt2short(x) ((short)((x)/65536))
pt2rshort(x) pt2short((x)+pt_half)
pt2long(x) ((long)((x)/65536))
pt2rlong(x) pt2long((x)+pt_half)
double2pt(x) ((pt)((x)*(double)65536.0))
pt2double(x) ((double)((x)/(65536.0)))

/* Rounding and truncation on fixeds */

#define
#define
#define
#define
#define

pt_trunc(x) ((x)&(OxffffoeE0))
pt_round(x) pt_trunc(x+pt_half)
pt_ceiling(x) pt_trunc(x+pt_one)
pt_fraction(x) ((x)&Oxffff)
pt_center(x) (pt_trunc(x)+pt_half)

/* special multiplication routine for fixpoint coordinates */
pt fixmul(pt x, pt y); /* returns x*y */

PROGS, Professional & Graphical Software
last edited June 28, 1996

Graphics

This document gives an review of what is possible with PROforma when you
do not want to use text. Some of these things also have their consequences
when displaying text, but we have chosen to make the font management a
separate document as there is so much to say about it.

Note that the PROforma functions (they all return an error code) use a
consistent naming scheme (as introduced in syslib). The name always starts
with the general module name in capitals ("PF" for PROforma), followed by
some words defining the action. Each word starts with a capital, and the most
important words (indicating a group of commands) are given first. For
example "PFLineWidth" is a PROforma command (PF), concerning lines
(Line), and specifically the width (Width).

Gstate
Drivers
Transformation matrix

Drawing parameters
Clipping path

Building a path
Controlling the visible area
Controlling the page

Displaying pictures
Windowing aids

Gstate

All commands in PROforma actually require a gstate as an access point to
PROforma. Therefore we have introduced some commands to create and
delete gstates.

To make sure that you can draw part of a picture without affecting the current

graphics state, you can save the graphics state, so that it can be restored later.
The graphics state which is saved includes the CTM, linewidth, paper and
drawing colour, clipping path, current font (when it remains loaded), fontsize,
pagebbox and origin, flatness and current position, path drawing method,
usecache, extraeos, printescape,...

PFGstatelnit
Create a new gstate. The client has to specify which driver to use and the
device which should be used for that driver. The client also determines
the size of the page and gets to know how many passes are necessary to
render a complete page.

Drivers can be specified either by name, or using a driverid. The
driverid's are not fixed and depend on the configuration. Positive
driverid's are interpretted as a pointer to a string containing the driver
name (case dependent). Some driverid's and names are reserved :
"default driver", "screen driver" and "dummy driver" are the reserved
name, and the values are PF_DRIVER_DEFAULT, PF_DRIVER_SCREEN and

PF_DRIVER_DUMMY.

You can also specify the device to which the driver should send it's
output. However is NULL or "" is passed, then the output will be sent to
the default device (as can be configured). Note that some drivers are
only capable of sending their image to one device.

The size of the maximum area depends on the type of the driver. A
printer driver will typically have a 595x842pt area, matching an A4 page
(excluding marging forced by the printer). The screen driver has a
maximum size of 720x540pt. This is approximately a 12inch screen
(10x7.5 inch).

The client can specify the requested page size and position on the
device. However, this area is clipped to the actually usable area. If the
resulting area is non-existing (so no part of the requested area is usable
on that printer), an error is reported.

When a gstate is opened, PROforma assumes you want to use the entire
page. So the PageOrigin is set to the position of the top left pixel of the

PageBbox on the device.

Most internal structures are initialised properly by PROforma like the
flatness, drawing colour (black), paper colour (white),... However some
things are not initialised like the linewidth, and the path type (so this
should be set or a path will not become visible).

PFGstateRemove
Remove the given gstate from memory. This releases all the fonts which
are not used by other gstates (and not resident), and also releases the
current path,...

PFGstateSave
Save the current graphics state. This command does not affect anything,
but allows the gstate to be restored later. The graphics states are store in
lifo (last in, first out) stack. This command should not be called while
building a path which has to be drawn.

PFGstateRestore
Restore the graphics state to an earlier saved version. This command
should not be called while building a path which has to be drawn.

Drivers

PROforma also includes routines to enquire about the available printer
drivers. This can be necessary because driverid's are not fixed. They can vary
between versions and/or configurations of PROforma. You need a gstate to
able to query the available drivers. For this purpose you could initialise a
gstate with PF_DRIVER_DUMMY as driver (the dummy driver does not allow you
to draw anything and is specificaly intended to query PROforma).

PFDriverCount
Get the number of available drivers. This count does not include the
screen driver as this has a fixed driverid (PF_DRIVER_SCREEN). This
command also assures that the next call to PFDriverNext for this gstate
will return the first driver in the list.

PEFDriverNext
Get the driverid and name of the next driver in the list. This list is not

sorted !

Transformation matrix

To make it easy for a client to produce moved, slanted, scaled, rotated,...
images, PROforma uses a transformation matrix. This matrix converts given
coordinates to coordinates in default user space (which are then, internally,
converted to device space). There is always a current transformation matrix.
The default does nothing (unity matrix).

To allow the client to set the matrix to a certain state, which can be altered
and later recovered, it is possible to save and restore the CTM.

