=ircli=ir-

oL

Keywords

© 1984 SINCLAIR RESEARCH LIMITED
By Stephen Berry (Sinclair Research Limited)

QL KEYWORDS

The Keyword Reference Guide lists all SuperBASIC keywords in alphabetical order: A brief
explanation of the keywords function is given followed by loose definition of the syntax and
examples of usage. An explanation of the syntax definition is given in the Concept
Reference Guide under the entry syntax.

Each keyword entry indicates to which, if any, group of operations it relates, i.e. DRAW is a
graphics operation and further information can be obtained from the graphics section of the
Concept Reference Guide.

Sometimes it is necessary to deal with more than one keyword at a time, i.e. IF, ELSE,
THEN, END, IF, these are all listed under IF.

An index is provided which attempts to cover all possible ways you might describe a
SuperBASIC keyword. For example the clear screen command, CLS, is also listed under
clear screen and screen clear.

Keyword Index

ABS
ACOS
ASIN
ACOT
ATAN
ADATE
ARC
ARC R
AT

DEFine FuNction
DEFine PROCedure
DEG

DELETE

bDIM

DIMN

DIR

DIV

DLINE

DIT

ELLIPSE

ELLIPSE R

ELSE

END DEFine (Function)

m

END DEFine (Procedure)

END FOR
END IF
END REPeat
END SELect
EOF

EXEC
EXEC W
EXIT

EXP

FILL

FILL$
FLASH

ABS

maths functions

ABS returns the absolute value of the parameter. It will return the value of the parameter if
the parameter is positive and will return zero minus the value of the parameter if the
parameter is negative.

syntax: ABS(numeric_expression)

example:
i. PRINT ABS (0.5)
ii. PRINT ABS (a-b)

ACOS, ASIN, ACOT, ATAN

maths functions

ACOS and ASIN will compute the arc cosine and the arc sine respectively. ACOT will
calculate the arc cotangent and ATAN will calculate the arc tangent. There is no effective
limit to the size of the parameter.

syntax: angle:= numeric_expression [in radians]

ACOS (angle)
ACOT (angle)
ASIN (angle)

ATAN (angle)

example:
i. PRINT ATAN (angle)
ii. PRINT ASIN (1)
iii. PRINT ACOT (3.6574)
iv. PRINT ATAN (a-b)
ADATE
clock

ADATE allows the clock to be adjusted.
syntax: seconds:= numeric_expression
ADATE seconds

example:

i. ADATE 3600 {will advance the clock 1 hour}
ii. ADATE -60 {will move the clock back 1 minute}

ARC, ARC_R
graphics

ARC will draw an arc of a circle between two specified points in the window attached to the
default or specified channel. The end points of the arc are specified using the graphics co-
ordinate system.

Multiple arcs can be drawn with a single ARC command.

The end points of the arc can be specified in absolute coordinates (relative to the graphics
origin or in relative coordinates (relative to the graphics cursor). If the first point is omitted
then the arc is drawn from the graphics cursor to the specified point through the specified
angle.

ARC will always draw with absolute coordinates, while ARC_R will always draw relative to
the graphics cursor.

syntax: X:= numeric_expression
y:= numeric_expression
angle:= numeric_expression (in radians)

point:= X,y

parameter_2:= | TO point, angle D
| ,point TO point,angle 2)

parameter_1:= | point TO point,angle 1)
| TO point,angle (2)

ARC [channel,] parameter_1 *[parameter_2]*
ARC_R [channel,] parameter_1 *[parameter_2]*

Where:

(1) will draw from the specified point to the next specified point turning
through the specified angle

(2) will draw from the last point plotted to the specified point turning
through the specified angle

example:
i. ARC 15,10 TO 40,40,PI/2
{draw an arc from 15,10 to 40,40 turning through PI/2 radians}

ii. ARC TO 50,50,PI/2
{draw an arc from the last point plotted to 50,50 turning through P1/2
radians}

iii. ARC R 10,10 TO 55,45,0.5
{draw an arc, starting 10,10 from the last point plotted to 55,45 from the
start of the arc, turning through 0.5 radians}

AT

windows

AT allows the print position to be modified on an imaginary row/column grid based on the
current character size. AT uses a modified form of the pixel coordinate system where (row
0, column 0) is in the top left hand corner of the window. AT affects the print position in the
window attached to the specified or default channel.

syntax: line:= numeric_expression
column:= numeric_expression

AT [channel,] line, column

example: AT 10,20 : PRINT "This is at line 10 column 20"

AUTO

AUTO allows line numbers to be generated automatically when entering programs directly
into the computer. AUTO will generate the next number in sequence and will then enter the
SuperBASIC line editor while the line is typed in. If the line already exists then a copy of
the line is presented along with the line number. Pressing ENTER at any point in the line
will check the syntax of the whole line and will

enter it into the program.

AUTO is terminated by pressing [CTRL|[SPACE]

Syntax: first_line:= line_number
gap:= numeric_expression

AUTO [first_line] [,gap]

example:
i. AUTO {start at line 100 with intervals of 10}
ii. AUTO 10,5 {start at line 10 with intervals of 5}
iii. AUTO ,7 {start at line 100 with intervals of 7}
BAUD

communications

BAUD sets the baud rate for communication via both serial channels. The speed of the
channels cannot be set independently.

syntax:

Example:

i.
ii.

BEEP

sound

rate:= numeric_expression
BAUD rate

The value of the numeric expression must be one of the supported baud
rates on the QL:

75

300

600

1200

2400

4800

9600

19200 (transmit only)

If the selected baud rate is not supported, then an error will be generated.

BAUD 9600
BAUD print speed

BEEP activates the inbuilt sound functions on the QL. BEEP can accept a variable number
of parameters to give various levels of control over the sound produced. The minimum
specification requires only a duration and pitch to be specified. BEEP used with no
parameters will kill any

sound being generated.

syntax:

duration:= numeric_expression {range -32768..32767}
pitch:= numeric_expression {range 0..255}
grad_x:= numeric_expression {range -32768..32767}
grad_y:= numeric_expression {range -8..7}

wrap:= numeric_expression {range 0..15}

fuzzy:= numeric_expression {range 0..15}
random:= numeric_expressian {range 0..15}

BEEP [duration, pitch
[,pitch_2, grad_x, grad_y
[, wrap
[, fuzzy
[, random]]]]]

duration specifies the duration of the sound in units of 72
microseconds. A duration of zero will run the sound until
terminated by another BEEP command.

pitch specifies the pitch of the sound.A pitch of 1 is high and
255 is low.

pitch_2 specifies an second pitch level between which the sound
will ‘bounce'’

grad _x defines the time interval between pitch steps.

grad y defines the size of each step, grad_x and grad_y control

the rate at which the pitch bounces between levels.

wrap will force the sound to wrap around the specified number
of times. If wrap is equal to 15 the sound will wrap around
forever:

fuzzy defines the amount of fuzziness to be added to the sound.

random defines the amount of randomness to be added to the
sound.

BEEPING

sound

BEEPING is a function which will return zero (false) if the QL is currently not beeping and a
value of one (true) if it is beeping.

syntax: BEEPING

example:
100 DEFine PROCedure be quiet
110 BEEP
120 END DEFine
130 IF BEEPING THEN be quiet

BLOCK

windows

BLOCK will fill a block of the specified size and shape, at the specified position relative to
the origin of the window attached to the specified, or default channel. BLOCK uses the
pixel coordinate system.

syntax: width:= numeric_expression
height:= numeric_expression
X:= numeric_expression
y:= numeric_expression

BLOCK [channel,] width, height, X, y, colour
example:
i BLOCK 10,10,5,5,7 {10x10 pixel white block at 5,5}

ii. 100 REMark "bar chart"
110 CSIZE 3,1
120 PRINT "bar chart"
130 LET bottom =100 : size = 20 : left = 10
140 FOR bar =1 to 10
150 LET colour = RND(O TO 255)
160 LET height = RND(2 TO 20)
170 BLOCK size, height, Left+bar*size, bottom-
height, 0
180 BLOCK size-2, height-2, left+bar*size+l, bottom-
height+1l, colour
190 END FOR bar

{use LET colour = RND(0 TO 7) for televisions}

BORDER

windows

BORDER will add a border to the window attached to the specified channel, or default
channel.

For all subsequent operations except BORDER the window size is reduced to allow space
for the BORDER. If another BORDER command is used then the full size of the original
window is restored prior to the border being added; thus multiple BORDER commands
have the effect of changing

the size and colour of a single border. Multiple borders are not created unless specific
action is taken.

