=ircli=ir-

oL

Concepts

The Concept Reference Guide describes concepts relating to SuperBASIC and the QL
hardware. It is best to think of the Concept Guide as a source of information. If there are
any questions about SuperBASIC or the QL itself which arise out of using the computer or
other sections of the manual then the Concept Guide may have the answer. Concepts are
listed in alphabetical order using the most likely term for that concept. If the subject cannot
be found then consult the index which should be able to tell you which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can be
entered and run. Examples listed without numbers are usually simple commands and it
may not always be sensible to enter them into the computer in isolation. Examples which
demonstrate stipples will not work properly on a television set.

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sinclair Research Limited)

Index

Arrays

BASIC

Break

Channels

Character Set And Keys
Clock

Coercion

Colour

Communications - RS-232-C
Data Types Variables
Devices

Direct Command

Error Handling
Expressions

File Types

Functions and Procedures

Graphics

Identifier

Joystick

Keyword

Maths Functions
Memory Map
Microdrives

Monitor

Network

Operators

Peripheral Expansion
Pixel Coordinate System
Program

Qdos

Repetition
ROM Cartridge Slot

Screen

Slicing

Sound

Start Up

Statement

String Arrays and String Variables
String Comparison

Syntax Definitions

Turtle Graphics
Windows

Arrays

Arrays must be DIMensioned before they are used. When an array is dimensioned the
value of each of its elements is set to zero or a zero length string if it is a string array. An
array dimension runs from zero up to the specified value. There is no limits to the number
of dimensions which can be defined other than the total memory capacity of the computer.
An array of data is stored such that the last index defined cycles round most rapidly:

Example:

the array defined by
DIM array(2,4)

will be stored as

0,0 low address
0,1
0,2
0,3
0,4
1,0
1,1
1,3
1,4
2,0
2,1
2,2
2,3
2,4 high address

The element referred to by array(a,b,c) is equivalent to the element referred to by
array(a)(b)(c)

Command Function
DIM dimension an array
DIMN find out about the dimensions of an array

BASIC

SuperBASIC includes most of the functions, procedures and constructs found in other
dialects of BASIC. Many of these functions are superfluous in SuperBASIC but are
included for compatibility reasons:

GOTO use IF, REPEAT, etc

GOSUB use DEFine PROCedure
ON...GOTO use SELect
ON...GOSUB use SELect

Some commands appear not to be present. They can always be obtained by using a more
general function. For example, there are no LPRINT or LLIST statements in SuperBASIC
but output can be directed to a printer by opening the relevant channel and using PRINT or
LIST.

LPRINT use PRINT #

LLIST use LIST #

VAL not required in SuperBASIC

STR$ not required in SuperBASIC

IN not applicable to 68008 processor

ouT not applicable to 68008 processor
comment

Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be able
to convert the internal codified form of the value of a string expression to or from the
internal codified form of the value of a numeric expression.

These functions are redundant in SuperBASIC because of the provision of a unique facility
referred to as "coercion". The VAL and STR$ functions are therefore not provided.

Break

If at any time the computer fails to respond or you wish to stop a SuperBASIC program or
command then

hold down

CTRL

and then press

| SPACE |

A program broken into in this way can be restarted by using the CONTINUE command.

Channels

A channel is a means by which data can be output to or input from a QL device. Before a
channel can be used it must first be activated (or opened) with the OPEN command.
Certain channels should always be kept open: these are the default channels and allow
simple communication with the QL via the keyboard and screen. When a channel is no
longer in use it can be deactivated (closed) with the CLOSE command.

A channel is identified by a channel number. A channel number is a numeric expression
preceded by a #. When the channel is opened a device is linked to a channel number and
the channel is initialised. Thereafter the channel is identified only by its channel number.
For example:

OPEN #5, SER1

Will link serial port 1 to the channel number 5. When a channel is closed only the channel
number need be specified. For example:

CLOSE #5

Opening a channel requires that the device driver for that channel be activated. Usually
there is more than one way in which the device driver can be activated, for example the
network requires a station number. This extra information is appended to the device name
and passed to the OPEN command as a parameter. See concepts device and peripheral
expansion.

Data can be output to a channel by PRINTing to that channel; this is the same mechanism
by which output appears on the QL screen. PRINT without a parameter outputs to the
default channel #1. For example:

10 OPEN #5,mdvl test file
20 PRINT #5,"this text is in file test file"
30 CLOSE #5

will output the text "this text is in file test_file" to the file test_file. It is important to close the
file after all the accesses have been completed to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input from a
channel a character at a time using INKEY$

A channel can be opened as a console channel; output is directed to a specified window
on the QL screen and input is taken from the QL keyboard. When a console channel is
opened the size and shape of the initial window is specified. If more than one console
channel is active then it is possible for more than one channel to be requesting input at the
same time. In this case, the required channel can

be selected by pressing CTRL C to cycle round the waiting channels. The cursor in the
window of the selected channel will flash.

The QL has three default channels which are opened automatically. Each of these
channels is linked to a window on the QL screen.

channel 0 - command and error channel
channel 1 - output and graphics channel
channel 2 - program listing channel

2 1
182

Monitor Television
Command Function
OPEN open a channel for I/O
CLOSE close a previously opened channel
PRINT output to a channel
INPUT input from a channel
INKEY$ input a character from a channel

Character set and keys

The cursor controls are not built in to the operating system: however, if these functions are
to be provided by applications software, they should use the keys specified; also the
specified keys should not normally be used for any other purpose.

Decimal Hex Keying Display/Function

0 00 CTRLE NULL

1 01 CTRLA

2 02 CTRLB

3 03 CTRLC Change input channel (see note)
4 04 CTRLD

5 05 CTRLE

6 06 CTRLF

7 07 CTRLG

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

08
09
0A
0B
0oC
0D
OE
OF

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36

CTRL H
TAB (CTRL I)
ENTER (CTRL J)
CTRLK

CTRLL
CTRL M
CTRL N
CTRL O

CTRLP
CTRLQ

CTRLR

CTRLS

CTRLT

CTRL U

CTRLV

CTRLW

CTRL X

CTRLY

CTRLZ

ESC (CTRL SHIFT |)
CTRL SHIFT \
CTRL SHIFT]
CTRL SHIFT’
CTRL SHIFT ESC

SPACE
SHIFT 1
SHIFT"'
SHIFT 3
SHIFT 4
SHIFT 5
SHIFT 7

SHIFT 9
SHIFT 0
SHIFT 8
SHIFT =

~ -

O, WNEO

Next field
New line / Command entry

Enter

Abort current level of command

-~ -

O WNEO

55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101

37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65

7
8
9
SHIFT ;

SHIFT ,

SHIFT .
SHIFT /

SHIFT 2
SHIFT A
SHIFT B
SHIFT C
SHIFT D
SHIFT E
SHIFT F
SHIFT G
SHIFT H
SHIFT |

SHIFT J
SHIFT K
SHIFT L
SHIFT M
SHIFT N
SHIFT O

SHIFT P
SHIFT Q
SHIFT R
SHIFT S
SHIFT T
SHIFT U
SHIFT V
SHIFT W
SHIFT X
SHIFT Y
SHIFT Z

[
\

]
SHIFT 6
SHIFT -

moO®@>tth

NV I AT

OZZrXRC—IOMMUOT>@

T TN Xs<CH0WInOo T

O QOO T D th

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148

66
67
68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94

oOzZZIrX«e—ITnOm

N<XXS<CH0DOT

SHIFT [
SHIFT \
SHIFT]
SHIFT’
SHIFT ESC

CTRL ESC
CTRL SHIFT 1
CTRL SHIFT
CTRL SHIFT 3
CTRL SHIFT 4
CTRL SHIFT 5
CTRL SHIFT 7
CTRL'
CTRL SHIFT 9
CTRL SHIFT 0
CTRL SHIFT 8
CTRL SHIFT =
CTRL,
CTRL _
CTRL.
CTRL/

CTRLO
CTRL1
CTRL 2
CTRL 3
CTRL 4

ol e =l (= ey

@I >~—N<Xg<c—~0-a00

(D:Q»QJ/QJ\BQBSUO cC: OO D e Q:

%

149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195

95
96
97
98
99
9A
9B
9C
9D
9E
oF

A0
Al
A2
A3
A4
A5
A6
A7
A8
A9

AB
AC
AD
AE
AF

BO
Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

Co
C1
Cc2
C3

CTRL S
CTRL 6
CTRL7
CTRL 8
CTRL9
CTRL SHIFT ;
CTRL;
CTRL SHIFT ,
CTRL =
CTRL SHIFT .
CTRL SHIFT /

CTRL SHIFT 2
CTRL SHIFT A
CTRL SHIFT B
CTRL SHIFT C
CTRL SHIFT D
CTRL SHIFT E
CTRL SHIFT F
CTRL SHIFT G
CTRL SHIFTH
CTRL SHIFT |

CTRL SHIFT J
CTRL SHIFT K
CTRL SHIFT L
CTRL SHIFT M
CTRL SHIFT N
CTRL SHIFT O

CTRL SHIFT P
CTRL SHIFT Q
CTRL SHIFT R
CTRL SHIFT S
CTRL SHIFT T
CTRL SHIFT U
CTRL SHIFT V
CTRL SHIFT W
CTRL SHIFT X
CTRL SHIFT Y
CTRL SHIFT Z
CTRL [