PFCTMMove
Move the origin of the current transformation matrix. This means that all
objects are actually moved over the given distance. This command could
be simulated by adding the given coordinates to all following absolute
coordinates. This routine is a macro for PFCTMSet.

PFCTMScale
Scale the current transformation matrix. The origin remains in the same
position. All following objects are enlarged by the given factor. This
command maintains the ratio, so everything is scaled by an equal
amount in all directions. This routine is a macro for PFCTMSet.

PFCTMXScale
Scale the current transformation matrix along the x axis. The origin
remains in the same position. All following objects are enlarged along
the x axis by the given factor. This command does not maintain the
ratio, scaling is only along the x axis (which can be rotated) ! This
routine is a macro for PFCTMSet.

PFCTMY Scale
Scale the current transformation matrix along the y axis. The origin
remains in the same position. All following object are enlarged along the
y axis by the given factor. This command does not maintain the ratio,
scaling is only along the y axis (which can be rotated) ! This routine is a
macro for PFCTMSet.

PFCTMSet

Set the current transformation matrix to the given value, which is
relative to the previous value of the CTM. This command should not be
performed during the building of a path as that would give problems
when closing the current subpath (just as the other commands which
change the CTM).

PFCTMReset
Reset the current transformation matrix to the standard values, being all
measurements in default user space, the origin at the top left, and axisses
extending right and down. This command clears the list of CTM's which
are saved. Default user space is normally 1/72 inch (approx .35mm), but
this can be changed with PFPageScale.

PFCTMSave
This command allows the client to save the values of the CTM, so that it
can later be recovered. Can be called as often as needed (memory
permitting, not that it uses much).

PFCTMRestore
Restore the CTM to a previously saved CTM. You should consider the
list of CTM's as as last in, first out (LIFO) stack. PFCTMRestore removes
the last topmost CTM from the stack and makes it the current.

PFCTMRestoreKeep
This command is functionally equivalent to

PFCTMRestore(gstate);
PFCTMSave(gstate);

It restores the last saved CTM, but doesn't remove that value from the
stack of saved CTMs.

Drawing parameters

Because PROforma actually attempts to produce pages as fast and efficient as
possible, the client has to know how the path has to be visualised before it is
actually built.

PFPathMethod
Set the drawing method for the following paths. This is a general routine

to set this drawing method, with a parameter. Especially useful when the
path is defined in a data structure. Macros are provided to the individual
cases (given below). If an invalid drawing method is passed, the drawing
method is undefined (nothing is drawn).

PFPathStroked
Notify PROforma that all future path construction commands will apply
to stroked paths. Stroked paths have a thickness (as specified by
PFLineWidth), and always have round caps and round joins. Stroked
lines are always visible. This means that even zero width lines are drawn
one pixel wide (also called hairline). This is done to make sure that they
don't disappear from the final result. Note however that hairlines can be
so thin on certain high resolution devices that they may be invisible.
Also some devices (like some laser printers) are very bad at colouring
small areas, which can have the same result.

PFPathFilled
Notify PROforma that all future path construction commands will apply
to paths which are filled using the winding rule. Please note that areas
which are less than a pixel wide or tall can disappear from the final
result. ' To determine whether an area is filled by the winding rule.
Initialise the winding counter to zero and draw a line to infinity. For
every edge which is crossed you should add one to the winding counter
if the edge goes up (left if the edge is horizontal). If the edge goes down
(right for horizontal), then you should subtract one from the counter.
The area will be filled when the winding counter is not zero. All areas
have to be closed for this rule to work. The direction of the path is very
important as can be seen in the picture.

PFPathEOFilled
Notify PROforma that all future path construction commands will apply
to paths which are filled using the even odd rule. Please note that areas
which are less than a pixel wide or tall can disappear from the final
result, (see "PROforma Imaging Model"). ' To determine whether an
area is filled by the even odd rule. Initialise the winding counter to zero
and draw a line to infinity. For every edge which is crossed you should
add one to the winding counter. If the resulting winding counter is odd,
then the area will be filled. All areas should be closed for this rule to
work.

PFColourGray

Select the current grayshade for drawing. Grayshades are given in
percentages. All devices have a few distinct grayshades. Higher
resolution devices have more grayshades than low resolution devices.

PFColourRGB
Select the current colour for drawing. RGB colours use an additive
colour model, where the red, green and blue components are given. Each
component is a percentage, ranging from black (0) to the pure colour
(100). Devices always have a native colourspace. If that is not RGB,
then the colour which is given is transformed to the devices native
colourspace.

PFColourCMYK
Select the current colour for drawing. CMYK colours use a subtractive
colour model, where the cyan (kind of blue), magenta (kind of red),
yellow and black components are given. Each component is a
percentage, ranging from white (0) to the pure colour (100). The black
component exists because mixing cyan, magenta and yellow inks,
usually turns out more dark brown than black. Therefore the black
component should be removed and given separately. Devices always
have a native colourspace. If that is not CMYK, then the colour which is
given is transformed to the devices native colourspace.

PFPatternMask, PFPatternMaskUser
When a colour doesn't match a solid colour on the output device, then
PROforma will produce a fastpattern to approximate the colour. This is
a 8x8 (one or more) pattern. You can determine how such patterns are
built (how colours are spread in the pattern) with these calls.
PFPatternMask uses a choice of builtin methods, while the user variant
allows you to build your own distribution method.