If BORDER is used without specifying a colour then a transparent border of the specified
width is created.

syntax: width:= numeric_expression
BORDER [channel,] size [, colour]

example:
i. BORDER 10,0, 7 {black and white stipple border}

ii. 100 REMark Lurid Borders
110 FOR thickness = 50 to 2 STEP -2
120 BORDER thickness, RND(0O TO 255)
130 END FOR thickness
140 BORDER 50

CALL
Qdos

Machine code can be accessed directly from SuperBASIC by using the CALL command.
CALL can accept up to 13 long word parameters which will be placed into the 68008 data
and address registers (D1 to D7, AO to A5) in sequence.

No data is returned from CALL.

syntax: address:= numeric_expression
data:= numeric_expression

CALL address, *[data]* {13 data parameters maximum}
example:
i. CALL 262144,0,0,0
ii. CALL 262500,12,3,4,1212,6

Warning: Address register A6 should not be used in routines called using this command.
To return to SuperBASIC use the instructions:

MOVEQ #0,DO
RTS

CHR$
BASIC

CHRS$ is a function which will return the character whose value is specified as a parameter:
CHRS$ is the inverse of CODE.

syntax: CHR$(numeric_expression)

example:
i. PRINT CHRS(27) {print ASCII escape character}
ii. PRINT CHRS (65) {print A}

CIRCLE CIRCLE_R
graphics

CIRCLE will draw a circle (or an ellipse at a specified angle) on the screen at a specified
position and size. The circle will be drawn in the window attached to the specified or
default channel.

CIRCLE uses the graphics coordinate system and can use absolute coordinates (i.e.
relative to the graphics origin), and relative coordinates (i.e. relative to the graphics cursor).
For relative coordinates use CIRCLE_R.

Multiple circles or ellipses can be plotted with a single call to CIRCLE. Each set of
parameters must be separated from each other with a semi colon (;)

The word ELLIPSE can be substituted for CIRCLE if required.

syntax: X:= numeric_expression
y:= numeric_expession
radius:= numeric_expression
eccentricity:= numeric_expression
angle:= numeric_expression {range 0 to 2 PI}

parameters:= | X, Y, D
| radius, eccentricity, angle 2)

where (1) will draw a circle
(2) will draw an ellipse of specified eccentricity and angle

CIRCLE [channel,] parameters*[; parameters]*

X - horizontal offset from the graphics origin or graphics cursor

y - vertical offset from the graphics origin or graphics cursor

radius - radius of the circle

eccentricity - the ratio between the major and minor axes of an ellipse.

angle - the orientation of the major axis of the ellipse relative to the screen
vertical. The angle must be specified in radians.

example:
i. CIRCLE 50,50,20 {a circle at 50,50 radius 20}
ii. CIRCLE 50,50,20,0.5,0 {an ellipse at 50,50 major axis 20
eccentricity 0.5
and aligned with the vertical axis}
CLEAR

CLEAR will clear out the SuperBASIC variable area for the current program and will
release the space for Qdos.

syntax: CLEAR

example: CLEAR

Comment: CLEAR can be used to restore to a known state the SuperBASIC system. For
example, if a program is broken into (or stops due to an error) while it is in a procedure
then SuperBASIC is still in the

procedure even after the program has stopped. CLEAR will reset the SuperBASIC. {See
CONTINUE, RETRY.}

CLOSE

devices

CLOSE will close the specified channel. Any window associated with the channel will be
deactivated.

syntax: channel:= #numeric_expression
CLOSE channel

example: i. CLOSE #4
ii. CLOSE #input, channel

CLS

windows

Will clear the window attached to the specified or default channel to current PAPER colour,
excluding the border if one has been specified. CLS will accept an optional parameter
which specifies if only a part

of the window must be cleared.

syntax: part:= numeric_expression
CLS [channel,] [part]

where: part = 0 - whole screen (default if no parameter)
part = 1 - top excluding the cursor line
part = 2 - bottom excluding the cursor line
part = 3 - whole of the cursor line
part = 4 - right end of cursor line including the cursor position

example:
i. CLs {the whole window}

ii. CLS 3 {clear the cursor line}
iii. CLS #2,2 {clear the bottom of the window on channel 2}

CODE

CODE is a function which returns the internal code used to represent the specified
character. If a string is specified then CODE will return the internal representation of the
first character of the string.

CODE is the inverse of CHR$.
syntax: CODE (string_expression)
example:

i. PRINT CODE("A") {prints 65}
i. PRINT CODE ("SuperBASIC") {prints 83}

CONTINUE RETRY

error handling

CONTINUE allows a program which has been halted to be continued. RETRY allows a
program statement which has reported an error to be re-executed.

syntax: CONTINUE
RETRY
example: CONTINUE
RETRY
warning:

A program can only continue if:

1. No new lines have been added to the program
2. No new variables have been added to the program
3. No lines have been changed

The value of variables may be set or changed.

COPY COPY_N

devices

COPY will copy a file from an input device to an output device until an end of file marker is
detected. COPY_N will not copy the header (if it exists) associated with a file and will allow
Microdrive files to

be correctly copied to another type of device.

Headers are associated with directory-type devices and should be removed using
COPY_N when copying to non-directory devices, e.g. mdv1 is a directory device; serlis a
non-directory device.

syntax: COPY device TO device
COPY_N device TO device

It must be possible to input from the source device and it must be possible
to output to the destination device.

example:
i. COPY mdvl_data_file TO con_ {copy to default window}

ii. COPY neti_3 TO mdvl_data {copy data from network station
to mdv_data.}

iii. COPY_N mdvl_test data TO serl_ {copy mdvl_test_data to serial
port 1 removing header
information}

COS

maths functions

COS will compute the cosine of the specified argument.

syntax: angle:= numeric_expression {range -10000..10000 in radians}
COS (angle)

example:
i. PRINT COS(theta)
ii. PRINT C0S(3.141592654/2)

COT

maths functions

COT will compute the cotangent of the specified argument.

syntax: angle:= numeric_expression {range -30000..30000 in radians}
COT (angle)

example:

i. PRINT COT (3)
ii. PRINT COT(3.141592654/2)

CSIZE

window

Sets a new character size for the window attached to the specified or default channel. The
standard size is 0,0 in 512 mode and 2,0 in 256 mode.

Width defines the horizontal size of the character space. Height defines the vertical size of
the character space. The character size is adjusted to fill the space available.

Figure A Character Square

width size Height size-
0 6 pixels 0 10 pixels
1 8 pixels 1 20 pixels
2 12 pixels
3 16 pixels
syntax: width:= numeric_expression {range 0..3}

height:= numeric_expression {range 0..11}

CSIZE [channel,]- width, height

example: i.CSIZE 3,0
ii. CSIZE 3,1

CURSOR

windows

CURSOR allows the screen cursor to be positioned anywhere in the window attached to
the specified or default channel.

CURSOR uses the pixel coordinate system relative to the window origin and defines the
position for the top left hand corner of the cursor. The size of the cursor is dependent on
the character size in use.

If CURSOR is used with four parameters then the first pair is interpreted as graphics
coordinates (using the graphics coordinate system) and the second pair as the position of
the cursor (in the

pixel coordinate system) relative to the first point.

This allows diagrams to be annotated relatively easily.

syntax:

example:

X:= numeric_expression
Y:= numeric_expression

CURSOR [channel,] X, ¥ [,X, Y]

i. CURSOR 0,0
ii. CURSOR 20, 30
iii. CURSOR 50,50,10,10

DATA READ RESTORE

BASIC

READ, DATA and RESTORE allow embedded data, contained in a SuperBASIC program,
to be assigned to variables at run time.

DATA is used to mark and define the data, READ accesses the data and assigns it to
variables and RESTORE allows specific data to be selected.

DATA

READ

RESTORE

syntax:

example:

allows data to be defined within a program. The data can be read by a
READ statement and the data assigned to variables. A DATA statement is
ignored by SuperBASIC when it is encountered during normal processing.

syntax: DATA *[expression,]*

reads data contained in DATA statements and assigns it to a list of
variables. Initially the data pointer is set to the first DATA statement in the
program and is incremented after each READ. Re-running the program will
not reset the data pointer and so in general a program should contain an
explicit RESTORE.