CTRL\

CTRL]

CTRL SHIFT 6
CTRL SHIFT _

Left

ALT Left
CTRL Left
CTRL ALT Left

-

>ooe QRNIO Cm® OO M > > > KO RO C OO0

ocwoe~ —gdT

A

°y

=1

Cursor left one character
Cursor to start of line
Delete left one character
Delete line

196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242

C4
C5
C6
c7
C8
C9
CA
CB
CcC
CD
CE
CF

DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

EO
El
E2
E3
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

FO
F1
F2

SHIFT Left

SHIFT ALT Left
SHIFT CTRL Left
SHIFT CTRL ALT Left
Right

ALT Right

CTRL Right

CTRL ALT Right
SHIFT Right

SHIFT ALT Right
SHIFT CTRL Right
SHIFT CTRL ALT Right

Up

ALT Up

CTRL Up

ALT CTRL Up
SHIFT Up

SHIFT ALT Up
SHIFT CTRL Up
SHIFT CTRL ALT Up
Down

ALT Down

CTRL Down

ALT CTRL Down
SHIFT Down

SHIFT ALT Down
SHIFT CTRL Down
SHIFT CTRL ALT Down

CAPS LOCK

ALT CAPS LOCK

CTRL CAPS LOCK

ALT CTRL CAPS LOCK
SHIFT CAPS LOCK
SHIFT ALT CAPS LOCK

SHIFT CTRL CAPS LOCK
SHIFT CTRL ALT CAPS LOCK

F1

CTRL F1
SHIFT F1
CTRL SHIFT F1
F2

CTRL F2
SHIFT F2
CTRL SHIFT F2

F3
CTRL F3
SHIFT F3

Cursor left one word
Pan left
Delete left one word

Cursor right one character

Cursor to end of line

Delete character under cursor
Delete to end of line

Cursor right one word

Pan right

Delete word under & right of cursor

Cursor right
Scroll up
Search backward

Top of screen

Cursor down
Scroll down
Search forwards

Bottom of screen

Toggle CAPS LOCK function

243 F3 CTRL SHIFT F3
244 F4 F4

245 F5 CTRLF4

246 F6 SHIFT F4

247 F7 CTRL SHIFT F4
248 F8 F5

249 F9 CTRLFS

250 FA SHIFT F5

251 FB CTRL SHIFT F5

252 FC SHIFT space "Special" space

253 FD SHIFT TAB Back tab (CTRL ignored)

254 FE SHIFT ENTER "Special” newline (CTRL ignored)
255 FF See below

Codes up to 20 hex are either control characters or non-printing characters. Alternative
keyings are shown in brackets after the main keying.

Note that CTRL-C is trapped by Qdos and cannot be detected without changes to the
system variables.

Note that codes CO-DF are cursor control commands.
The ALT key depressed with any key combination other than cursor keys or CAPS LOCK
generates the code FF, followed by a byte indicating what the keycode would have been if

ALT had not been depressed.

Note that CAPS LOCK and CTRL-F5 are trapped by Qdos and cannot be detected without
special software.

Clock

The QL contains a real time clock which runs when the computer is switched on.
The format used for the date and time is standard ISO format.
1983 JAN 01 12:09:10

Individual year, month, day and time can all be obtained by assigning the string returned
by DATE to a string variable and slicing it. The clock will run from 1961 JAN 01 00:00:00

Comment:

For a description of the format, see BS5249: Part 1: 1976 and as modified in Appendix
D.2.1 Table 5 Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

Command Function

SDATE set the clock

ADATE adjust the clock

DATE return the date as a number
DATES return the date as a string
DAY$ return day of the week
Coercion

If necessary SuperBASIC will convert the type of unsuitable data to a type which will allow
the specified operation to proceed.

The operators used determine the conversion required. For example, if an operation
requires a string parameter and a numeric parameter is supplied then SuperBASIC will first
convert the parameter to type string. It is not always possible to convert data to the
required form and if the data cannot be converted an error is reported.

The type of a function or procedure parameter can also be converted to the correct type.
For example, the SuperBASIC LOAD command requires a parameter of type name but
can accept a parameter of type string and which will be converted to the correct type by
the procedure itself. Coercion of this form is always dependent on the way the function or
procedure was implemented.

There is a natural ordering of data types on the QL, see figure below. String is the most
general type since it can represent names, floating point and integer numbers. Floating
point is not as general as string but is more general than integer since floating point data
can represent integer (almost exactly). The figure below shows the ordering
diagramatically. Data can always be converted moving up the diagram but it is not always
possible moving down.

strin A
not akways d

possible

name

floating point

always possible
integer

Example

a=b+c (no conversion is necessary before performing the addition.
Conversion is not necessary before assigning the result to a)

a% = b + c (no conversion is necessary before performing the addition but
the result is converted to integer before assigning)

as = b$ + c$ (b$ and c$ are converted to floating point, if possible, before
being added together. The result is converted to string before
assigning)

LOAD "mdvl data" (the string "mdv1_data" is converted to type name by the

LOAD procedure before it is used)

Statements can be written in SuperBASIC which would generate errors in most other
computer languages. In general, it is possible to mix data types in a very flexible manner:

i PRINT "1" + 2 4+ "3"
ii. LET a$ =1 + 2 + a$ + "4"

COLOUR

Colours on the QL can be either a solid colour or a stipple - a mixture of two colours to
some predefined pattern. Colour specification on the QL can be up to three items: a colour,
a contrast colour and a stipple pattern.

Single:

colour:= composite_colour

The single argument specifies the three parts of the colour specification. The main colour
is contained in the bottom three bits of the colour byte. The next three bits contain the

exclusive or (XOR) of the main colour and the contrast colour. The top two bits indicate the
stipple pattern.

contrast XOR main (mx)

By specifying only the bottom three bits (i.e. the required colour) no stipple will be
requested and a single solid colour will be used for display.

Double:
colour: = background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple is
assumed (stipple 3)

Triple:

colour: = background, contrast, stipple

Background and contrast colours and stipple are each defined separately.
Colours:

The codes for colour selection depend on the screen mode in use:

Code bit pattern composition colour
8 colour 4 colour

0 000 black black
1 001 blue blue black
2 010 Red red red

3 011 red + blue magenta red

4 100 green green green
5 101 green + blue cyan green
6 110 green + Red yellow white
7 111 green+ red+ Dblue white white

Colour Composition and Codes

Stipples

Stipples mix a background and a contrast colour in a fine stipple pattern. Stipples can be
used on the QL in the same manner as ordinary solid colours although stipples may not be
reproduced correctly on an ordinary domestic television. There are four stipple patterns:

Stipple 0 Stipple 1 Stipple 2 Stipple 3

Stipple 3 is the default.

Example:

i. PAPER 255 : CLS
ii. PAPER 2,4 : CLS
iii. PAPER 0,2,0 : CLS

Warning:

Stipples may not reproduce correctly on a domestic television set which is fed via the UHF
socket.

COMMUNICATIONS RS-232-C

The QL has two serial ports (called SER1 and SER2) for connecting it to equipment which
uses serial communications obeying EIA standard RS-232-C or a compatible standard.

The RS-232-C 'standard’ was originally designed to enable computers to send and receive
data via telephone lines using a modem. However, it is now frequently used to connect
computers directly with each other and to various items of peripheral equipment, e.g.
printers, plotters, etc.

As the RS-232-C 'standard' manifests itself in many different forms on different pieces of
equipment, it can be an extremely difficult job, even for an expert to connect together for
the first time two pieces of supposedly standard RS-232-C equipment. This section will
attempt to cover most of the basic problems that you may encounter.

The RS-232-C 'standard’ refers to two types of equipment:

1. Data Terminal Equipment (DTE)
2. Data Communication Equipment (DCE)

The standard envisaged that the terminal (usually the DTE) and the modem (usually the
DCE) would both have the same type of connector.

o | mmmm TxD (outpul) ﬁ B

3 - RxD (input) I | 3

7 | - GND (ground) — | 7

DTE DCE

The diagram above illustrates how the DTE transmits data on pin 2 whilst the DCE must
receive data on its pin 2 (which is still called transmit data!). Likewise, the DTE receives
data on pin 3 whilst the DCE must transmit data on its pin 3 (which is still called receive
data!). Although this is confusing in itself, it can lead to far greater problems when there is
disagreement as to whether a certain device should be configured as DCE or DTE.

Unfortunately, some people decide that their computers should be configured as DCE
devices whilst others configure equivalent computers as DTE devices. This obviously leads
to difficulties in the configuration of the serial ports on each piece of equipment.

SER1 on the QL is configured as DCE, while SER2 is configurd as DTE. Therefore, it
should be possible to connect at least one of the serial ports to a given device simply by
using whichever port is wired the 'correct’ way. The pin-out for the serial ports is given
below. A cable for connecting the QL to a standard 25-way 'D' type connector is available
from Sinclair Research Limited.