PFLineWidth
Set the linewidth in user coordinates for stroking. All lines and curves
which are drawn stroked after this command is given will have the given
linewidth until the next PFLineWidth command. The linewidth should
not be changed while the path is built as this could cause unexpected
results.

PFFlatness
Set the flatness. This is the amount of tolerance the approximation of the
bezier curves allows. A high value increases drawing speed, but
decreases the accuracy. If this value is too high, curves will degenerate

to polygons.

Clipping path

To aid in special constructions, you can define a clipping path. This means
that of any following drawings, only the parts which fall inside the clipping
path are visible.

PFClipClear
Clear the clipping path and the current path (initial state). The parts of
the path which are not inside the PageBbox will never be visualised,
irrespective of the clipping path.

PFPathClip
Convert the path which was built into the current clipping path. The path
will actually be clipped according to the previous clipping path. The
path will also be cleared by this command, and the current point will be
reset.

The path will be clipped as drawn with PFPathFilled unless the current
drawing mode is PFPathEOFilled. If the linewidth is hairline (less than
a pixel thick), then the clipping path will make everything invisible !

Clipping paths are a powerful tool. They allow you to look through an area. It
can be viewed as if the drawing which you draw afterwards is the building of
a large pattern which is used to fill the area indicated by the path which is
clipped.

Thus a clipping path can for example be used if you want to produce graphics
with a gradient fill (the colour tone changes). This can be achieved by using
the shape of the drawing to define a clipping path, and then draw a series of
blocks with slightly differing colours, which are clipped. This will produce
the proper result.

Building a path

Of course you also need commands to build a path. This path can then be
drawn, or used as a clipping path. It is strongly advised that no other
operators are called while building a path, or between building the path and
the actual drawing or clipping. If you do call other operators, the behaviour
may be quite unexpected (see PROforma sessions, especially the text show
operators should not be used).

PFMoveTo
Set the current point to the given absolute position. If you were drawing
a filled path which was not closed, this will be done automatically. This
commands actually starts a new subpath.
PFMoveR
Move the current point by the given distance. If you were drawing a
filled path which was not closed, this will be done automatically. This
commands actually starts a new subpath.
PFLineTo
Construct a line from the current point to the given point in absolute
coordinates. After this command, the endpoint will be the new current
point.
PFLineR
Construct a line from the current point with the given displacements.
After this command, the endpoint will be the new current point.
PFCurveTo
Construct a bezier curve from the current point to the given endpoint,
using the given control points for direction (all absolute coordinates).
After this command, the endpoint will be the new current point.
PFCurveR
Construct a bezier curve from the current point to the given endpoint,
using the given control points for direction (all relative coordinates).
After this command, the endpoint will be the new current point.
PFClosePath
Make sure the current subpath is closed. A line segment will be added
from the end of the subpath (the current point) to the beginning.
PFPathDraw
Make sure the path which was built is actually rendered in the buffer.
The path will be empty after this command, and the current point reset.
PFPathClear

Clear the current path (make it empty). This also resets the current point.

PROforma also provides some high level drawing routines. These actually
use the routines above, but are easier that duplicating the code each time.

PFArcTo
Add a circular arc the the path, starting at the current point and ending at
the given point. You have to give the coordinates of the point where the
tangents cross. This routine only works properly for arc which cover less
than 90 degrees.

PFArcR
Same as PFArc but with relative coordinates.

PFCircle
Add a circle subpath to the current path. The center of the circle will be
at the current point.

PFPie
With the current point as center, build a pie. You have to specify the
cosinus and sinus of the start and end degree and the radius. You can
also choose whther the pie is closed or not. A pie which is not closed is
just part of a circle.

PFRectangle
Starting from the current point, build a rectangle subpath. The rectangle
can have rounded corners with the given radius.

Controlling the visible area

PFPageBboxReset
Reset the PageBbox and PageOrigin to the original values when the
gstate was initialised (so reset it to the entire visible page).
PFPageBboxRestore
Reset the PageBbox to the entire visible page, and set the PageOrigin to
the point which is already at the top left of this area. This allows the
client to restore the PageBbox after a PFPageScroll or PFPageBboxSet
command.
PFPageBboxSet
Set the new size of the PageBbox and moves the origin (relative to

previous value) of visible area. All parameters to this function are in the
default user space.

PFPageOriginSet
Move the PageOrigin relative to the previous value. The PageOrigin is
the coordinate of the top left point in the PageBbox. All parameters to
this function are in the default user space.

PFPageScale
This routine allows the client to set the scaling of a page. It is useful in
cases where the page is zoomed in (as in LINEdesign). The default user
space is actually changed from the previous value (initially 72
points/inch) to something else (e.g. to 144 pt/inch if factor was 2).
Please note that this changes both the size of the PageBbox and the
PageOrigin. Both are multiplied by the inverse of the scale.

PFPageScale allows the client to transparently change the imaginary
size of the page. Contrary to PFCTMScale which has no effect on any
parameters in default user space (such as for PFPageBboxSet).