An error is reported if a READ is attempted for which there is no DATA.
syntax: READ *[identifier,*

restores the data pointer, i.e. the position from which subsequent READs
will read their data. If RESTORE is followed by a line number then the data
pointer is set to that line. If no parameter is specified then the data pointer

is reset to the start of the program.

RESTORE [line_number]

i. 100 REMark Data statement example
110 DIM weekdays$(7,4)
120 RESTORE

130 FOR count= 1 TO 7 : READ weekdays$ (count)
140 PRINT weekday$

150 DATA "MON","TUE", "WED", "THUR", "FRI"

160 DATA "SAT","SUN"

ii. 100 DIM month$(12,9)
110 RESTORE
120 REMark Data statement example
130 FOR count=1 TO 12 : month$ (count)
140 PRINT month$
150 DATA "January", "February", "March"
160 DATA "April"™,"May","June"
170 DATA "July", "August", "September"
180 DATA "October", "November", "December"

Warning:
An implicit RESTORE is not performed before running a program. This allows a single

program to run with different sets of data. Either include a RESTORE in the program or
perform an explicit RESTORE or CLEAR before running the program.

DATES$ DATE

clock

DATES$ is a function which will return the date and time contained in the QL’s clock. The
format of the string returned by DATES$ is:

"yyyy mmm dd hh:mm:ss"

where: yyyy is the year 1984, 1985, etc
mmm is the month Jan, Feb etc
dd is the day 01 to 28, 29, 30, 31
hh is the hour 00 to 23
mm are the minutes 00 to 59
SS are the seconds 00 to 59

DATE will return the date as a floating point number which can be used to store dates and
times in a compact form.

If DATES$ is used with a numeric parameter then the parameter will be interpreted as a
date in floating point form and will be converted to a date string.

syntax: DATE$ {get the time from the clock)
DATES$ (numeric_expression) {get time from supplied parameter}

example: i. PRINT DATES {output the date and time}
ii. PRINT DATES (234567) {convert 234567 to a date}

DAY$

clock

DAY$ is a function which will return the current day of the week. If a parameter is specified
then DAY$ will interpret the parameter as a date and will return the corresponding day of
the week.

syntax: DAY$ {get day from clock}
DAY$ (numeric_expression) {get day from supplied parameter}
example: i. PRINT DAYS {output the day}
ii. PRINT DAYS$ (234567) {output the day represented by 234567
(seconds)}

DEFine FuNction END DEFine

functions and procedures

DEFine FuNction defines a SuperBASIC function. The sequence of statements between
the DEFine function and the END DEFine constitute the function. The function definition
may also include a list of

formal parameters which will supply data for the function. Both the formal and actual
parameters must be enclosed in brackets. If the function requires no parameters then there
is no need to specify an

empty set of brackets.

Formal parameters take their type and characteristics from the corresponding actual
parameters. The type of data returned by the function is indicated by the type appended to
the function identifier.

The type of the data returned in the RETURN statement must match.

An answer is returned from a function by appending an expression to a RETurn statement.
The type of the returned data is the same as type of this expression.

A function is activated by including its name in a SuperBASIC expression.

Function calls in SuperBASIC can be recursive; that is, a function may call itself directly or
indirectly via a sequence of other calls.

Syntax: formal_parameters= (expression *[, expression]*)
actual_parameters:= (expression *[, expression]*)

type:i= | $
| %
I

DEF FuNction identifier type {formal_parameters}
[LOCal identifier x[, identifier]*]

statements
RETurn expression
END DEFine

RETurn can be at any position within the procedure body. LOCal statements must
preceed the first executable statement in the function.

example:
10 DEFine FuNction mean(a, b, c)
20 LOCal answer
30 LET answer = (a + b + ¢)/3
40 RETurn answer
50 END DEFine
60 PRINT mean(l,2,3)

Comment:
To improve legibility of programs the name of the function can be appended to the END
DEFine statement. However, the name will not be checked by SuperBASIC.

DEFine PROCedure END DEFine

functions and procedures

DEFine PROCedure defines a SuperBASIC procedure. The sequence of statements
between the DEFine PROCedure statement and the END DEFine statement constitutes
the procedure. The procedure definition may also include a list of formal parameters which
will supply data for the

procedure. The formal parameters must be enclosed in brackets for the procedure
definition, but the brackets are not necessary when the procedure is called. If the
procedure requires no parameters then

there is no need to include an empty set of brackets in the procedure definition.

Formal parameters take their type and characteristics from the corresponding actual
parameters.

Variables may be defined to be LOCal to a procedure. Local variables have no effect on
similarly named variables outside the procedure. If required, local arrays should be
dimensioned within the LOCal

statement.

The procedure is called by entering its name as the first item in a SuperBASIC statement
together with a list of actual parameters. Procedure calls in SuperBASIC are recursive that
is, a procedure may call itself directly or indirectly via a sequence of other calls.

It is possible to regard a procedure definition as a command definition in SuperBASIC,;
many of the system commands are themselves defined as procedures.

syntax: formal_parameter:= (expression *[, expression]*)
actual_parameters:= expression *[, expression]*

DEFine PROCedure identifier {forma_parameters}
[LOCal identifier *[, identifier]*]

statements

[RETurn]

END DEFine

RETURN can appear at any position within the procedure body. If present the
LOCal statement must be before the first executable statement in the procedure.
The END DEFine statement will act as an automatic return.

example:
i. 100 DEFine PROCedure start screen
110 WINDOW 100,100,10,10
120 PAPER 7 : INK O : CLS
130 BORDER 4,255
140 PRINT "Hello Everybody"
150 END DEFine
160 start screen

ii. 100 DEFine PROCedure slow scroll(scroll limit)
110 LOCal count
120 FOR count = 1 TO scroll
130 SCROLL 2
140 END FOR count
150 END DEFine
160 slow_scroll 20

Comment:
To improve legibility of programs the name of the procedure can be appended to the END
DEFine statement. However, the name will not be checked by SuperBASIC.

DEG

math functions

DEG is a function which will convert an angle expressed in radians to an angle expressed
in degrees.

syntax: DEG(numeric_expression)

example: PRINT DEG(PI/2) {will print 90}
DELETE

microdrives

DELETE will remove a file from the directory of the cartridge in the specified Microdrive.

syntax: DELETE device
The device specification must be a Microdrive device

Example: i. DELETE mdvl old data
ii. DELETE mdvl letter file

DIM

Arrays

Defines an array to SuperBASIC. String, integer and floating point arrays can be defined.
String arrays handle fixed length strings and the final index is taken to be the string length.

Array indices run from 0 up to the maximum index specified in the DIM statement; thus
DIM will generate an array with one more element in each dimension than is actually
specified.

When an array is specified it is initialised to zero for a numeric array and zero length
strings for a string array.

syntax: index:= numeric_expression
array:= indentifier(index *[, index]*)

DIM array *[, array] *

example: i.DIM string array$(10,10,50)
ii. DIM matrix (100,100)

DIMN

arrays

DIMN is a function which will return the maximum size of a specified dimension of a
specified array. If a dimension is not specified then the first dimension is assumed. If the
specified dimension does not

exist or the identifier is not an array then zero is returned.

Syntax: array:= identifier
index:= numeric_expression {1 for dimension 1, etc.}

DIMN(array [, dimension])
example: consider the array defined by: DIM a (2, 3, 4)

i. PRINT DIMN (A, 1) {will print 2}
ii. PRINT DIMN (A, 2) {will print 3}

iii. PRINT DIMN (A, 3) {will print 4}

iv. PRINT DIMN (A) {will print 2}
V. PRINT DIMN (A, 4) {will print 0}
DIR
Microdrives

DIR will obtain and display in the window attached to the specified or default channel
Microdrives the directory of the cartridge in the specified Microdrive.

Syntax:
DIR device
The device specification must be a valid Microdrive device

The directory format output by DIR is as follows:

free_sectors:= the number of free sectors
available_sectors:= the maximum number of sectors on this cartridge
file_name:= a SuperBASIC file name
screen format: Volume name
free_sectors | available_sectors sectors
file_name
file__name
example: i. DIR mdvl
ii. DIR "mdv2 "

iii. DIR "mdv" & microdrive number$ & " "

screen format: BASIC
183 / 221 sectors
demo_ 1
demo 1 old
demo 2

DIV

operator
DIV is an operator which will perform an integer divide.

syntax: numeric_expression DIV numeric_expression

example: i. PRINT 5 DIV 2 {will output 2}
ii. PRINT -5 DIV 2 {will output -3}

DLINE
BASIC

DLINE will delete a single line or a range of lines from a SuperBASIC program.

syntax: range:= | line_number TO line_number
| line_number TO
| TO line_number
| line_number

A WDNPR

DLINE range*[,range]*

where 1 will delete a range of lines
2 will delete from the specified line to the end
3 will delete from the start to the specified line
4 will delete the specified line

example: . DLINE 10 TO 70, 80, 200 TO 400
{will delete lines 10 to 70 inclusive, line 80 and
lines 200 to 400 inclusive}

ii. DLINE
{will delete nothing}

EDIT

The EDIT command enters the SuperBASIC line editor.