SER1 SER2
pin name function pin name function
1 GND Signal ground 1 GND Signal ground
2 TxD Input 2 TxD Output
3 RxD Output 3 RxD Input
4 DTR Ready input 4 DTR Ready output
5 CTS Ready output 5 CTS Ready input
6 - +12V 6 - +12V
TxD Transmit Data DTR Data Terminal Ready
RxD Receive Data CTS Clear To Send

Once the equipment has been connected to the 'correct’ port, the baud rate (the speed of
transmission of data) must be set so that the baud rates for both the QL and the connected
equipment are the same. The QL can be set to operate at:

75
300
600
1200
2400
4800
9600
19200 (transmit only) baud

The QL baud rate is set by the BAUD command and is set for both channels. The baud
rates cannot be set independently.

The parity to be used by the QL must also be set to match that expected by the peripheral
equipment. Parity is usually used to detect simple transmission errors and may be set to
be even, odd, mark, space or no parity, i.e. all 8 bits of the byte are used for data.

Stop bits mark the end of transmission of a byte or character. The QL will receive data
with one, one and a half, or two stop bits, and will always transmit data with at least two
stop bits. Note that if the QL is set up to 9600 baud it will not receive data with only one
stop bit: at least one and a half stop bits are required.

The may be necessary to connect the handshake lines between the QL and a piece of
equipment connected to it. This allows the QL and its peripheral to monitor and control
their rate of communication. They may need to do this if one of them cannot cope with the
speed at which data is being transmitted. The QL uses two handshaking lines:

CTS Clear to Send
DTR Terminal Ready

If DTE cannot cope with the rate of transmission of data then it can negate the DTR line
which tells the DCE to stop sending data. Obviously, when the DTE has caught up it tells
the DCE, via the DTR line, to start transmitting again. In the same way, the DCE can stop
the DTE sending data by negating the CTS line. If additional control signals are required
they can be wired up using the 12V supply available on both serial ports.

Although transmission from the QL is often possible without any handshaking at all,
the QL will not receive correctly under any circumstances without the use of CTS on
SER1 and DTR on SER2.

Communications on the QL are 'full duplex’, that is both receive and transmit can operate
concurrently.

The parity and handshaking are selected when the serial channel is opened.

command Function

BAUD set transmission speed
OPEN open serial channels *
CLOSE close serial channels

* see concept 'DEVICE' for a full specification

DATA TYPES - VARIABLES

integer

Integers are whole numbers in the range -32768 to +32767. Variables are assumed to be
integer if the variable identifier is suffixed with a percent %. There are no integer constants
in SuperBASIC, so all constants are stored as floating point numbers.

syntax: identifier%
example: . counter%

ii. size limit$%
iii. this is an integer variable%

floating point

Floating point numbers are in the range +/- (10" to 10"**®), with 8 significant digits.
Floating point is the default data type in SuperBASIC. All constants are held in floating
point form and can be entered

using exponent notation.

syntax: identifier | constant

example: . current accumulation
ii. 76.2356
il. 354E25

string

A string is a sequence of characters up to 32766 characters long. Variables are assumed
to be type string if the variable name is suffixed by a $. String data is represented by
enclosing the required characters in either single or double quotation marks.
syntax: identifier$ | "text"
example: . string variables$

ii. "this is string data"

iii. "this is another string"

name

Type name has the same form as a standard SuperBASIC identifier and is used by the
name system to name Microdrive files etc.

syntax: Identifier

example: . mdvl data file
ii. serle

DEVICES

A device is a piece of equipment on the QL to which data can be sent (input) and from
which data can be output.

Since the system makes no assumptions about the ultimate 1/O (input/output) device which
will be used, the I/O device can be easily changed and the data diverted between devices.
For example, a program may have to output to a printer at some point during its run. If the
printer is not available then the output can be diverted to a Microdrive file and stored. The
file can then be printed at a later date. I/0 on the QL can be thought of as being written to
and read from a logical file which is in a standard device-independent form.

All device specific operations are performed by individual device drivers specially written
for each device on the QL. The system can automatically find and include drivers for
peripheral devices which are fitted. These should be written in the standard QL device
driver format; see the concept peripheral expansion.

When a device is activated a channel is opened and linked to the device. To correctly open
a channel device basic information must sometimes be supplied. This extra information is
appended to the device name.

The file name should conform to the rules for a SuperBASIC type name though it is also
possible to build up the file name (device name) as a SuperBASIC string expression.

In summary the general form of a file name is:
identifier [information]

where the complete file name (including the extra information) conforms to the rules for a
SuperBASIC identifier.

Each logical device on the system requires its own particular ‘extra information' although
default parameters will be assumed in each case where possible.

Define

device: = name

where the form of the device name is outlined below.
example

for console device

Select Console Device
Underscore

Window Width
Separator

Height

Separator - read as AT
Window X coordinate
Separator

Window Y coordinate
Separator

length of keyboard type
ahead buffer

con__wXhaxXy__k

CON_wXhaxXy_k

Console 1/0

[wXh] - window width, height

[AxXy] - window X,Y coordinate of upper left-hand corner
[K] - keyboard type ahead buffer length (bytes)
default: con_448x180a32x16_128

example: OPEN #4,con_20x50a0x0_32

OPEN #8,con 20x50
OPEN #7,con 20x50a10x10

SCR_wXhaxXy

Screen Output

[wXh]
[AxXy]
default:

example:

- window, width, height
- window X, Y coordinate
scr_448x180a32x16

OPEN #4, scr 0x10a20x50
OPEN #5, scr 10x10

SERnNphz

Serial (RS-232-C)

n port number (1 or 2)

[p] parity [h] handshaking [z] protocol
e—even i —ignore r - raw data no EOF
0 —odd h — handshake z - control Z is EOF
m — mark C - as z but converts
S — space ASCII 10 (Qdos
newline character)
to ASCII 13
<CR>)
default: serlrh (8 bit no parity with handshake)
example: OPEN #3, serle
OPEN #4, serc
COPY mdvl test file TO serlc
NETd_s

Serial Network 1/0
[d] indicates direction
i —input

0 — output

default:

example:

MDVn_name

Microdrive File Access

n - Microdrive number

[s] station number
0 - for broadcast
own station - for general listen (input only)

no default
OPEN #7, neti 32

OPEN #4, neto 0
COPY serl TO neto_ 21

name - Microdrive file name

default: no default

example: OPEN #9, mdvl data file
OPEN #9, mdvl test program
COPY mdvl test file TO scr_

Keyword Function

OPEN initialise a device and activate it for use
CLOSE deactivate a device
COPY copy data between devices

COPY_N copy data between devices, but do
not copy a file's header information

EOF test for end of file
WIDTH set width
DIRECT COMMAND

SuperBASIC makes a distinction between a statement typed in preceded by a line number
and a statement typed in without a line nurnber. Without a line number the statement is a
direct command and is processed immediately by the SuperBASIC command
interpreter. For example, RUN is typed in on the command line and is processed, the
effect being that the program starts to run. If a statement is typed in with a line number
then the syntax of the line is checked and any detectable syntax errors reported. A correct
line is entered into the SuperBASIC program and stored. These statements constitute a
SuperBASIC program and will only be executed when the program is started with the RUN
or GOTO command.

Not all SuperBASIC statements make sense when entered as a direct command, for
example, END FOR, END DEFine, etc

ERROR HANDLING

Errors are reported by SuperBASIC in a standard form:
At line line_number error_text

Where the line number is the number of the line where the error was detected and the
error text is listed below.

(1) Not complete
An operation has been prematurely terminated (or break has been pressed).

(2) Invalid job
An error return from Qdos relating to system calls controlling multitasking or 1/O.

(3) Out of memory
Qdos and/or SuperBASIC has insufficient free memory.

(4) Out of range
Usually results from attempts to write outside a window or an incorrect array index.

(5) Buffer full
An I/O operation to fetch a buffer full of characters filled the buffer before a record
terminator was found.

(6) Channel not open
Attempt to read, write or close a channel which has not been opened. Can also occur if an
attempt to open a channel fails.

(7) Not found
File system, device, medium or file cannot be found. SuperBASIC cannot find an identifier.
This can result from incorrectly nested structures.

(8) Already exists
The file system has found an already existing file with the same name as a new file to be
opened for writing.

(9) Inuse
The file system has found that a file or device is already exclusively used.

(10) End of file
End of file detected during input.

(11) Drive full
A device has been filled (usually Microdrive).

(12) Bad name

The file system has recognised the name but there is a syntax or parameter value error. In
SuperBASIC it means a name has been used out of context. For example, a variable has
been used as a procedure.

(13) Xmit error
RS-232-C parity error

(14) Format failed
Attempted format operation has failed, the medium is possibly faulty (usually a Microdrive
cartridge).

(15) Bad parameter
There is an error in the parameter list of a system or SuperBASIC procedure or function
call. An attempt was made to read data from a write only device.

(16) Bad or changed medium
The medium (usually a Microdrive cartridge) is possibly faulty

(17) Error in expression
An error was detected while evaluating an expression.

(18) Overflow
Arithmetic overflow division by zero, square root of a negative number, etc.

(19) Not Implemented

(20) Read only
There has been an attempt to write data to a shared file.