PFPageBboxGet
Get the current size and origin of the PageBbox, and the current value of
the PageOrigin. All returned values are given in default user space.

Controlling the page

PFPageShow
Copy the device buffer to the device. Will display the (part of) the page
which has already been rendered. If the page will be built in several
passes, this routine automatically adjusts the internal structures to render
the next pass. In all cases it automatically adjusts the PageBbox to make
the entire page visible. The client is responsible for rebuilding the page.
If this was the last pass of a page, the internal structures will be adjusted
for the first pass again. This command also allows multiple copies of the
page to be produced. However this option will only work if the device
supports this (like a laser printer). The actual image in the buffer is not
cleared by this command.

PFPageScroll

Allows the client to efficiently scroll in interactive applications. It is
only allowed to scroll in one direction at a time (horizontal or vertical).
The PageBbox and PageOrigin are automatically adjusted to fit the
newly visible space (which probably has to be cleared first).

PFPageClear
Clear the page using the current paper colour (which by default is
white). This will only clear the area which falls inside the current
PageBbox, as this allows efficient redrawing of the screen for interactive
applications.

PFPaperColourGray
Select the paper colour. Grayshades are given in percentages. All
devices have a few distinct grayshades. Higher resolution devices have
more grayshades than low resolution devices.

PFPaperColourRGB
Select the current paper colour. RGB colours use an additive colour
model, where the red, green and blue components are given. Each
component is a percentage, ranging from black (0) to the pure colour
(100). Devices always have a native colourspace. If that is not RGB,
then the colour which is given is transformed to the devices native
colourspace.

PFPaperColourCMYK
Select the current paper colour. CMYK colours use a subtractive colour
model, where the cyan (kind of blue), magenta (kind of red), yellow and
black components are given. Each component is a percentage, ranging
from white (0) to the pure colour (100). The black component exists
because mixing cyan, magenta and yellow inks, usually turns out more
dark brown than black. Therefore the black component should be
removed and given separately. Devices always have a native
colourspace. If that is not CMYK, then the colour which is given is
transformed to the devices native colourspace.

PFDisplayMode
This command can be used to set the display mode which should be
used for the page. On screen drivers, this allows you to make sure the
users does not have to wait for the drawing to finish before they can see
something.

Some devices (usually laser printers) can easily produce following copies

after the first one at great speed. This is supported by PROforma.

PFCopies
Set the number of copies which should be produced. Only works if the
device supports it (and the driver of course). If not supported this
command returns an error.

Displaying pictures

A special library call is provided to display bitmaps. This is particularly
important for DTP applications. Bitmaps can be visualised in any orientation.
In fact a picture can encapsulate any kind of graphical object. A picture could
also consist of vector graphics and/or (possibly preformatted) text. Picture
drivers could be written for all these purposes.

Pictures always have to be in memory (an image of the file on disk) before
they can be used by a picture driver (I0FileLoad). PROforma can then be
used to try to recognize which picture driver can display the picture.
However, recognizing a picture is not always possible. Sometimes, you have
to know the type of the picture in advance (or let the user choose). The
picture can be loaded with code like :

{
Size size;
Channel file;
char *base;

I0OpenPath(file, OPEN_OLD, path,&file);
IOLength(file, &size);
MEMAllocate(size+sizeof(FileInfo), &base);
IOFileInfoGet(file, (FileInfo *)base);
IOFilelLoad(file,size, base+sizeof(FileInfo));
I0Close(file);

PFMoveTo(gstate, xpos, ypos) ;
PFPictureDisplay(gstate, driver, base,
Xsize, xsize);

}

Picture drivers (like printer drivers), can be identified either by name or by

driverid. Some driverid's are also reserved for some specific drivers.

PFPictureCount
Get the number of available picture drivers. This also assures that the
next call to PFPictureNext will return the first picture driver which is
available.
PFPictureNext
Get the name and id of the next printer driver in the list.
PFPictureRecognize
Let the given picture driver test whether it can recognize the given
picture. If it can, the picture driver can visualise the picture. However,
the picture driver is only allowed to recognize picture of which it is very
sure that it can be displayed. Therefore, if the file format does not
include a descriptor (e.g. the type is only indicated by a file extension),
then the driver probably has to reject pictures which it can display.
So the answers are either
e YES, I can display the picture
e NO, I don't know if I can display the picture
All the other commands assume that the picture which is passed can be
displayed by the chosen picture driver !

The following code can be used to recognize the driver which can

display the picture.
/* figure out the picture driver id */
{
int recognized=FALSE;
int id;
PFPictureCount(gstate, NULL);
while (!'recognized && 'PFPictureNext(gstate,&id,NULL))
{
if (PFPictureRecognize(gstate,id,picture base)==ERR_O
recognized=TRUE;
}
if (recognized)
the picture id is now stored in id
}
PFPictureRatio

Get the aspect ration of the picture, if known.
PFPictureColourCount

Get the number of colours which are used in the picture. This command
allows you to figure out how many colours are used in the picture, so
that the user can display the picture with different colours. If changing
the colours is not possible, this command will indicate that.

PFPictureColourGrayGet

PFPictureColourRGBGet

PFPictureColourCMYKGet
Get the colours which are by default used in the picture. The colours are
given in the requested colour space. The colours are filled in an array of
the size as returned by PFPictureColourcCount.