The EDIT command is closely related to the AUTO command, the only difference being in
their defaults. EDIT defaults to a line increment of zero and thus will edit a single line
unless a second parameter is

specified to define a line increment.

If the specified line already exists then the line is displayed and editing can be started. If
the line does not exist then the line number is displayed and the line can be entered.

The cursor can be manipulated within the edit line using the standard QL keystrokes.

cursor right
cursor left

Iﬂ cursor up - same as ENTER but automatically gives previous existing line to
edit next

II] cursor down - same as ENTER but automatically gives next existing line to
edit next

CTRL delete character right
CTRL delete character left
When the line is correct pressing ENTER will enter the line into the program.

If an increment was specified then the next line in the sequence will be edited otherwise
edit will terminate.

syntax: increment:= numeric_expression
EDIT line_number [,increment]

example: . EDIT 10 {edit line 10 only}
i. EDIT 20,10 {editlines 20, 30 etc.}

EOF

Devices

EOF is a function which will determine if an end of file condition has been reached on a
specified channel. If EOF is used without a channel specification then EOF will determine if
the end of a program's embedded data statements has been reached.

syntax: EOF [(channel)]

example: . IF EOF (#6) THEN STOP
i. IF EOF THEN PRINT "Out of data"

EXEC EXEC_W
Qdos

EXEC and EXEC_W will load a sequence of programs and execute them in parallel.

EXEC will return to the command processor after all processes have started execution,
EXEC_W will wait until all the processes have terminated before returning.

syntax: program: =device {used to specify a Microdrive file
containing the program}

EXEC program

example: . EXEC mdvl communcations
il EXEC W mdvl printer process

EXIT

Repetition
EXIT will continue processing after the END of the named FOR or REPeat structure.
syntax: EXIT identifier

example: . 100 REM start Looping

110 LET count = 0

120 REPeat Loop

130 LET count = count +1

140 PRINT count

150 IF count = 20 THEN EXIT Loop

160 END REPeat loop
{the loop will be exited when
count becomes equal to 20}

ii. 100 FOR n =1 TO 1000
110 REM program statements
120 REM program statements
130 IF RND >.5 THEN EXIT n
140 END FOR n
{the loop will be exited when a random
Number greater than 0.5 is generated}

EXP

maths functions
EXP will return the value of e raised to the power of the specified parameter.
syntax: EXP (numeric_expression) {range -500..500}

example: . PRINT EXP (3)
. PRINT EXP(3.141592654)

FILL
graphics

FILL will turn graphics fill on or off. FILL will fill any non-re-entrant shape drawn with the
graphics or turtle graphics procedures as the shape is being drawn. Re-entrant shapes
must be split into smaller non-re-entrant shapes.
When you have finished filling, FILL O should be called.
Syntax: switch:= numeric_expression {range 0..1}

FILL [channel,] switch
example: . FILL 1:LINE 10,10 TO 50,50 TO 30,90 TO 10,10:FILL O

{will draw a filled triangle}

i. FILL 1:CIRCLE 50,50,20:FILL O
{will draw a filled circle}

FILL$

string arrays

FILL$ is a function which will return a string of a specified length filled with a repetition of
one or two characters.

syntax: FILL$ (string_expression, numeric_expression)

The string expression supplied to FILL$ must be either one or two
characters long.

example: i. PRINT FILLS$("a",5) {will print aaaaa}
ii. PRINT FILLS ("oO",7) {will print 0000000}
iii. LET a$ = a$ & FILLS(™ ",10)

FLASH

windows

FLASH turns the flash state on and off. FLASH is only effective in low resolution mode.
FLASH will be effective in the window attached to the specified or default channel.

syntax: switch:= numeric_expression {range 0..1}
FLASH [channel,] switch

where: switch = 0 will turn the flash off
switch = 1 will turn the flash on

example: 100 PRINT "A ";
110 FLASH 1
120 PRINT "flashing ";

130 FLASH O
140 PRINT "word"

Warning:
Writing over part of a flashing character can produce spurious results and should be
avoided.

FOR ENDFOR

repetition

The FOR statement allows a group of SuperBASIC statements to be repeated a controlled
number of times. The FOR statement can be used in both a long and a short form.

NEXT and END FOR can be used together within the same FOR loop to provide a loop
epilogue, i.e. a group of SuperBASIC statements which will not be executed if a loop is
exited via an EXIT statement but which will be executed if the FOR loop terminated
normally.

define: for_item:= | numeric_expression
| numeric_exp TO numeric_exp
| numeric_exp TO numeric_exp STEP numeric_exp

for_list. = for_item *[, for_item] *

SHORT:

The FOR statement is followed on the same logical line by a sequence of SuperBASIC
statements. The sequence of statements is then repeatedly executed under the control of
the FOR statement. When the

FOR statement is exhausted, processing continues on the next line. The FOR statement
does not require its terminating NEXT or END FOR. Single line FOR loops must not be
nested.

syntax: FOR variable = for_list : statement *[: statement]*

example: . FOR i = 1,2,3,4 TO 7 STEP 2 : PRINT i
i FOR element=first TO last:LET buffer (element)=0

LONG:

The FOR statement is the last statement on the line. Subsequent lines contain a series of
SuperBASIC statements terminated by an END FOR statement. The statements enclosed
between the FOR statement and the END FOR are processed under the control of the
FOR statement.

syntax: FOR variable = for_list
Statements
END FOR variable

example: 100 INPUT "data please" x
110 LET factorial =1
120 FOR value = x TO 1 STEP -1
130 LET factorial = factorial * value

140 PRINT x !!!! factorial

150 IF factorial>1E20 THEN

160 PRINT "Very Large number"
170 EXIT value

180 END IF
190 END FOR value

Warning:
A floating point variable must be used to control a FOR loop.

FORMAT

microdrives

FORMAT will format and make ready for use the cartridge contained in the specified
Microdrive.

syntax: FORMAT [channel,] device

Device specifies the Microdrive to be used for formatting and the identifier part of the
specification is used as the medium or volume name for that cartridge. FORMAT will write
the number of good sectors

and the total number of sectors available on the cartridge on the default or on the specified
channel.

It is helpful to format a new cartridge several times before use. This conditions the surface
of the tape and gives greater capacity.

example: . FORMAT mdvl data cartridge
ii. FORMAT mdv2 wp letters

FORMAT can be used to reinitialise a used cartridge. However all data contained on that
cartridge will be lost.

GOSUB

For compatibility with other BASICs, SuperBASIC supports the GOSUB statement.
GOSUB transfers processing to the specified line number; a RETurn statement will
transfer processing back to the statement following GOSUB.

The line number specification can be an expression.

syntax: GOSUB line_number

example: i. GOSUB 100
ii. GOSUB 4*select variable

Comment:
The control structures available in SuperBASIC make the GOSUB statement redundant.

GOTO

For compatibility with other BASICs, SuperBASIC supports the GOTO statement. GOTO
will unconditionally transfer processing to the statement number specified. The statement
number specification can be an expression.

syntax: GOTO line_number
example: . GOTO program

ii. GOTO 9999
comment:

The control structures available in SuperBASIC make the GOTO statement redundant.

IF THEN ELSE END IF

The IF statement allows conditions to be tested and the outcome of that test to control
subsequent program flow.

The IF statement can be used in both a long and a short form:

SHORT:

The THEN keyword is followed on the same logical line by a sequence of SuperBASIC
keyword. This sequence of SuperBASIC statements may contain an ELSE keyword. If the
expression in the IF statement is true (evaluates to be non-zero), then the statements
between the THEN and the ELSE keywords are processed. If the condition is false
(evaluates to be zero) then the statements between the ELSE and the end of the line are
processed.