(21) Bad line
A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared

This is a message which is for information only and is not reporting an error. It is reporting
that the program has been stopped and subsequently changed forcing SuperBASIC to
reset its internal state to the outer program level and so losing any procedure environment
which may have been in effect.

error recovery

After an error has occurred the program can be restarted at the nextstatement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program can be
restarted at the statement which triggered the error. Type

RETRY

EXPRESSIONS

SuperBASIC expressions can be string, numeric, logical or a mixture: unsuitable data
types are automatically converted to a suitable form by the system wherever this is
possible.

define
monop: = |+
| -
| NOT
expression: = | [monop] expression operator expression
| (expression)
| atom
atom: = | variable

| constant
| function | (expression *|, expression *)

| array_element

variable: | identifier
| identifier %

| identifier $

function: | identifier
| identifier %

| identifier $
constant: = | digit * [digit] *

| *[digit] *, *[digit]*

| *[digit] * |,| *[digit]* E *[digit]*
The final value returned by the evaluation of the expression can be integer giving an
integer_expression, string giving a string_expression or floating point giving a floating
expression. Often floating point and integer expressions are equivalent and the term
numeric_expression is then used.
Logical operators can be included in an expression. If the specified operation is true then a
one is returned as the value of the operation. If the operation is false then a zero is
returned. Though logical operators can be used in any expression they are usually used in
the expression part of an IF statement.

example: i. test data + 23.3 + 5
ii. "abcdefghijklmnopgrstuvwxyz" (2 TO 4)
iii. 32.1 * (colour = 1)
iVv. count = -limit

FILE TYPES

FILES
All'1/0 on the QL is to or from a logical file. Various file types exist.
data

SuperBASIC programs, text files. Created using PRINT, SAVE, accessed using INPUT,
INKEY$, LOAD etc.

exec
An executable transient program. Saved using SEXEC, loaded using EXEC, EXEC_W etc.
code

Raw memory data, screen images, etc. Saved using SBYTES, loaded using LBYTES.

FUNCTIONS AND PROCEDURES

SuperBASIC functions and procedures are defined with the DEFine FuNction and DEFine
PROCedure statements. A function is activated (or called) by typing its name at the
appropriate point in a SuperBASIC expression. The function must be included in an
expression because it is returning a value and the value must be used. A procedure is
activated (or called) by typing its name as the first item

in a SuperBASIC statement.

Data can be passed into a function or procedure by appending a list of actual parameters
after the function or procedure name. This list is compared to a similar list appended after
te name of the function or procedure when it was defined. This second list is called the
formal parameters of the function or

procedure. The formal parameters must be SuperBASIC variables. The actual parameters
must be an array, an array slice or a SuperBASIC expression of which a single variable or
constant is the simplest form.

Since the actual parameters are actual expressions, they must have an actual type
associated with them. The formal parameters are merely used to indicate how the actual
parameters must be processed and so have no type associated with them. The items in
each list of parameters are paired off in order when the function or procedure is called and
the formal parameters become equivalent to the actual parameters. There are three
distinct ways of using parameters.

If the actual parameter is a single variable and if data is assigned to the formal parameter
in the function or procedure then the data is also assigned to the corresponding actual
parameter.

If the actual parameter is an expression then assigning data to the corresponding formal
parameter will have no effect outside the procedure. Note that a variable can be turned into
an expression by enclosing it within brackets.

if the actual parameter is a variable but has not previously been set then assigning data to
the corresponding formal parameter will set the variable specified as the actual parameter.

Variables can be defined to be local to a function or procedure with the LOCal statement.
Local variables have no effect on similarly named variables outside the function or
procedure in which they are defned and so allow greater freedom in choosing sensible
variable names without the risk of corrupting external variables.

A local variable is available to any inside function or procedure called from the procedure
function in which it is declared to be local unless the function or procedure called contains
a further local declaration of the same variable name.

Functions and procedures in SuperBASIC can be used recursively. That is a function or
procedure can call itself either directly or indirectly.

Command Function

DEFine FuNction define a function
DEFine PROCedure define a procedure
leave a function or procedure

RETurn .
(return data from a function)
LOCal define local data in a function or procedure
GRAPHICS

It is important to realise that the QL screen has non-square pixels and that changing
screen mode will change the shape of the pixels. Thus if the grapics procedures were
simply pixel based they would draw different shapes in the two modes. For example, in
one mode we would have a circle while the same figure in the other mode would be an
ellipse.

The graphics procedures ensure that whatever screen mode is in use, consistent figures
are produced. It is not possible to use a simple pixel count to indicate sizes of figures, so
instead the graphics procedures use an arbitrary scale and coordinate system to specify
sizes and positions of figures.

The graphics procedures use the graphics co-ordinate system, i.e. draw relative to the
graphics origin which is in the bottom left hand corner of the specified or default window.
Note that this is not the same as the pixel origin used to define the position of windows and
blocks etc. The graphics origin allows a standard Cartesian coordinate system to be used.
A graphics cursor is updated after each graphics operation: subsequent operations can
either be relative to this cursor or can be absolute, i.e. relative to the graphics origin.

100

{00 X

 J

The Graphice Coordinate System

The scaling factor is such that the full distance in the vertical direction in the specified or
default window has length 100 by default and can be changed with the SCALE command.
The scale in the x direction is equal to the scale in the y direction. However, the length of
line which can be drawn in the x direction is dependent on the shape of the window.
Increasing the scale factor increases the maximum size of the figure which can be drawn

before the window size is exceeded. If the graphics output is switched to a different size of
window then the subsequent size of the output is adjusted to fit the new window. If the
figure exceeds its output window then the figure is clipped.

It is useful to consider the window to be a window onto a larger graphics space in which
the figures are drawn. The SCALE command allows the graphics origin to be set so
allowing the window to be moved around the graphics space.

The graphics procedures are output to the window attached to the specified or default
channel and the output is drawn in the INK colour for that channel.

Command Function

CIRCLE draw an ellipse or a circle }

LINE draw a line } absolute
ARC draw an arc of a circle }

POINT plot a point }
CIRCLE_R draw an ellipse or a circle }
LINE_R draw a line }
ARC_R draw an arc of a circle } relative
POINT_R plot a point }

SCALE set scale and move origin

FILL fill in a shape

CURSOR position text

Graphics Fill

Figures drawn with the graphics and turtle graphics procedures can be optionally ‘filled’
with a specified stipple or colour. If FILL is selected then the figure is filled as it is drawn.

The FILL algorithm stores a list of points to plot rather than actually plotting them. When
the figure closes there are two points on the same horizontal line. These two points are
connected by a line in the current INK colour and the process repeats. Fill must always be
reselected before drawing a new figure to ensure that the buffer used to store the list of
points is reset.

The following diagram illustrates FILL:

-
‘r’.-

(10,20)

(75,50)

> (5080)

FILLT:LINE 10,20 TO 75,50 TO 50,80

warning

There is an implementation restriction on FILL. FILL must not be used for re-entrant
shapes (i.e. a shape which is concave). Re-entrant shapes must be split into smaller
shapes which are not re-entrant and each sub-shape filled independently.

IDENTIFIER

A SuperBASIC identifier is a sequence of letters, numbers and underscores.

define: letter:= |a..z
|A..Z

number:= [1]12]13]4|5|6]|7|18]9]0]|

identifier:= letter * || letter | number | _ || *
example: . a

ii. limit 1

iii. current guess

iv. counter

An identifier must begin with a letter followed by a sequence of letters, numbers and

underscores and can be up to 255 characters long. Upper and lower case characters are

equivalent.

Identifiers are used in the SuperBASIC system to identify Variables, Procedures,
Functions, Repetition loops, etc.

warning

NO meaning can be attributed to an identifier other than its ability to identify constructs to
SuperBASIC. SuperBASIC cannot infer the intended use of an identifier from the
identifier's name!

JOYSTICK

The joystick ports marked CTL1 and CTL2, allow two joysticks to be attached to the QL.

The joysticks are arranged to generate specific key depressions when moved in a specific
way and any program which uses a joystick must be able to adapt to these keys. The QL
keyboard can be read directly using the KEYROW function.

CTL1 CTL2
mode key key
up cursor up F4
down cursor down F2
left cursor left F1
right cursor right F3
fire space F5

comment

The joystick ports can be used for adding other more general purpose control devices to
the QL.

Joysticks for other computers using a 9-way 'D' connector require an adaptor to be used
with the QL. Such an adaptor is available from Sinclair Research.

KEYWORD

SuperBASIC keywords are identifiers which are defined in the SuperBASIC Keyword
Reference Guide. Keywords have the same form as a SuperBASIC standard
identifier. The case of the keyword is not significant. Keywords are echoed as a
mixture of upper and lower case letters and are always reproduced in full. The

upper case portion indicates the minimum required to be typed in for SuperBASIC

to recognise the keyword.

The set of SuperBASIC keywords may be extended by adding PROCEDURES to the QL.
It is a good idea to define these with their names in upper case and this will

indicate their special function in the SuperBASIC system. Conversely, ordinary
procedures should be defined with their names in lower case.