PFPictureDisplay

PFPictureDisplayGray

PFPictureDisplayRGB

PFPictureDisplayCMYK
Display the picture at the given size at the position indicated by the
current point. When using PFPictureDisplay, the default colours for the
picture will be used. The other comands need you to pass the colours
which should be used (in the colourspace which is indicated by the
command).

Windowing aids

PFWindowMove
This command adjust the internal structures to a gstate to match the
position of the screen window (it does nothing for non-screen gstates).
This should be called if the owning job uses the Pointer Environment
and the window has been moved.

PFWindowSubSet
The concept of a WindowSub can be used recursively. A WindowSub is
somewhat similar to the PageBbox, however, the pagebbox is used to
redraw part of something, while the WindowSub is used to draw the
contents of a part of the gstate, as a WindowSub on the screen. Any
following PageBbox has to fall inside the current WindowSub. Any
successive WindowSubs are also confined to fall inside the current
WindowSub. Any call of PFPageScale is local inside the current and
subsequent WindowSubs. The new WindowSub is always relative with

the currect PageBbox, and the coordinates are in user space, which
should not be rotated. When the WindowSub is set, the PageOrigin is at
(0,0).

PFWindowSubRestore
The concept of a WindowSub can be used recursively, so restoring the
WindowSub will only restore the the changes since the matching call of
PFwindowSubSet (this acts as a LIFO stack, like PFCTMSet and

PFCTMRestore). The CTM and PageScale, PageBbox and PageOrigin are
restored to their original values.

PROGS, Professional & Graphical Software
last edited December 4, 1996

Extending PROforma

PROforma can be extended by anybody, by adding new drivers.

bitmap drivers :
A bitmap driver is used by both printer and screen drivers to to the
actual drawing in the buffers. They are a separate type because they are
usually shared by many drivers and can easily be replaced by better -
faster versions.

printer drivers :
Make sure the PROforma output can really be visualised on your chosen
output device.

screen drivers :
Actually just a variant of a printer driver, which is intended for
interactive use.

picture drivers :
Allow pictures of several types (especially bitmap pictures - but vector
pictures are also possible), to be included without hassles, and without
the need to know about picture formats.

They can all be written by anybody. All you have to do is actually write the
drivers, and make sure PROforma knows about the driver (loads it).

e How to write a bitmap driver
e How to write a printer driver
e How to write a picture driver

PROGS, Professional & Graphical Software
last edited December 24, 1995

How to write your own picture
drivers

e Structure of a picture driver
e The member functions
e Support routines

e Example

Structure of a picture driver

A picture driver is an external module which is loaded by PROforma. The
init routine should be a data structure of type PICTdriver.

The module identifier has to be "PROforma external driver".

/* picture driver definition */

typedef struct _PICTdriver {

struct _PICTdriver *next; /* next driver in list of drivers
int identifier; /* identifies type of driver */

char name[PF_MAXDRIVERNAME];/* name of driver - the name of
/* should not start with "-" or "

/* can we recognize the picture */
Error (*Recognize)(Gstate, char *base);
Error (*AspectRatio)(Gstate, char *base, int *xratio, int *yr

/* display the picture */
Error (*Display)(Gstate, char *base, pt xsiz, pt ysiz,
Error (*ColourSelect)(Gstate, int));

/* info on colours used in the picture */
Error (*ColourInfo)(Gstate, char *base, int *count, int *colo
Error (*ColourGet)(Gstate, char *base, int which, void *colou

/* for future extensions */
Error Handle(int command, ...);
} PICTdriver;

The next pointer allows you to define several picture drivers in one external
module. However, an external module can only contain one type of drivers
(in this case picture drivers).

Each driver contains an identifier which indicates the type of driver. For a
picture driver, the value has to be PF_PICTUREDRIVER.

Each picture driver should have a (preferably unique) name. It is adviseable
to make these names as descriptive as possible, e.g. "QL mode 4 screen,
512x256". Note that driver names are case sensitive !

The member functions

A picture driver is quite simple, as it does not contain many member
functions. The main difficulty when writing picture drivers lies in
interpretting the actual picture types.

Recognize
Try to recognize the given picture as one that can be displayed by this
picture driver. ERR_INAM should be returned if the picture can not be
recognized. This routine is included to allow applications to
automatically detect the picture driver which has to be used. However,
not all picture files embed sufficient information for automatic detection,
therefore it is quite allowed to reject all pictures as not recognized.

A picture which is passed to the picture driver is just a block of memory.
It is intended that this block starts by the FileInfo structure of the file,
followed by a copy of the picture file itself, as if it was loaded with the
following code

#include "mem_h"

#include "io_h"

#include "PROforma_h"

#define catch(x) do { if (err=(x)) return err; } while (0)

Error err;
char *base;
Channel file;
Size size;

catch(IOOpenPath(filename,OPEN_OLD, path,&file));
catch(IOLength(file,&size));

catch(MEMAllocate(size+sizeof(FileInfo), &base));
catch(IOFileInfo(file, (FileInfo *)base));

catch(IOLoadFile(file,size,base+sizeof(FileInfo)));
I0Close(file);

PFPictureDisplay(gstate, id, base, xsize, ysize);

}

This is the only picture driver access function which can not assume that
the picture is of a suitable type. Pictures may only be recognized when
you are quite sure it is not supposed to be displayed by another
picture driver.