If the sequence of SuperBASIC statements does not contain an ELSE keyword and if the
expression in the IF statement is true, then the statements between the THEN keyword
and the end of the line are

processed. If the expression is false then processing continues at the next line.

syntax: statements:= statement *[: statement]*
IF expression THEN statements [:ELSE statements]
example: 1. IF a=32 THEN PRINT "Limit" : ELSE PRINT "OK"

ii. IF test >maximum THEN LET maximum = test
iii. IF "1"4+1=2 THEN PRINT "coercion OK"

long 1:

The THEN keyword is the last entry on the logical line. A sequence of SuperBASIC
statements is written following the IF statements. The sequence is terminated by the END
IF statement. The sequence of SuperBASIC statements is executed if the expression
contained in the IF statement evaluates to be non zero. The ELSE keyword and second
sequence of SuperBASIC statements are optional.

long 2:

The THEN keyword is the last entry on the logical line. A sequence of SuperBASIC
statements follows on subsequent lines, terminated by the ELSE keyword. IF the
expression contained in the IF statement evaluates to be non zero then this first sequence
of SuperBASIC statements is processed. After the ELSE keyword a second sequence of
SuperBASIC statements is entered, terminated by the END IF keyword. If the expression
evaluated by the IF statement is zero then this second sequence of SuperBASIC
statements is processed.

syntax: IF expression THEN
Statements
[ELSE
statements]
END IF

example: 100 LET limit = 10
110 INPUT "Type in a number" ! number
120 IF number > limit THEN
130 PRINT "Range error"
140 ELSE
150 PRINT "Inside Limit"
160 END IF

In all three forms of the IF statement the THEN is optional. In the short form it must
comment be replaced by a colon to distinguish the end of the IF and the start of the next
statement. In the long form it

can be removed completely.

IF statements may be nested as deeply as the user requires (subject to available memory).
However, confusion may arise as to which ELSE, END IF etc matches which IF.
SuperBASIC will match nested ELSE statements etc to the closest IF statement, for
example:

100 IF a = b THEN
110 IF ¢ = d THEN

120 PRINT "error"
130 ELSE

140 PRINT "no error"
150 END IF

160 ELSE

170 PRINT "not checked"
180 END IF

The ELSE at line 130 is matched to the second IF. The ELSE at line 160 is matched with
the first IF (at line 100).

INK

windows

This sets the current ink colour, i.e. the colour in which the output is written. INK will
windows be effective for the window attached to the specified or default channel.

syntax: INK [channel,] colour
example: . INK 5

. INK 6,2

iii. INK #2,255
INKEY$

INKEY$ is a function which returns a single character input from either the specified or
default channel.

An optional timeout can be specified which can wait for a specified time before returning,
can return immediately or can wait forever. If no parameter is specified then INKEY$ will
return immediately.

syntax: INKEY$ [[(channel)
|(channel, time)
|(time)]
where: time = 1..32767 {wait for specified number of frames}
time = -1 {wait forever}
time =0 {return immediately}
examples: . PRINT INKEYS {input from the default channel}
. PRINT INKEYS (#4) {input from channel 4}
iii. PRINT INKEYS$ (50) {wait for 50 frames then return
anyway}
iv. PRINT INKEYS (0) {return immediatly (poll the
keyboard)}
V. PRINT INKEYS (#3,100) {wait for 100 frames for an input from
channel 3 then return anyway}
INPUT

INPUT allows data to be entered into a SuperBASIC program directly from the QL
keyboard by the user. SuperBASIC halts the program until the specified amount of data
has been input; the program will then continue. Each item of data must be terminated by
the ENTER key.

INPUT will input data from either the specified or the default channel.

If input is required from a particular console channel the cursor for the window connected
to that channel will appear and start to flash.

syntax: separator:= |!
[
I\
I
| TO
prompt:= [channel,] expression separator
INPUT [prompt] [channel] variable *[,variable]*
example: . INPUT ("Last guess "& guess & "New guess?") ! guess

ii. INPUT "What is your guess?"; guess

iii. 100 INPUT "array size?" ! Limit
110 DIM array(limit-1)
120 FOR element = 0 to Limit-1
130 INPUT ("data for element" & element)
array (element)
140 END FOR element
150 PRINT array

INSTR

Operator

INSTR is an operator which will determine if a given substring is contained within a
specified string. If the string is found then the substring's position is returned. If the string is
not found then INSTR returns zero.

Zero can be interpreted as false, i.e. the substring was not contained in the given string. A
non zero value, the substrings position, can be intepreted as true, i.e. the substring was
contained in the specified

string.
syntax: string_expression INSTR string expression
example: . PRINT "a" INSTR "cat" {will print 2}

. PRINT "CAT" INSTR "concatenate" {will print 4}
iii. PRINT "x" INSTR "eggs" {will print 0}

INT

maths functions
INT will return the integer part of the specified floating point expression.
syntax: INT (numeric_expression)

example: . PRINT INT (X)
ii. PRINT INT (3.141592654/2)

KEYROW

KEYROW is a function which looks at the instantaneous state of a row of keys (the table
below shows how the keys are mapped onto a matrix of 8 rows by 8 columns). KEYROW
takes one parameter, which must be an integer in the range 0 to 7: this number selects
which row is to be looked at. The value returned by KEYROW is an integer between 0 and
255 which gives a binary representation indicating which keys have been depressed in the
selected row.

Since KEYROW is used as an alternative to the normal keyboard input mechanism using
INKEY$ or INPUT, any character in the keyboard type-ahead buffer are cleared by
KEYROW: thus key depressions which have been made before a call to KEYROW will not
be read by a subsequent INKEY$ or INPUT.

Note that multiple key depressions can cause surprising results. In particular, if three keys
at the corner of a rectangle in the matrix are depressed simultaneously, it will appear as if
the key at the fourth corner has also been depressed. The three special keys CTRL,
SHIFT and ALT are an exception to this rule, and do not interact with other keys in this
way.

syntax: row:= numeric_expression {range 0..7}
KEYROW (row)

example: 100 REMark run this program and press a few keys
110 REPeat loop
120 CURSOR 0,0
130 FOR row = 0 to 7
140 PRINT row !!! KEYROW (row) ;" "
150 END FOR row
160 END REPeat Loop

KEYBOARD MATRIX

COLUMN

ROW 1 2 4 8 16 32 64 128

7 SHIFT CTRL ALT X \% / N

6 8 2 6 Q E 0 T U
5 9 W TAB R - Y O
4 L 3 H 1 A P D J
sl el s e -] e]
2 | z C B £ M ~
1 ENTER — 1 ESC - \ SPACE !
0 F4 F1 5 F2 F3 F5 4 7

LBYTES

devices

microdrives

LBYTES will load a data file into memory at the specified start address.

syntax:

example:

LEN

start_address:= numeric_expression

LBYTES device, startaddress

string arrays

LBYTES mdvl screen, 131072

{load a screen image}
LBYTES mdvl program, start address

{load a program at a specified address}

LEN is a function which will return the length of the specified string expression.

syntax:

example:

LEN (string_expression)

PRINT LEN("LEN will find the length of this string")
PRINT LEN (output string$)

LET

LET starts a SuperBASIC assignment statement. The use of the LET keyword is optional.
The assignment may be used for both string and numeric assignments. SuperBASIC wiill
automatically convert unsuitable data types to a suitable form wherever possible.

syntax: [LET] variable = expression
example: . LET a = 1 + 2
ii. LET a$ = "12345"
iii. LET a$ = 6789
iv. b$ = test data
LINE LINE_R
Graphics

LINE allows a straight line to be drawn between two points in the window attached to the
default or specified channel. The ends of the line are specified using the graphics
coordinate system.

Multiple lines can be drawn with a single LINE command.

The normal specification requires specifying the two end points for a line. These end points
can be specified either in absolute coordinates (relative to the graphics origin) or in relative
coordinates (relative

to the graphics cursor). If the first point is omitted then a line is drawn from the graphics
cursor to the specified point. If the second point is omitted then the graphics cursor is
moved but no line is drawn.

LINE will always draw with absolute coordinates, i.e. relative to the graphics origin, while
LINE_R will always draw relative to the graphics cursor.

syntax: X:= numeric_expression
y:= numeric_expression
point:= X,y
parameter_2:= | TO point (1)
| ,point XO point (2)
parameter_1:= | TO point, angle Q)
| TO point (2)
| point 3)

LINE [channel,] parameter_1 *[, parameter_2]*
LINE_R [channel,] parameter_1 *[,parameter_2]*

where (1) will draw from the specified point to the next specified point
(2) will draw from the the last point plotted to the specified point

(3) will move to the specified point - no line will be drawn

example; i. LINE 0,0 TO 0,50 TO 50,0 TO 50,0 TO {a square}
0,0
ii. LINE TO 0.75, 0.5 {a line}
iii.LINE 25,25 {move the graphics
cursor}
LIST

LIST allows a SuperBASIC line or group of lines to be listed on a specific or default
channel.