WARNING: Existing keywords cannot be used as ordinary identifiers within a
SuperBASIC program. SuperBASIC keywords are:

List of Keywords

ABS
ACOS,ASIN
ACOT,ATAN
ADATE
ARC,ARC R
AT

AUTO
BAUD
BEEP
BEEPING
BLOCK
BORDER
CALL

CHR$
CIRCLE
CIRCLE_R
CLEAR
CLOSE
CLS

CODE
CONTINUE
RETRY
COPY,COPY_N
COSs

COT

CSIZE
CURSOR
DATA,READ
RESTORE
DATES$,DATE
DAY$
DEFine FuNction
END DEFine

DEFine PROCedure

END DEFine
DEG
DELETE
DIM

DIMN

DIR

DIV

DLINE
EDIT
ELLIPSE
ELLIPSE_R
EOF
EXEC,EXEC_W
EXIT

EXP

FILL

FILL$
FLASH
FOR

END FOR
FORMAT
GO SuB
GO TO
IF,THEN,ELSE
END IF

INK
INKEY$
INPUT
INSTR

INT
KEYROW
LBYTES

LEN
LET

LIST

LOAD

LOCal
LN,LOG10
LRUN

MERGE

MOD

MODE

MOVE

MRUN

NET

NEW

NEXT

ON GO TO

ON GO SUB
OPEN,OPEN_IN
OPEN_NEW
OVER

PAN

PAPER
PAUSE
PEEK,PEEK_W
PEEK_L
PENUP
PENDOWN

PI
POINT,POINT_R
POKE,POKE_W
POKE_L
PRINT

RAD

RANDOMISE
RND
RECOL
REMark
RENUM
REPeat
END REPeat
RESPR
RETurn
RETRY
RUN

SAVE

SIN

SCALE
SCROLL
SDATE
SELect
END SELect
SEXEC
SQRT
STOP
STRIP

TAN

TO

TURN
TURNTO
UNDER
VER$
WIDTH
WINDOW

MATHS FUNCTIONS

SuperBASIC has the standard trigonometrical and mathematical functions.

Function Name

COS cosine

SIN sin

TAN tangent

ATAN arctangent

ACOT arcotangent

ACOS arcosine

ASIN arcsine

COoT cotangent

EXP exponential

LN natural logarithm

LOG10 common logarithm

INT integer

ABS absolute value

RAD convert to radians

DEG convert to degrees

Pl return the value of pi +
RND generate a random number
RANDOMISE reseed the random number generator
MEMORY MAP

The QL contains a Motorola 68008 microprocessor, which can address 1 Megabyte of
memory, i.e. from 00000 to FFFFF Hex. The use of addresses within this range are
defined by Sinclair Research to be as follows:

FFFFF
RESERVED expansion /O
CQ0000
RESERVED add on RAM
40000
BAM :
main BAM
28000 96 Khytes
RAM
screen RAM
20000 Seiiias
WO QL IO
18000
ROM :
plugin BOM
0C000 16 Kiytes
ROM
system ROM
00000 48 Khytes

Physical Memory Map

The screen RAM is organised as a series of sixteen bit words starting at address Hex
20000 and progressing in the order of the raster scan, i.e. from left to right with each
display line and then from the top to the bottom of the picture. The bits within each word
are organised so that a pixel to the left is always more significant than a pixel to the right
(i.e. the pixel pattern on the screen looks the same as the binary pattern). However, the
organisation of the colour information in the two screen modes is different:

high byte low byte e
AD=0 AO=1
GGGGGGGGE| RRRRRRRR | 512 mode (high res)
GFGFGFGF | RBRERBRE | 256 moede (low res)
G—qreen B—blue R—red F—flash

Setting the Flash bit toggles the flash state and freezes the background colour for the flash
to the value given by R, G and B for that pixel. Flashing is always reset at the beginning of
each display line.

In high resolution mode, red and green specified together is interpreted by the hardware as
white.

warning

Use of reserved areas in the memory map may cause incompatibility with future Sinclair
products. Spurious output to addresses defined to be peripheral I/0 addresses can cause

unpredictable behaviour. It is recommended that these areas are NOT written to and not
used for any other purpose. Poking areas in use as Microdrive buffers can corrupt
Microdrive data and can result in a loss of

information. Pokng areas in use such as system tables can cause the system to crash and
can result in the loss of data and programs.

All I/0 should be performed using either the relevant SuperBASIC commands or the
QDOS Operating System traps.

MICRODRIVES

Microdrives provide the main permanent storage on the QL. Each Microdrive cartridge has
a capacity of at least 100Kbytes. Available free memory space is allocated by QDOS as
Microdrive buffers when necessary to improve performance.

Each blank cartridge must be formatted before use and can hold up to 255 sectors of 512
bytes per sector. QDOS keeps a directory of files stored on the cartridge. Each microdrive
file is identified using a standard SuperBASIC file or device name.

A cartridge can be write protected be removing the small lug on the right hand side.

On receiving new blank microdrive cartridges, format them a few times to condition the
tape.

general care
Physically each Microdrive cartridge contains a 200 inch loop of high quality video tape
which is moved at 28 inches per second. The tape completes one circuit every 7.5
seconds.
NEVER touch the tape with your fingers or insert anything into the cartridge
NEVER turn the computer on or off with cartridges in place
ALWAYS store cartridges in their sleeves when not in use
ALWAYS insert or remove cartridges from the Microdrive slowly and carefully
ALWAYS ensure the cartridge is firmly installed before starting the microdrive
NEVER move the QL with cartridges installed - even if not in operation
NEVER touch the cartridge while the Microdrive is in operation

DO NOT repeatedly insert and remove the cartridge without running the Microdrive

tape loops
If a tape loop appears at either of the two places shown in figure 1 then gently ease it back

into the cartridge. Use a non-fibrous instrument for this, e.g. the side of a pen or pencil.
NEVER touch the tape with your fingers for this or any reason.

—— tape loop

write protect lug

tape loop
label
' % a Microdrive cartridge
labe] ——
Command Function
FORMAT prepare a new cartridge for use
DELETE delete a file from a cartridge
DIR list the files on a cartridge
SAVE
SBYTES saves data from a cartridge
SEXEC
LOAD
LBYTES
EXEC loads data from a cartridge
MERGE
OPEN_IN
OPEN_NEW
OPEN opens and closes files
CLOSE
PRINT
INPUT SuperBASIC file I/O
INKEY$

warning

If you attempt to write to a cartridge which is write protected then the QL will repeatedly
attempt to write the data but will eventually give up and give a "bad medium" error.

MONITOR

A monitor may be connected to the QL via the RGB socket on the back of the computer.
Connection is via an 8-way DIN plug plus cable for colour monitors, or a 3-way DIN plug
plus cable for monochrome. The RGB socket connections are as in the following table, and
the column indicating wire colour refers to the colour coding used on the 8-way cable and
connector available from Sinclair Research Limited. Pin designation is as shown in the
diagram below.

sleeve colour

Pin function signal on QL RGB
colour lead

1 PAL composite PAL (4) orange

2 GND ground green

3 VIDEO composite monochrome video 3) brown

4 CSYNC composite sync (2) yellow

5 VSYNC vertical sync) blue

6 GREEN green () red

7 RED red Q) white

8 BLUE blue (1) purple

A monochrome monitor can be connected using a screened lead with a 3-way or an 8-way
DIN plug at the QL end. Only pins 2 (ground) and 3 (composite video) need to be
connected via the cable to the monitor. The connection at the monitor end will vary
according to the monitor but is usually a phono plug. The monitor must have a 75 ohm 1V
pk-pk composite video non-inverting input (which is the industry standard). Both 3-way DIN
plugs and phono plugs are available from audio shops.

Diagram of Monitor Connector as viewed from rear of QL, showing pin numbers and
functions.

FPOWER 7 (red) RGB
R ey e ke {green)
3 (composite -1 (composite PAL)
monochrome)

4 (composite synch)
@ y (b;ue’

5 (vertical synch)

2 (ground)

—————, —

Diagram of Monitor Connector as viewed from rear of QL, showing pin numbers and functions

An RGB (colour) monitor can be connected using a lead with an 8 way DIN plug at the QL
end. The connection at the monitor end will vary according to the monitor (there is no
industry standard) and will often be supplied with it. A suitable cable with an 8-way DIN
plug at one end and bare wires at the other end is available from Sinclair Research
Limited.

A composite PAL monitor, or the composite video input on some VCRs may work with the
QL. Only pins 2 (ground) and 1 (composite PAL) need to be connected via a cable to the
monitor or VCR.

NETWORK

The QL can be connected with up to 63 other QLs. If there are more than 2 computers on
the network then each computer (or station) must be assigned a unique station number.
On the QL this can be done using the NET command.

Information is transmitted over the network in blocks. For normal communication between
two stations the receiving station must acknowledge correct reception of the block. If a
block is corrupted then the receiving station will request retransmission.

Using a network station number of zero has a special meaning. Sending to neto_0 is called
broadcasting: any message sent in this way can be read by any station which is listening to
neti_0. Note that the normal verification that a message has been received is disabled for
broadcasts, so that broadcasting messages of length more than one block (255 bytes) is
unreliable.

A network station which listens to its own station number (e.g. NET3:LOAD neti_3) can
receive data from any station sending to it.