AspectRatio
Try to determine the aspect ratio of the given picture. Again, some
picture formats do not include the aspect ratio, and it is therefore
allowed to fail (ERR_ITNF) on all pictures passed, however, in all cases a
guessed aspect ratio should be filled in (4x3 for a full screen is normally
a good guess).

The aspect ratio is returned as two integers. This means that when the
picture is displayed with a with of xratio, then the height should be
yratio to preserve the aspect ratio of the original.

Display
Actually display a picture. The picture will be displayed at the current
position, and at the given size. Pictures can be rotated etc., but all that is
handled by the support routine PFPictureElement. For an idea of the
recommended way to implement Display, see the example below.

Please note that the ColourSelect parameter is invalid when the picture
has fixed colours. In that case the PFColourxXxx commands should be

called directly to set the drawing colour.

Before calling the bisplay routine for a picture, PROforma will first
adjust the PageOrigin to the top left position of the picture. Also, the
current graphics state is saved before and restore after the Display
routine. This makes sure that the graphics state is not affected by
drawing pictures.

ColourInfo
Get some information about the number of colours and the colourspace
which is used for the default colours.

This command is used to query the default colours which can be used to
display a picture. A picture driver can however choose only to support
fixed colours (especially for real-colour images). In that case, zero (0)
can be returned as the number of colours.

The possible value for the colourspace are PF_COLOURSPACE_RGB,
PF_COLOURSPACE_GRAYSHADE Or PF_COLOURSPACE_CMYK.

ColourGet
This function is used by PROforma to build the table with the default
colours. The which parameter is always in the range [0..count-1], where
count is returned by ColourInfo. The colour parameter points to an area
where the colour has to be filled in (using the correct colourspace).
Handle
This is a function which is provided for possible future extensions of the
PROforma drivers. It should always return ERR_NIMP.

Support routines

The PROforma core library contains a support routine which is specifically
intended for drawing pictures.

PFPictureElement
Draw a picture element, which is a filled rectangle of given size and at
the given position. The size and position are relative with the current

point and in user space. The current drawing colour is used.
This routine will return ERR_ORNG if the rectangle is completely invisible.
This can be used to speed up the drawing of pictures.

Example

code

To start with, the file with all the definition of the data structures which are
used by PROforma has to be loaded. Most of this doesn't concern the author
of picture drivers, by you do need the definition of the picture driver
structure. Accidently, this also includes PROforma_h.

As the definition of PROforma Core routines is not included in the header
files, import the PFPictureElement function.

#include "PFmodule.h"
Error PFPictureElement(Gstate gstate, pt xsiz, pt ysiz, pt xorg,

Next up, define the actual structure of the picture data, as this is used by all
the member functions. For the sake of the example, I have defined a very
simple picture format, including the data needed to recognize the picture, and
the aspect ratio (which is optional). The picture itself has one byte for each
pixel, giving 256 distinct colours.

typedef struct {
char identifier[24]; /* "example picture format" */
short xsiz, ysiz; /* size in pixels */
short xratio, yratio; /* pixel aspect ratio (0 if not known
unsigned char data[2]; /* start of picture data */
} Picture;

Start with the real work. For starters, try to recognize a picture as being of the
correct type. You should always try to build in as many checks as possible, as
illustrated here by assuring that the picture has a real size, and that the aspect
ratio is possible (zero indicactes that the ratio is not known).

static Error Recognize(Gstate gstate, char *base)

{

FileInfo *fi=(FileInfo *)base;
Picture *pict=(Picture *)(base+sizeof(FileInfo));

if (fi->type==FILETYPE_NORMAL &&
STRSameCD(pict->identifier, "example picture format") &&
pict->xsiz>0 && pict->ysiz>0)
return ERR_OK;

else
return ERR_INAM,

}

Get the aspect ratio of the picture. We can assume that the picture passed is of
correct type. If the aspect ratio is defined in the picture, than return that. If
not, give an error, and assume the picture was a full screen.

static Error AspectRatio(Gstate gstate, char *base, int *xratio,

{

Picture *pict=(Picture *)(base+sizeof(FileInfo));
if (pict->xratio && pict->yratio)

{
*Xratio=pict->xratio*pict->xsiz;
*yratio=pict->yratio*pict->ysiz;
return ERR_OK;

3

else

{ . .
*xratio=4; *yratio=3;
return ERR_ITNF;

3

}

Get information about the number of colours used, and the colourspace. In
this simple example, all pictures have 256 colours, and as pictures usually
originate from a screen, the colours will be given as red, green and blue
components.

static Error ColourInfo(Gstate gstate, char *base, int *count, in

{

*count=256;
*space=PF_COLOURSPACE_RGB;
return ERR_OK;

}

Get the default colours used for the picture. The default colours only have to
be defined here (except when the colours are fixed). Although the default

colours are often embedded in the picture format, they have to be calculated
in this example.