LIST is terminated by [CTRL | | SPACE |
syntax: line:= | line_number TO line_number Q)

| line_number TO (2)

| TO line_number 3)

| line_number (4)

I ®)

LIST [channel,] line*[,line]*

Where
(2) will list from the specified line to the specified line
(2) will list from the specified line to the end
(3) will list from the start to the specified line
(4) will list the specified line
(5) will list the whole program

Example: 1. LIST {list all lines}
i. LIST 10 TO 300 {list lines 10 to 300}
iii. LIST 12,20,50 {list lines 12,20 and 50 only}

If LIST output is directed to a channel opened as a printer channel then LIST will provide
hard copy.

LOAD

devices
Microdrives

LOAD will load a SuperBASIC program from any QL device. LOAD automatically performs
a NEW before loading another program, and so any previously loaded program will be
cleared by LOAD.

If a line input during a load has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line. Upon execution, a line of this
sort will generate an error.

Syntax: LOAD device

example: . LOAD "mdvl test program"
ii. LOAD mdvl guess
iii. LOAD neti 3
iv. LOAD serl e

LN LOG10

maths functions

LN will return the natural logarithm of the specified argument. LOG10 will return the
common logarithm. There is no upper limit on the parameter other than the maximum
number the computer can store.

syntax: LOG10 (numenic_expression) {range greater than zero}
LN (numeric_expression) {range greater than zero}
example: . PRINT LOG10 (20)

ii. PRINT LN (3.141592654)

LOCal

functions and procedures

LOCal allows identifiers to be defined to be LOCal to a function or procedure. Local
identifiers only exist within the function or procedure in which they are defined, or in
procedures and functions called from the function or procedure in which they are defined.
They are lost when the function or procedure terminates. Local identifiers are independent
of similarly named identifiers outside the defining function or procedure. Arrays can be
defined to be local by dimensioning them within the LOCal statement.

The LOCal statement must precede the first executable statement in the function or
procedure in which it is used.

syntax: LOCal identifier *[, identifier]*

example: . Local a,b,c(10,10)
ii. LOCal temp data

comment:

Defining variables to be LOCal allows variable names to be used within functions and
procedures without corrupting meaningful variables of the same name outside the function
or procedure.

LRUN

devices
Microdrives

LRUN will load and run a SuperBASIC program from a specified device. LRUN wiill
perform NEW before loading another program and so any previously stored SuperBASIC
program will be cleared by LRUN.

If a line input during a loading has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line. Upon execution, a line of this
sort will generate an error.

syntax: LRUN device

example: i. LRUN mdv2 TEST
ii. LRUN mdvl game

MERGE

devices
Microdrives

MERGE will load a file from the specified device and interpret it as a SuperBASIC
program. If the new file contains a line number which doesn't appear in the program
already in the QL then the line will be

added. If the new file contains a replacement line for one that already exists then the line
will be replaced. All other old program lines are left undisturbed.

If a line input during a MERGE has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line. Upon execution, a line of this
sort will generate an error.

syntax: MERGE device

example: i MERGE mdvl overlay program
ii. MERGE mdvl new data

MOD

operators

MOD is an operator which gives the modulus, or remainder; when one integer is divided by
another.

syntax: numeric_expression MOD numeric_expression

example: . PRINT 5 MOD 2 {will print 1}
ii. PRINT 5 MOD 3 {will print 2}

MODE

screen
MODE sets the resolution of the screen and the number of solid colours which it can
display. MODE will clear all windows currently on the screen, but will preserve their
position and shape. Changing to low

resolution mode (8 colour) will set the minimum character size to 2,0.

syntax: MODE numeric_expression

where: 8 or 256 will select low resolution mode
4 or 512 will select high resolution mode

example: . MODE 256
il. MODE 4

MOVE

turtle graphics

MOVE will move the graphics turtle in the window attached to the default or specified
channel a specified distance in the current direction. The direction can be specified using
the TURN and TURNTO commands. The graphics scale factor is used in determining how
far the turtle actually moves. Specifying a negative distance will move the turtle backwards.
The turtle is moved in the window attached to the specified or default channel.

syntax: distance:= numeric_expression

MOVE [channel,] distance

example: . MOVE #2,20 {move the turtle in channel 2 20 units forwards}
ii. MOVE -50 {move the turtle in the default channel 50 units
backwards}
MRUN
devices
Microdrives

MRUN will interpret a file as a SuperBASIC program and merge it with the currently loaded
program.

If used as direct command MRUN will run the new program from the start. If used as a
program statement MRUN will continue processing on the line following MRUN.

If a line input during a merge has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line. Upon execution, a line of this
sort will generate an error.

syntax: MRUN device

example: . MRUN mdvl chain program
ii. MRUN mdvl new data

NET

network

NET allows the network station number to be set. If a station number is not explicitly set
then the QL assumes station number 1.

syntax: station:= numeric_expression {range 1..127}
NET station

example: . NET 63
i. NET 1

comment

Confusion may arise if more than one station on the network has the same station number:

NEW

NEW will clear out the old program, variables and channels other than 0,1 and 2.
syntax: NEW

example: NEW

NEXT

repetition
NEXT is used to terminate, or create a loop epilogue in REPeat and FOR loops.
syntax: NEXT identifier

The identifier must match that of the loop which the NEXT is to control

example:

i 10 REMark this loop must repeat forever
11 REPeat infinite loop
12 PRINT "sti LI looping"
13 NEXT infinite loop

ii. 10 REMark this loop will repeat 20 times
11 LET limit = 20
12 FOR index=1 TO Limit
13 PRINT index
14 NEXT index

iii. 10 REMark this Loop will tell you when a 30 is found
11 REPeat Loop
12 LET number = RND(1 TO 100)
13 IF number = 30 THEN NEXT Loop
14 PRINT number; " is 30"
15 EXIT LOOP
16 END REPeat loop

If NEXT is used inside a REPeat - END REPeat construct it will force processing to
continue at the statement following the matching REPeat statement.

The NEXT statement can be used to repeat the FOR loop with the control variable set at
its next value. If the FOR loop is exhausted then processing will continue at the statement
following the NEXT;

otherwise processing will continue at the statement after the FOR.

ON...GOTO ON...GOSUB

To provide compatibility with other BASICs, SuperBASIC supports the ON GOTO and ON
GOSUB statements. These statements allow a variable to select from a list of possible line
numbers a line to process in a GOTO or GOSUB statement. If too few line humbers are
specified in the list then an error is generated.

syntax: ON variable GOTO expression *[, expression]*
ON variable GOSUB expression *[, expression]*

example: i ON x GOTO 10, 20, 30, 40
ii. ON select variable GOSUB 1000,2000,3000,4000

comment:
SELect can be used to replace these two BASIC commands.

OPEN OPEN_IN OPEN_NEW

devices
Microdrives

OPEN allows the user to link a logical channel to a physical QL device for I/O purposes.

If the channel is to a Microdrive then the Microdrive file can be an existing file or a new file.
In which case OPEN_IN will open an already existing Microdrive file for input and
OPEN_NEW will create a new Microdrive file for output.

syntax: channel:= # numeric_expression
OPEN channel, device
example: i OPEN #5, f name$

ii. OPEN_IN #9,"mdvl filename"
{open file mdv1_file_name}

iil. OPEN NEW #7,mdvl datafile
{open file mdvl_datafile}

iv. OPEN #6,con_ 10x20a20x20 32
{Open channel 6 to the console device creating a window size 10x20
pixels at position 20,20 with a 32 byte keyboard type ahead buffer.}

V. OPEN #8,mdvl read write file.

OVER

windows

OVER selects the type of over printing required in the window attached to the specified or
default channel. The selected type remains in effect until the next use of OVER.

syntax: switch:= numeric_expression {range -1..1}
OVER [channel,] switch

Where switch = 0 - print ink on strip
switch = 1 - print in ink on transparent strip
switch = -1 - XORs the data on the screen

example: . OVER 1 {set "overprinting")
ii. 10 REMark Shadow Writing
11 PAPER 7 : INK O : OVER 1 : CLS
12 CSIZE 3,1
13 FOR 1 = 0 TO 10
14 CURSOR i, 1
15 IF i = 10 THEN INK 2
16 PRINT "Shadow"

17 END FOR 1i

PAN

windows

PAN the entire current window the specified number of pixels to the left or the right.
PAPER is scrolled in to fill the clear area.