Command Function

NET assign a network station number

OPEN open a network channel
CLOSE close a network channel

PRINT

INPUT network 1/0

INKEY$

LOAD
SAVE
LBYTES
SBYTES

EXEC load and save via network

SEXEC
LRUN
MRUN
MERGE

comment

If you are planning to connect several QLs on the network, or use a long piece of cable
then you should wire it up with low capacitance twin core cable such as 3 amp light flex or
bell wire. Take care to connect the centres of each jack to each other, and the outsides to
each other. You will find that although the software can handle 63 stations, the hardware
will not drive more than about 100m of cable, depending on what type it is.

If you are only connecting a few machines with the lads supplied, you need not worry.

OPERATORS

Operator Type

Function

= floating string
== numeric string

numeric
- numeric
/ numeric
* numeric
< numeric string
> numeric string
<= numeric string
>= numeric string
<> numeric string
& string
&& bitwise

Il bitwise

logical type 2 comparison

almost equal ** (type 3 comparison)
addition

subtraction

division

multiplication

less than (type 2 comparison)

greater than (type 2 comparison)

less than or equal to (type 2 comparison)
greater than or equal (type 2 comparison)
not equal to (type 3 comparison)
concatenation

AND

OR

OR
AND
XOR
NOT
MOD
DIV
INSTR

AN

+

bitwise
bitwise
logical
logical
logical
logical
integer
integer
string
floating
floating
floating

XOR

NOT

OR

AND

XOR

NOT

modulus

divide

type 1 string comparison
raise to the power
unary minus
unary plus

**almost equal - equal to 1 part in 107

If the specified logical operation is true then a value not equal to zero will be returned. If
the operation is false then a value of zero will be returned.

precedence

The precedence of SuperBASIC operators is defined in the table above. If the order of
evaluation in an expression cannot be deduced from this table then the relevant operations
are performed from left to right. The inbuilt precedence of SuperBASIC operators can be
overriden by enclosing the relevant sections of the expression in parentheses.

highest

lowest

unary plus and minus
string concatenation

INSTR

exponentiation

multiply, divide, modulus and integer divide

add and subtract
logical comparison

NOT (bitwise or logical)
AND (bitwise or logical)
OR and XOR (bitwise or logical)

PERIPHERAL EXPANSION

The expansion connector allows extra peripherals to be plugged into the QL. The
connections available at the connector are:

|
GND a 1 b GND
D3 a 2 b D2
D4 a 3 b D1
D5 a 4 b DO
D6 a 5 b ASL
D7 a 6 b DSL
A19 a 7 b RDWL
A18 a 8 b DTACKL
A7 a 9 b BGL
A16 a 10 b BRL
CLKCPU a 1" b A15
RED a 12 b RESETCPUL
Ald a 13 b CSYNCL
A13 a 14 b E
A12 a 15 b VSYNCH
Atl a 16 b VPAL
A10 a 17 b GREEN
A9 a 18 b BLUE
A8 a 19 b FC2
A7 a 20 b FC1
AB a 21 b FCO
A5 a 22 b AD
Ad a 23 b ROMOEH
A3 a 24 b At
DBGL a 25 b A2
SpP2 a 26 b SP3
DSMCL a 27 b IPLOL
SP1 a 28 b BERRL
SPO a 29 b iPLIL
VP12 a 30 b EXTINTL
VM12 a 31 b VIN
VIN a 32 b VIN
I |

The connector on the QL is a 64 way (male) DIN-41612 indirect edge connector.

An 'L' appended to a signal name indicates that the signal is active low.

Signal Function

AO0-A19 68008 address lines
RDWL Read / Write

ASL Address Strobe

DSL Data Strobe

BGL Bus Grant

DSMCL Data Strobe - Master Chip
CLKCPU CPU Clock

E 6800 peripherals clock
RED Red

BLUE Blue

GREEN Green

CSYNCL Composite Sync

VSYNCH Vertical Sync
ROMOEH ROM Output Enable

FCO Processor status
FC1 Processor status
FC2 Processor status

RESETCPUL Reset CPU

QL Peripheral Output Signals

Signal Function

DTACKL Data acknowledge

BRL Bus request

VPAL Valid Peripheral Address
IPLOL Interrupt Priority Level 5
IPL1L Interrupt Priority Level 2
BERRL Bus Error

EXTINTL External Interrupt

DBGL Data bus grab

QL Peripheral Input Signals

Signal Function

DO0..D7 Data Lines

QL Peripheral Bi-directional Signals

Signal Functional

SPO0..SP3 Select peripheral 0 to 3

VIN 9V DC (nominal) - 500mA max.
VM12 -12v

VP12 +12V

GND ground

Miscellaneous

It is not intended that the following description of the QL peripheral expansion mechanism
be sufficient to implement an actual expansion device, but rather be read to gain a basic
understanding of the expansion mechanism.

Single or multiple peripherals may be added to the QL up to a maximum of 16 devices. A
single peripheral can be plugged directly into the QL Expansion Slot while multiple
peripherals must be plugged into the QL Expansion Module, which in turn is plugged into
the QL Expansion Slot via a buffer card.

In this context the term 'device' also includes expansion memory. Although the areas of the
QL memory map allocated to expansion memory are different from those allocate to
expansion devices, the basic mechanism is the same. Only one expansion memory
peripheral can be plugged into the QL at any one time. The address space allocated for
peripheral expansion in the QL Physical memory map allows 16 Kbytes per peripheral.
This area must contain the memory mapped I/O required for the driver and the code for the
driver itself.

QDOS includes facilities for queue management and simple serial /0O which may be of use
when writing device drivers.

The position of each peripheral device in the overall memory map of the QL is determined
by the select peripheral lines: SPO, SP1, SP2 and SP3. These select lines generate a
signal corresponding to the slot position in the QL expansion module, thus for a device to
be selected the address input from address lines: Al4, A15, A16 and A17 must be the
same as the signals from SP0, SP1, SP2 and SP3

respectively.

PIXEL COORDINATE SYSTEM

The pixel coordinate system is used to define the positions and sizes of windows,
blocks and cursor positions on the QL screen. The coordinate system has its origin in the
top left hand corner of the default window (or screen) and always assumes that positions
are specified as though the screen were in 512 mode (high resolution mode). The system
will use the nearest pixel available for the particular mode set making the coordinate
system independent of the screen mode in use.

Some commands are always relative to the default window origin, e.g. WINDOW, while
some are always relative to the current window origin, e.g. BLOCK

(0.0) X (0,512)

| (256,0)

The Pixel Coordinate System

PROGRAM

A SuperBASIC program consists of a sequence of SuperBASIC statements, where each
statement is preceded by a line number. Line numbers are in the range of 1 to 32767.

Command Function
RUN start a loaded program
LRUN load a program from a device and start it

[CTRL] [SPACE] force a program to stop

syntax: line_number:= *[digit]* [range 1,32767]
*[line_number statement *[:statement]*]*

example: . 100 PRINT "This is a valid line number"
RUN

ii. 100 REMark a small program
110 FOR foreground = 0 TO 7
120 FOR contrast = 0 TO 7

130 FOR stipple = 0 TO 3

140 PAPER foreground, contrast, stipple
150 CURSOR 0,70

160 FOR n = 0 TO 2

170 SCROLL 2,1

180 SCROLL -2,2

190 END FOR n

200 END FOR stipple

210 END FOR contrast
220 END FOR foreground
RUN

QDOS

Qdos is the QL Operating System and supervises:

Task Scheduling and resource allocation
Screen I/O (including windowing)
Microdrive 1/0O

Network and serial channel communication
Keyboard input

Memory management

memory map

A full description of Qdos is beyond the scope of this guide but a brief description is

included.

The system RAM has an organisation imposed by the QDOS operating system and is

defined as follows:

SV_RAMT-1

SV__RESPR

SV__TRNSP

SV_BASIC

SV_FREE

SV_HEAP

Resident
pracedures

Transienrt
programs

SuperBasic command
interpreter data
and
SuperBasic programs

Filing subsystem
slave block

Channels and other
heap items

System 1ables
and
Systemn Variables

Display Memory

| fills

-

+ fills

 fils

R

fills

28000 Hex

QDOS Memory Map

The terms SV_RAMT, SV_RESPR, SV_TRNSP, SV_BASIC, SV_FREE, SV_HEAP are
used to represent addresses inside the QL. These terms are not recognised by

SuperBASIC or the QDOS operating system. Furthermore, the addresses represented are
liable to change as the system is running.

sv_ramt RAM Top
This will vary according to the memory expansion boards attached to
the system.

sv_respr Resident Procedures
Resident procedures are loaded into the top of RAM. Space can be
allocated in the resident procedure area using the RESPR function,
but this space cannot be released except by resetting the QL.
Resident Procedures written in machine code can be added to the
SuperBASIC name list and so become extensions to the
SuperBASIC system.

sv_trnsp Transient Programs
Transient programs are loaded immediately below the resident
procedures. Each program must be self contained, i.e. it must contain
space for its own data and its own stack. It must be position
independent or must be loaded by a specially written linking loader. A
transient program is executed from BASIC by using the EXEC
command or from QDOS by activating it as a job.