The colour is calculated by looking at the bits. Each colour component has to
bits allocated to it, and the two remaining bits can increase the intensity of the
colour.

static Error ColourGet(Gstate gstate, char *base, int which, void

{

/* the colours are 8 bit : iirrggbb (i for intensity) */
ColourRGB *rgb=(ColourRGB *)colour;
int intensity=((which>>6)&3)+1;

rgb->red =intensity * ((which>>4)&3) * (pt_hundred/12);
rgb->green=intensity * ((which>>2)&3) * (pt_hundred/12);
rgb->blue =intensity * ((which)&3) * (pt_hundred/12);
return ERR_OK;

}

To make sure that a picture is always drawn as fast as possible, the
background of the picture is drawn first. If this is completely invisible, you
can stop immediately.

Each line is also cleared to the background colour before drawing the
individual pixels (or spans). This can also indicate that a line can be
discarded, especially when drawing on screen (where speed is most
important).

When drawing the spans, unnecessary drawing is not done, by making sure
that the colour is different from the background colour. This could give a
larger speed gain if the background colour would be the most used colour in
the picture. However, actually determining that colour each time the picture
is displayed, would probably slow the displaying of the picture down.

static Error Display(Gstate gstate, char *base, pt xsiz, pt ysiz,
Error (*ColourSelect)(Gstate, int))
{

Picture *pict=(Picture *)(baset+sizeof(FileInfo));
int xpix,ypix=pict->ysiz;

int colour, backcolour=0;

short bit=0x80;

int length, lastcolour;

unsigned char *linestart=pict->data;
unsigned char *linepos;

int posx;

pt posy=0;

/* make sure that at least some part of the picture is visibl
ColourSelect(gstate, backcolour);
if (PFPictureElement(gstate,xsiz,ysiz,0,posy)) return ERR_OK;

Xsiz/=pict->xsiz;
ysiz/=pict->ysiz;

while(ypix)
{

posx=0;
linepos=linestart;

/* see if this line is clipped - and set background colou
ColourSelect(gstate, backcolour);
if (!PFPictureElement(gstate,xsiz*pict->xsiz,ysiz,0,posy)
{

length=1;

/* get colour */

lastcolour=*1linepos;

for(xpix=pict->xsiz-1; xpix; Xxpix--)

{
/* get colour */
colour=*linepos++;
if (colour!=lastcolour)
if (lastcolour!=backcolour)
{
ColourSelect(gstate, lastcolour);
PFPictureElement(gstate,xsiz*length,ysiz,
b
/* skip pixels on page */
posx+=length;
lastcolour=colour;
length=1;
} else
length++;
b

/* there may be a sequence left at the end of the lin
if (colour!=backcolour)

{

ColourSelect(gstate,colour);

PFPictureElement(gstate, xsiz*length,ysiz, xsiz*pos
b
} |
posy+=ysiz;

ypix--; . .
linestart+=pict->xsiz;

}
return ERR_OK;

}

We also need a dummy routine, for future compatibility with possible
extensions of the picture drivers.

Error Handle(int command, ...)

{
}

return ERR_NIMP;

To finish the driver, only the actual driver definition has to be written. The
structure is called init to make sure PROforma (the external module system
to be precise) knows where to find the picture driver definition.

PICTdriver init = {
NULL, PF_PICTUREDRIVER,
"example 256 colour picture",
Recognize,
AspectRatio,
Display,
ColourlInfo,
ColourGet,
Handle

+;
makefile

Here are the lines from the makefile which allow you to build the example
given above as a genuine PROforma picture driver. Note that all occurences
of "pict_example" can be replaced by any other filename.

pict_example_pfd : pict_example_o core-dll_o
${LD} -ms -opict_example_pfd \
pict_example_o core-dll_o \
-1sms -sxmod

mkxmod pict_example_pfd \"PROforma external driver\"

PROGS, Professional & Graphical Software
last edited November 11, 1996

PROforma introduction

What is PROforma
This manual

Present, Past and Future
Installation

What is PROforma

PROforma is short for 'PROGS Font & Raster Manager', and it does exactly
what this name suggest. It is a library of routines to manage and display
vector graphics and fonts on (raster) devices like screens and printers.

The availability of a separate program to manage graphics and fonts has
several advantages. It allows application developers to create output of equal
quality (resolution permitting) on several devices, and they can share
resources. In short this means that the PROforma library only has to be
loaded once, independent of the number of applications which use it. Also
fonts only have to be loaded once, and can be shared between applications.

PROforma was originally developed as the graphics library for LINEdesign.
That does not mean that this is the only kind of application for which
PROforma is of use. PROforma is perfectly suitable as well for desktop
publishers, word processors, business graphics and all applications which
want high quality output (which must be just about every application except
compilers and games). Actually, even at the time of writing there are things
which are possible with PROforma and can't be accessed through
LINEdesign.

More recently PROforma has been redesigned to a great extent, to make it
even more future proof, easier to extend (both internally, and by writing
drivers). There have been some changes to make it easier to write a window
manager (for ProWesS) and complete support of colour has been added.

As a library, PROforma has the form of dynamic link library (DLL) (if you
don't know what that is, don't worry).

This manual

This manual is intended to explain in detail what PROforma is about, how it
operates, how it should be used and how it can be extended. For some
specific details like possible errors of the access routines, we would like to
refer to the PROforma_ddf DATAdesign file.