An optional second parameter can be specified which will allow only part of the screen to
be panned.

syntax: distance:= numeric_expression
part:= numeric_expression

PAN [channel,] distance [, part]
where part = 0 - whole screen (or no parameter)
part = 3 - whole of the cursor line

part = 4 - right end of cursor line including the cursor position

If the expression evaluates to a positive value then the contents of the
screen will be shifted to the right.

example: . PAN #2,50 {pan left 50 pixels}
ii. PAN -100 {pan right 100 pixels}
iii. PAN 50,3 {pan the whole of the current cursor line 50
pixels to the right}
warning:

If stipples are being used or the screen is in low resolution mode then, to maintain the
stipple pattern, the screen must be panned in multiples of two pixels.

PAPER

windows

PAPER sets a new paper colour (i.e. the colour which will be used by CLS, PAN,
SCROLL, etc). The selected paper colour remains in effect until the next use of PAPER.
PAPER will also set the STRIP colour

PAPER will change the paper colour in the window attached to the specified or default
channel.

syntax: PAPER [channel,] colour

example: i. PAPER #3,7 {White paper on channel

3}
ii. PAPER 7,2 {White and red stipple}

iii. PAPER 255 {Black and white stipple}

iv. 10 REMark Show colours and stipples
11 FOR colour = 0 TO 7
12 FOR contrast = 0 TO 7

13 FOR stipple = 0 TO 3

14 PAPER colour, contrast,
stipple

15 SCROLL 6

16 END FOR stipple

17 END FOR cent rest
18 END FOR colour
{not suitable for televisions}

PAUSE

PAUSE will cause a program to wait a specified period of time delays are specified in units
of 20ms in the UK only, otherwise 16.67ms. If no delay is specified then the program will
pause indefinitely. Keyboard input will terminate the PAUSE and restart program
execution.

syntax: delay:= numeric_expression
PAUSE [delay]

example: . PAUSE 50 {wait 1 second}
ii. PAUSE 500 {wait 10 seconds}

PEEK PEEK_ W PEEK_L
BASIC

PEEK is a function which returns the contents of the specified memory location. PEEK has
three forms which will access a byte (8 bits), a word (16 bits), or a long word (32 bits).

syntax: address:= numeric_expression

PEEK (address) {byte access}
PEEK_W(address) {word access}
PEEK_L (address) {long word access}

example: . PRINT PEEK (12245) {byte contents of location 12245}
ii. PRINT PEEK W(12) {word contents of locations 12 and 13}
iii. PRINT PEEK L(1000) {long word contents of location 1000}

Warning:
For word and long word access the specified address must be an even address.

PENUP PENDOWN

turtle graphics

Operates the 'pen' in turtle graphics. If the pen is up then nothing will be drawn. If the pen
is down then lines will be drawn as the turtle moves across the screen.

The line will be drawn in the window attached to the specified or default channel. The line
will be drawn in the current ink colour for the channel to which the output is directed.

syntax: PENUP [channel]
PENDOWN [channel]

example: i PENUP {will raise the pen in the default channel}
ii. PENDOWN #2 {will lower the pen in the window attached to channel
2}
PI

maths function
Pl is a function which returns the value of x.
syntax: PI

example: PRINT PI

POINT POINT_R

graphics

POINT plots a point at the specified position in the window attached to the specified or
default channel. The point is plotted using the graphics coordinates system relative to the
graphics origin. If POINT_R is used then all points are specified relative to the graphics
cursor and are plotted relative to each other.

Multiple points can be plotted with a single call to POINT.

Syntax: X:=numeric_expression
y:=numeric_expression

parameters:= X,y

POINT [channel,] parameters* [,parameters]*

example: . POINT 256,128 {plot a point at (256,128)}
. POINT x,x*x {plot a point at (x,x*x)}

iii. 10 REPeat example
20 INK RND(255)
30 POINT RND(100),RND(100)
40 END REPeat example

POKE POKE_W POKE_L

BASIC
POKE allows a memory location to be changed. For word and long word accesses the
specified address must be an even address.

POKE has three forms which will access a byte (8 bits), a word (16 bits), a long word (32
bits).

syntax: address:= numeric_expression
data:= numeric_expression

POKE address, data {byte access}

POKE_W address, data {word access}

POKE_L address, data {long word access}
example: . POKE 12235,0 {set byte at 12235 to 0}

ii. POKE L 131072,12345 {set long word at 131072 to 12345}
Warning:

Poking data into areas of memory used by Qdos can cause the system to crash and data
to be lost. Poking into such areas is not recommended.

PRINT

devices
Microdrives

Allows output to be sent to the specified or default channel. The normal use of PRINT is to
send data to the QL screen.

Syntax: separator:=

I
I
I
I
I

TO numeric_expression

item:= | expression
| channel
| separator

PRINT *[item]*

Multiple print separators are allowed. At least one separator must
separate channel specifications and expressions.

Example: i PRINT "Hello World"

{will output Hello World on the default output device (channel 1)}
ii. PRINT #5,"data",1,2,3,4

{will output the supplied data to channel 5 (which must have been

previously opened)}

iii. PRINT TO 20; "This is in column 20"

separators

TO

RAD

Normal action is to insert a space between items output on the screen. If the item
will not fit on the current line a line feed will be generated. If the current print
position is at the start of a line then a space will not be output. ! affects the next
item to be printed and therefore must be placed in front of the print item being
printed. Also a ; or a ! must be placed at the end of a print list if the spacing is to be
continued over a series of PRINT statements.

Normal separator, SuperBASIC will tabulate output every 8 columns.
Will force a new line.

Will leave the print position immediately after the last item to be printed. Output will
be printed in one continuous stream.

Will perform a tabbing operation. TO followed by a numeric_expression will
advance the print position to the column specified by the numeric_expression. If the
requested column is meaningless or the current print position is beyond the
specified position then no action will be taken.

maths functions

RAD is a function which will convert an angle specified in degrees to an angle specified in
radians.

syntax:

RAD (numeric_expression)

example: PRINT RAD (180) {will print 3.141593}

RANDOMISE

maths functions

RANDOMISE allows the random number generator to be reseeded. If a parameter is
specified the parameter is taken to be the new seed. If no parameter is specified then the
generator is reseeded from internal information.

syntax: RANDOMISE [numeric_expression]

example: . RANDOMISE {set seed to internal data}
. RANDOMISE 3.2235 {set seed to 3.2235}

RECOL

windows

RECOL will recolour individual pixels in the window attached to the specified or default
channel according to some preset pattern. Each parameter is assumed to specify, in order,
the colour in which each pixel is recoloured, i.e. the first parameter specifies the colour with
which to recolour all black pixels, the second parameter blue pixels, etc.

The colour specification must be a solid colour, i.e. it must be in the range 0 to 7.

syntax: ¢0:= new colour for black
cl:= new colour for blue
c2:= new colour for red
¢3:= new colour for magenta
c4:= new colour for green
¢5:= new colour for cyan
¢6:= new colour for yellow
c7:= new colour for white

RECOL [channel,] cO, cl, c2, c3, c4, c5, ¢c6, c7

example: RECOL 2,3,4,5,6,7,1,0 {recolour blue to magenta, red to
green, magenta to cyan etc.}

REMark

REMark allows explanatory text to be inserted into a program. The remainder of the line is
ignored by SuperBASIC.

syntax: REMark text

example: REMark This is a comment in a program

comment:

REMark is used to add comments to a program to aid clarity.

RENUM

RENUM allows a group or a series of groups of SuperBASIC line numbers to be changed.
If no parameters are specified then RENUM will renumber the entire program. The new
listing will begin at line 100 and proceed in steps of 10.

If a start line is specified then line numbers prior to the start line will be unchanged. If an
end line is specified then line numbers following the end line will be unchanged.

If a start number and stop are specified then the lines to be renumbered will be numbered
from the start number and proceed in steps of the specified size.