The transient program area may be used for storing data only but this
data will still be treated by QDOS as a job and therefore must not be
activated.

sv_basic SuperBASIC Area
This area contains all loaded SuperBASIC programs and related
data. This area expands and contracts using up the free space as
required.

sv_free Free Space
Free space is used by the Qdos file subsystem to create Microdrive
Slave Blocks, i.e. copies of Microdrive blocks which can be held in
RAM.

sv_heap System Heap
This is used by the system to store data channel definitions and also
provides working storage for the 1/0O subsystem. Transient programs
may allocate working space for themselves on the heap via Qdos
system calls.

System Tables/System Variables
This area is directly above the screen memory. The System Tables
and supervisor stack are resident above the system variables.

system calls

System calls are processed by Qdos in 'supervisor mode'. When in supervisor mode, Qdos
will not allow any other job to take over the processor. System calls processed in this way
are said to be 'atomic', i.e. the system call will process to completion before relinquishing
the processor. Some system calls are only partially atomic, i.e. once they have completed
their primary function they will relinquish the processor if necessary. Unless specifically
requested all the system calls are partially atomic.

The standard mechanism for making a system call is by making a trap to one of the Qdos
system vectors with appropriate parameters in the processor registers. The action taken by
Qdos following a system call is dependent on the particular call and the overall state of the
system at the time the call was made.

input/output

Qdos supports a multitasking environemtn and therefore a file can be accessed by more
than one process at a time. The Qdos filing sub-system can handle files which have been
opened as EXCLUSIVE files or as SHARED files. A shared file cannot be written to. QL
devices are processed by the SERIAL I/O SYSTEM. As its name suggests any data output
by this system can be redirected to any other

device also supported by the redirectable 1/0 system.

The device names required by Qdos are the same as the device names required by
SuperBASIC and are discussed in the concept section DEVICES. The collection of
standard devices supplied with the QL can be expanded.

devices

The standard devices included in the system are discussed in this guide in the section
DEVICES. Further devices may be added to the system, given a name (e.g. SER1, NET)
and then accessed in the same way as any other QL device.

multitasking

Jobs will be allowed a share of the CPU in line with their priority and competition with other
jobs in the system. Jobs running under the control of Qdos can be in one of three states:

active: Capable of running and sharing system resources. A job
in this state may not be runnign continuously but will
obtain a share of the CPU in line with its priority.

suspended: The job is capable of running but is waiting for another job
or I/O. A job may be suspended indefinitely or for a
specific period of time.

inactive: The job is incapable of running, its priority is 0 and so it
can never obtain a share of the CPU

Qdos will reschedule the system automatically at a rate related to the 50 Hz frame rate.
The system will also be rescheduled after certain system calls.

example: This program generates an on-screen readout of the real-time
clock running as an independent job.

First RUN this program with a formatted cartridge in microdrive
2. This generates a machine code title called ‘clock’. Wait for the
microdrive to stop. Next, set the clock using the SDATE
command.

Then type:
EXEC mdvZ clock

and a continuous time display will appear at the top right of the
command window.

100 c=RESPR(100)

110 FOR 1 = 0 TO 68 STEP 2

120 READ x:POKE W it+c, x

130 END FOR i

140 SEXEC mdvZ2 clock,c,100,256

1000 DATA 29439,29697,28683,20033,17402
1010 DATA 48,13944,200,20115,12040
1020 DATA 28691,20033,17402,74,-27698
1030 DATA 13944,236,20115,8279,-11314
1040 DATA 13944,208,20115,16961,16962
1050 DATA 30463,28688,20035,24794
1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data terms are, in
order:

border colour/width, paper/ink colour, window width, height, x-origin, y-origin
These are pairs of bytes, entered by POKE_W as words.

The x-origin and the y-origin (the last data item) should be 272 and 202 in monitor mode,
or 240 and 216 in TV mode.

Generate the paper and ink word, for example, as 256*paper+ink. Thus white paper, red
ink is 256*7 + 2 = 1794

REPETITION

Repetition in SuperBASIC is controlled by two basic program constructs. Each construct
must be identified to SuperBASIC:

REPeat identifier FOR identifier = range
Statements statements
END REPeat identifier END FOR identifier

These two constructs are used in conjunction with two other SuperBASIC statements:
NEXT identifier EXIT identifier

Processing a NEXT statement will either pass control to the statement following the
appropriate FOR or REPeat statement, or if a FOR range has been exhausted to the
statement following the NEXT.

Prcoessing an EXIT will pass control to the statement after the END FOR or END REPeat
selected by the EXIT statement. EXIT can be used to exit through many levels of nested
repeat structures. EXIT should always be used in REPeat loops to terminate the loop on
some condition.

A combination of NEXT,EXIT and END statements allows FOR and REPeat loops to have
a loop epilogue added. A loop epilogue is a series of SuperBASIC statements which are
executed on some special condition arising within the loop:

FOR identifier = for__list

staterments s J— exit
NEXT identifier next
epliogue
END FOR identifier —=

The loop epilogue is only processed if the FOR loop terminates normally. If the loop
terminates via an EXIT statement then processing will continue at the END FOR and the
epilogue will not be processed.

It is possible to have a similar construction in a REPeat loop:

REPeat identifier
staterments I
IF condition THEN NEXT identifier

epilogue
END REPeat identifier

This time entry into the loop epilogue is controlled by the IF statement. The epilogue will or
will not be processed depending on the condition in the IF statement. A SELect statement
can also be used to control entry into the epilogue.

ROM CARTRIDGE SLOT

Allows software to be used in the QL system from a Sinclair QL ROM Cartridge. The ROM
Cartrdge can contain software to directly change the behaviour of the SuperBASIC system.
The cartridge can contain:

i. Software to be used instead of or with the SuperBASIC system. For example:
assemblers
compilers
debuggers
application software
etc
ii. Software to expand the SuperBASIC system. For example:

special procedures
etc

It is not possible to use ZX ROM Cartridges on the QL.

pin out

— |a 1 b|voD
a2 |a 2 b|AH4
A7 |a 3 b|AR
AB a 4 b |A8
A5 a 5 b|A9

SLIOT Ja & b[SLOT
A [a 7 b]Atf
A3 |a 8 b |ROMOEH
A2 |a 9 b|AW0
At |a 10 b |As
A |a 11 b|D7
Do [a 12 b|D6
D |a 13 b|D5
D2 |a 14 b |D4

GND |a 15 b |D3

Side b is the upper side of the connector; side a is the lower.

Signal Function

AO0..A15 Address lines
DO..D7 Data lines
ROMOEH ROM Output Enable
VDD 5V

GND Ground

warning:

Never plug or unplug a ROM cartridge while the QL power is on.

SCREEN

512 mode

The screen is 512 pixels across and 256 pixels deep. Only the solid colours

black
red

green
white

can be displayed in this mode.
256 mode

Low resolution mode also has a hardware flash. The screen is 256 pixels across and 256
pixels deep. The full set of solid colours is available in this mode:

black
blue

red
magenta
green
cyan
yellow
white

warning

A domestic television is not capable of displaying the complete QL screen. Portions of the
screen at the top and the sides will not be reproduced. The default initial window will take
account of this and will reduce the effective picture size. The full size can be restored with
the WINDOW command.

Command Function

MODE set screen mode

SLICING

Under certain circumstances it is possible to refer to more than one element in an array i.e.
slice the array The array slice can be thought of as defining a subarray or a series of

subarrays to SuperBASIC. Each slice can define a continuous sequence of elements
belonging to a particular dimension of the

original array. The term array in this context can include a numeric array, a string array or a
simple string.

It is not necessary to specify an index for the full number of dimensions of an array. If a
dimension is omitted then slices are added which will select the full range of elements for
that particular dimension, i.e. the slice (0 TO). SuperBASIC can only add slices to the end
of a list of array indices.

syntax: index: = | numeric_exp {single element}
| numeric_exp TO numeric_exp {range of elements}
| numeric_exp TO {range to end}
| TO numeric_expression {range from beginning}
array_reference:= | variable

| variable (| index * |,index| *|)

An array slice can be used to specify a source or a destination subarray for an assignment
statement.

example: . PRINT data array
ii. PRINT letters$(l TO 15)
. PRINT two_d array (3) (2 TO 4)

String slicing is performed in the same way as slicing humeric or string arrays.

Thus

as$(n) will select the nth character.

a$(n TOm) will select all characters from the nth to the mth, inclusively
a$(n TO) will select from a character n to the end, inclusively

a$(1 TOm) will select from the beginning to the nth character inclusively
a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFT$, MID$, RIGHTS. These are not
necessary in SuperBASIC. Their equivalents are specified below:

SuperBASIC Other BASIC

a$(n) MID$(a$,n,1)
a$(n TO m) MID$ (a$,n,m+1-n)
a$(1 TOn) LEFTS (a$,n)

a$(n TO) RIGHTS (a$,LEN(a$)+1-n)

warning

Assigning data to a sliced string array or string variable may not have the desired effect.
Assignments made in this way will not update the length of the string. The length of a string
array or string variable is only updated when an assignment is made to the whole string.

START UP

Immediately after switch on (or reset) the QL will perform a RAM test which will give a
spurious pattern on the display. If the RAM test is passed then the screen will be cleared
and the copyright screen displayed.