We (and everybody who uses this manual) would like it very much if you
could send us any comments about this manual, like

omissions

inaccuraties or mistakes

typing and/or spelling mistakes

making this manual better English

anything else (positive comments are also always appreciated)

At the bottom of each page is mentioned when the HTML document was last
modified. I will try to keep this date correct, however it is only meant to
indicate changes in the information provided, I will not change that date
when correcting spelling mistakes or HTML errors.

Present, Past and Future

PROforma is originally developed as the graphics library for LINEdesign.
When we started developing LINEdesign v2, we felt that the graphics
routines we used were too slow, and also too restrictive. On the other hand,
LINEdesign v1 was quite greedy on memory. Therefore, we threw away all
the old routines, and started writing a new, more powerful and faster set of
routines. During this development, we even introduced some concepts (like
the clipping path), which are not used in LINEdesign. On the other hand, the
graphics library was expanded to allow efficient editing on screen.

So what do we have now ??

We have a system that can efficiently render and display fonts. All fonts can
be shared among applications. A font cache is used to speed up the handling
of fonts. Even the font cache and everything in it is shared amongst
applications. Fonts are rendered using proper hinting (if the font includes the
hints).

The system can draw lines and curves either stroked (with given accuracy
and thickness), or filled (using either in/out or winding rule).

Anything can be displayed in any gray shade or colour. If wanted, everything
can also be clipped by regular or irregular shapes. Transformation matrices
can be applied on the page.

The user can define which part of the coordinate space is actually visible on
page (or screen).

Bitmapped pictures can be directly displayed. This allows the user to include
screens in his or her output.

Possibilities for the future ??

We want to improve the control over how colour is produced, allowing the
user to define how the colour patterns are formed. We also want to make it
possible to use a pattern (drawn using PROforma of course) to be used as
"colour". Also, we want to add dashed lines, and some variations on line
caps, line joins and maybe even some kinds calligraphic lines.

PROforma already contains three kinds of drivers : bitmap drivers, printer (or
screen) drivers, and picture drivers. At this point the bitmap drivers are only
used internally in PROforma, but we are thinking of making them accessible
from outside PROforma, so that general bitmap graphics routines can be
written using the primitive commands in the bitmap drivers.

Although PROforma already uses hinting when displaying the fonts, we
would like to examine whether we can further improve the quality of hinted

fonts at very small sizes (especially when displayed on screens, e.g. in
ProWesS).

Of course we continually try to improve PROforma's speed.

Installation

PROforma is a job which makes itself available to clients in the form of a
Dynamic Link Library (a thing with an efficient access method).

Some extensions have to be loaded for PROforma to run : the dynamic link
library manager and syslib.

PROforma has the shape of a job, and loads its configuration file
("PROforma_cfg") when it starts. A parameter can be given to PROforma to
specify the path where the configuration file can be found (e.g.
"winl_pf;flp1" to search on "winl1_pf_" and "flp1_" in that order). If no
parameter is given or the configuration file is still not found, then first the
program default and then the data default devices will be searched.

The fact that PROforma has the form of a job (and not a resident extension as
most libraries like the Menu Extensions), has certain advantages. Jobs can
always be loaded (if you have enough memory), and jobs can always be
removed. When loading a job it is possible to pass a parameter (like where to
find the configuration file), which is particularly useful. Also, no memory is
wasted if PROforma is loaded while a copy was already running. So if you
want to release the memory which is used by PROforma, you can just remove
the job. Of course the disadvantage of this scheme is that you can
accidentally remove the PROforma job, which is dangerous as all programs
which use PROforma will also be removed, so you could loose data that way
(in fact, as ProWesS uses PROforma, all jobs which use ProWesS would also
be removed).

PROGS, Professional & Graphical Software
last edited February 13, 1996

	PROforma documentation
	PROforma introduction
	What is PROforma
	This manual
	Present, Past and Future
	So what do we have now ??
	Possibilities for the future ??

	Installation

	PROforma Configuration
	Configuration file
	Dynamic configuration

	Concepts
	Graphics State - Gstate
	Driver & Device
	Path
	Subpath
	Path segment
	Bezier curve
	Clipping path
	Transformation matrix
	User space
	Device space
	Current point
	PageBbox & PageOrigin
	WindowSub
	Font
	Resident font
	Builtin font
	Fontmap
	Fontlist
	Font caching
	Extended character set
	Kerning
	Ligatures
	Tracking
	Display mode

	Imaging Model
	Pages
	Pixels
	CRT screen
	dot matrix printer
	inkjet or bubblejet printer
	laser printer

	Font Management
	Font Loading
	Font Information
	Available Fonts
	Text display
	String handling
	Supported character set
	Cache handling
	Charpaths

	PROforma sessions
	Functions
	Two kinds of PROforma access functions
	Parameters
	Strings
	fixpoint - pt

	Graphics
	Gstate
	Drivers
	Transformation matrix
	Drawing parameters
	Clipping path
	Building a path
	Controlling the visible area
	Controlling the page
	Displaying pictures
	Windowing aids

	Extending PROforma
	How to write your own picture drivers
	Structure of a picture driver
	The member functions
	Support routines
	Example
	code
	makefile