F1 «2s monitor
FZ2 .. TU

A19332 Sincloair Research Ltd.

After start up, the QL displays the copyright message and asks whether it is being used on
a television or a monitor. The QL will set different initial screen modes and window sizes
depending on the answer.

Press F1 if you are using a monitor and F2 if you are using a television set.

The QL has the ability to 'boot' itself up from programs contained in either the ROM
cartridge slot or in Microdrive 1. If the ROM cartridge slot contains a self starting program
then start up will continue under the control of the program in the ROM cartridge. If nothing
suitable is found then the QL will check Microdrive 1 for a cartridge. If a cartridge is found
and if it contains a file called BOOT it is loaded and run.

default screen

The QL has three default channels which are linked to three default windows.

Maonitor Television

Channel 0 is used for listing commands and error messages, channel 1 for program and
graphics output and channel 2 for program listings. The default channel can be modified
using the optional channel specifier in the relevant command.

It is important NOT to switch on the QL with a Microdrive cartridge in position. If booting

from a Microdrive cartridge is required then the cartridge must be inserted between
switching on and pressing either F1 or F2.

SOUND

Sound on the QL is generated by the QL's second processor (an 8049) and is controlled
by specifying:

up to two pitches
the rate at which the sound must move between the pitches, the ramp

how the sound is to behave after it has reached one of the specified pitches, the
wrap

if any randomness should be built into the sound, i.e. deviations from the ramp

if any fuzziness should be built into the sound. i.e. deviations on every cycle of the
sound

Fuzziness tends to result in buzzy sounds while randomness, depending on the other
parameters, will result in 'melodic' sounds or noise.

The complexity of the sound can be built up stage by stage gradually building more
complex sounds. This is, in fact, the best way to master sound on the QL.

Specify a duration and a single pitch. The specified pitch will be beeped for the specified
time.

LEVEL 1

pitzh

time

This is the simplest sound command, other than the command to stop the sound, on the

QL.

LEVEL 2

A second pitch and a gradient can be added to the command. The sound will then 'bounce'
between the two pitches at the rate specified by the gradient.

The sounds produced at this level can vary between: semi musical beeps, growls, zaps
and moans. It is best to experiment.

pitch?2

pitch

piich 1

time

LEVEL3

A parameter can be added which controls how the sound behaves when it becomes equal
to one of the specified pitches. The sound can be made to 'bounce’ or 'wrap'.

The number of wraps can be specified, including wrap forever. It is even more important to
experiment.

[irme

pitch2

pitch

IJ pitch 1

firme

LEVEL4

Randomness can be added to the sound. This is a deviation from the specified step or
gradient.

Depending on the amount of randomness added in relation to the pitches and the gradient,
it will generate a very wide and unexpected range of sounds.

pitche

pitsh

— pitch 1

tirme

LEVEL 5

More variation can be added by specifying ‘fuzziness'. Fuzziness adds a random factor to
the pitch continuously Fuzziness tends to make the sound buzz.

Combining all of the above effects can make a very wide range of sounds, many of them

unexpected. QL sound is best explored through experiment. By specifying a time interval

of zero the sound can be made to repeat forever and so a sequence of BEEP commands
can be used until the sound generated is the sound which is required. A word of warning:
slight changes in the value of a single parameter can have alarming results on the sound
generated.

STATEMENT

A SuperBASIC statement is an instruction to the QL to perform a specific operation, for
example:

LET a = 2
will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual
statements from each other by a colon (:), for example:

LET a = a + 2 : PRINT a

will add 2 to the value identified by the variable a and will store the result back in a. The
answer will then be printed out

If a line is not preceded by a line number then the line is a direct command and
SuperBASIC processes the statement immediately. If the statement is preceded by a line
number then the statement becomes part of a SuperBASIC program and is added into the
SuperBASIC program area for later execution.

Certain SuperBASIC statements can have an effect on the other statements over the rest
of the logical line in which they appear i.e. IF, FOR, REPeat, REM, etc. It is meaningless to
use certain SuperBASIC statements as direct commands.

STRING ARRAYS, STRING VARIABLES

String arrays and numeric arrays are essentially the same, however there are slight
differences in treatment by SuperBASIC. The last dimension of a string array defines the
maximum length of the strings within the array. String variables can be any length up to
32766. Both string arrays and string

variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are not
the same then either the right hand string is truncated to fit or the length of the left hand
string is reduced to match. If an assignment is made to a sliced string then if necessary the
'hole’ defined by the slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the
dimension selects the whole string while specifying a single element will pick out a single
character and specifying a slice will define a sub string.

COMMENT: Unlike many BASICs SuperBASIC does not treat string arrays as fixed length
strings. If the data stored in a string array is less than the maximum size of the string array
then the length of the string is reduced.

WARNING: Assigning data to a sliced string array Or string variable may not have the
desired effect. Assignments made in this way will not update the length of the string and so
it is possible that the system will not recognise the assignment. The length of a string array
or a string variable is only

updated when an assignment is made to the whole string.

Command Function

FILL$ generate a string

LEN find the length of a string
STRING COMPARISON
order:

. (decimal point/full stop)
digits or numbers in numerical order
AaBbCcDdEeFfGgHhTIiJjKkL1IMmMNNOOPPQRrSsTtUUVVHWXXYYZz

space ! " # $ ¥ &' () *+, - ./ ;< =>20e [|1~ _/A{1}
~ ©
other non printing characters
The relationship of one string to another may be:
equal: All characters or numbers are the same or equivalent
lesser: The first part of the string, which is different from the
corresponding character in the second string, is before it in
the defined order.
greater: Thefirst part of the first string which is different from the
corresponding character in the second string, is after it in the
defined order.
Note that a '." may be treated as a decimal point in the case of string comparison which
sorts numbers (such as SuperBASIC comparisons). Note also that comparison of strings
containing non-printable characters may give unexpected results.
types of comparison
type O case dependent - character by character comparison
type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SuperBASIC system.
usage
type 1 File and variable comparison

type 2 SuperBASIC <, <=, =, >= > INSTR and <>
type 3 SuperBASIC == (equivalence)

SYNTAX DEFINITIONS

SuperBASIC syntax is defined using a non-rigorous 'meta language' type notation. Four
types of construction are used :

| | Select one of
[1 Enclosed item(s) are optional
** Enclosed items are repeated

. Range
{} Comment

eg. |A|B| AorB
[A] A is optional
A A is repeated
A.Z A, B, C, etc

{this is a comment}
Consider a SuperBASIC identifier.

A sequence of numbers, digits, underscores, starting with a letter and finishing with an
optional % or $

letter:= |A..Z
|a..z
{a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ}
or abcdefghijkimnopgrstuvwxyz

digit: = |0]1]2]3]4]5(6|7]|8]9]

Underscore:=
{an underscore is _}

identifier = fetter *|letter | digit | underscore l* % |$ |
must sta\rt—J
with a letter

a sequence of letlers

digils and underscores

i.e. repeat something
which is optional

TURTLE GRAPHICS

SuperBASIC has a set of turtle graphics commands:

Command Function

PENUP stop drawing

PENDOWN start drawing

MOVE move the turtle

TURN turn the turtle

TURNTO turn to a specific heading

The set of commands is the minimum and normally would be used within another
procedure to expand on the commands. For example:

100 DEFine PROCedure forward (distance)
110 MOVE distance

120 END DEFine

130 DEFine PROCedure backwards (distance)
140 MOVE -distance

150 END DEFine

160 DEFine PROCedure left (angle)

170 TURN angle

180 END DEFine

190 DEFine PROCedure right (angle)

200 TURN -angle

210 END DEFine

These will define some of the more famous turtle graphic commands.

Initially the turtle's pen is up and the turtle is pointing at O degrees which is to the right
hand side of the window.

The FILL command will also work with figures drawn with turtle graphics. Also ordinary
graphics and turtle graphics can be mixed, although the direction of the turtle is not
modified by the ordinary graphics commands.

WINDOWS

Windows are areas of the screen which behave, in most respects, as though each
individual window was a screen in its own right, i.e. the window will scroll when it has
become filled by text, it can be cleared with the CLS command, etc.

Windows can be specified and linked to a channel when the channel is opened. The
current window shape can be changed with the WINDOW command and a border added
to a window with the BORDER command. Output can be directed to a window by printing
to the relevant channel. Input can be directed to have come from a particular window by
inputting from the relevant channel If more than one
channel is ready for input then input can be switched between the ready channels by
pressing

[CTRL] C
The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time. The non
graphic output is relative to the current cursor position which can be positioned anywhere
within the specified window with the CURSOR command and at any line-column boundary
with the AT command. The graphics output is relative to a graphics cursor which can be
positioned and manipulated with the graphics procedures.

PARTS

Certain commands (CLS, PAN etc.) will accept an optional parameter to define part of the
current window for their operation. This parameter is as defined below:

part description

whole screen

above and excluding cursor line
bottom of screen excluding cursor line
whole of cursor line

line right of and including cursor

A WNEFEO

Command Function

WINDOW re-define a window
BORDER take a border from a window

PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents

SCROLL scroll a window's contents

AT position the print position

CLS clear a window

CSIZE set character size

FLASH character flash

RECOL recolour a window