If a GOTO or GOSUB statement contains an expression starting with a number then this
number is treated as a line number and is renumbered.

syntax: startline:= numeric_expression {start renumber}
end_line:= numeric_expression {stop renumber}
start_number:= numeric_expression {base line number}
step:= numeric_expression {step}

RENUM ([start_line [TO end_line];] [startnumber] [,step]

example: . RENUM {renumber whole program from 100 by 10}
ii. RENUM 100 TO 200 {renumber from 100 to 200 by 10}

Comment:

No attempt must be made to use RENUM to renumber program lines out of sequence, i.e.
to move lines about the program. RENUM should not be used in a program.

REPeat END REPeat

repetition

REPeat allows general repeat loops to be constructed. REPeat should be used with EXIT
for maximum effect. REPeat can be used in both long and short forms:

short:
The REPEAT keyword and loop identifer are followed on the same logical line by a colon

and a sequence of SuperBASIC statements. EXIT will resume normal processing at the
next logical line.

syntax: REPeat identifier : statements
example: REPeat wait : IF INKEY$ = "" THEN EXIT wait
long:

The REPEAT keyword and the loop identifier are the only statements on the logical line.
Subsequent lines contain a series of SuperBASIC statements terminated by an END
REPeat statement.

The statements between the REPeat and the END REPeat are repeatedly processed by
SuperBASIC.

syntax: REPeat identifier
Statements
END REPeat identifier

example: 10 LET number = RND(1 TO 50)
11 REPeat guess
12 INPUT "What is your guess?", guess
13 IF guess = number THEN

14 PRINT "You have guessed correctly"
15 EXIT guess

16 ELSE

17 PRINT "You have guessed incorrectly"
18 END IF

19 END REPeat guess
Comment:

Normally at least one statement in a REPeat loop will be an EXIT statement.

RESPR
Qdos

RESPR is a function which will reserve some of the resident procedure space. (For
example to expand the SuperBASIC procedure list.)

syntax: space:= numeric_expression
RESPR (space)

example: PRINT RESPR(1024)
{will print the base address of a 1024 byte block}

RETurn

functions and procedures

RETurn is used to force a function or procedure to terminate and resume processing at the
statement after the procedure or function call. When used within a function definition them
RETurn statement is

used to return the function's value.

syntax: RETurn [expression]

example: i. 100 PRINT ack (3,3)
110 DEFine FuNction ack (m,n)
120 IF m=0 THEN RETurn n+1
130 IF n=0 THEN RETurn ack(m-1,1)
140 RETurn ack (m-1,ack(m,n-1))
150 END DEFine

i. 10 LET warning flag =1
11 LET error number = RND(0 TO 10)
12 warning error number
13 DEFine PROCedure warning (n)
14 IF warning flag THEN

15 PRINT "WARNING:";

16 SELect ON n

17 ON n =1

18 PRINT "Microdrive full"
19 ON n = 2

20 PRINT "Data space full"
21 ON n = REMAINDER

22 PRINT "Program error"
23 END SELect

24 ELSE

25 RETurn

26 END IF
27 END DEFine

comment

It is not compulsory to have a RETurn in a procedure. If processing reaches the END
DEFine of a procedure then the procedure will return automatically.

RETurn by itself is used to return from a GOSUB.

RND

maths function

RND generates a random number. Up to two parameters may be specified for RND. If no
parameters are specified then RND returns a pseudo random floating point number in the
exclusive range O to 1. If a

single parameter is specified then RND returns an integer in the inclusive range 0 to the
specified parameter. If two parameters are specified then RND returns an integer in the
inclusive range specified

by the two parameters.

syntax: RND([numeric_expression] [TO numeric_expression])

example: i. PRINT RND {floating point number between 0 and 1}
ii. PRINT RND(10 TO 20) ({integer between 10 and 20}
jii. PRINT RND(1 TO 6) {integer between 1 and 6}
iv. PRINT RND(10) {integer between 0 and 10}

RUN

program

RUN allows a SuperBASIC program to be started. If a line number is specified in the RUN
command then the program will be started at that point, otherwise the program will start at
the lowest line number.

syntax: RUN [numeric_expression]
example: i. RUN {run from start}
i. RUN 10 {run from line 10}

iii. RUN 2*20 {run from line 40}
Comment:

Although RUN can be used within a program its normal use is to start program execution
by typing it in as a direct command.

SAVE

devices
Microdrives

SAVE will save a SuperBASIC program onto any QL device.

syntax: line:= | numeric_expression TO numeric_expression Q)
| numeric_expression TO (2)
| TO numeric_expression 3)
| numeric_expression 4)
I)

SAVE device *[,line]*

Where (1) will save from the specified line to the specified line
(2) will save from the specified line to the end

(3) will save from the start to the specified line
(4) will save the specified line
(5) will save the whole program

example: . SAVE mdvl program,20 TO 70
{save lines 20 to 70 on mdv1l_ program}

ii. SAVE mdv2 test program,10,20,40
{save lines 10,20,40 on mdv1l_test program}

iii. SAVE net3
{save the entire program on the network}

iv. SAVE serl
{save the entire program on serial channel }

SBYTES

devices
Microdrives

SBYTES allows areas of the QL memory to be saved on a QL device

syntax: start_address:= numeric_expression
length:= numeric_expression

SBYTES device, start_address, length

example: i SBYTES mdvl screendata,131072,32768
{save memory 50000 length 10000 bytes on mdv1_test_program}

ii. SBYTES mdvl test program,50000,10000
{save memory 50000 length 1000 bytes on mdvl_test program}

iii. SBYTES neto_ 3,32768,32678
{save memory 32768 length 32768 bytes on the network}

iv. SBYTES serl,0,32768
{save memory 0 length 32768 bytes on serial channel 1}

SCALE
graphics

SCALE allows the scale factor used by the graphics procedures to be altered. A scale of 'x'
implies that a vertical line of length 'x' will fill the vertical axis of the window in which the

figure is drawn. A scale of 100 is the default. SCALE also allows the origin of the

coordinate system to be specified. This effectively allows the window being used for the
graphics to be moved around a much larger graphics space.

syntax: X:=numeric_expression
y:=numeric_expression

origin:=x,y
scale:= numeric_expression

SCALE [channel,] scale, origin

example: . SCALE 0.5,0.1,0.1 {setscale to 0.5 with the origin at 0.1,0.1}
ii. SCALE 10,0,0 {set scale to 10 with the origin at 0,0}
ii. SCALE 100,50,50 {set scale to 100 with the origin at 50,50}
SCROLL
windows

SCROLL scrolls the window attached to the specified or default channel up or down by the
given number of pixels. Paper is scrolled in at the top or the bottom to fill the clear space.

An optional third parameter can be specified to obtain a part screen scroll.

syntax: part:= numeric_expression
distance: numeric_expression

where part = 0 - whole screen (default is no parameter)
part = 1 - top excluding the cursor line
part = 2 - bottom excluding the cursor line
SCROLL [channel,] distance [, part]
If the distance is positive then the contents of the screen will be shifted down.
example: . SCROLL 10 {scroll down 10 pixels}

i. SCROLL -70 {scroll up 70 pixels}
iii. SCROLL -10,2 {scroll the lower part of the window up 10 pixels}

SDATE

clock
The SDATE command allows the QCs clock to be reset.

syntax: year:= numeric_expression
month:= numeric_expression

day:= numeric_expression
hours:= numeric_express,on
minutes:= numeric_expression
seconds:= numeric_expression

SDATE year, month, day, hours, minutes, seconds
example: . SDATE 1984,4,2,0,0,0

ii. SDATE 1984,1,12,9,30,0
iii. SDATE 1984,3,21,0,0,0

SELect END SELect

conditions

SELect allows various courses of action to be taken depending on the value of a variable.

define: select_variable:= numeric_variable
select_item:= | expression
| expression TO expression
select_list:= | select_item *[, select_item]*
long:

Allows multiple actions to be selected depending on the value of a select_variable. The
select variable is the last item on the logical line. A series of SuperBASIC statements
follows, which is terminated by the next ON statement or by the END SELect statement. If
the select item is an expression then a check is made within approximately 1 part in 107,
otherwise for expression TO expression the range is tested exactly and is inclusive. The
ON REMAINDER statement allows a, "catch-all"* which will respond if no other select
conditions are satisfied.

syntax: SELect ON select_variable
*[[ON select_variable] = select_list
statements] *
[ON selectvariable] = REMAINDER
Statements
END SELect

example: 100 LET error number = RND(1 TO 10)
110 SELect ON error number

120 ON error number =1

130 PRINT "Divide by zero"
140 LET error number = 0
150 ON error number = 2

160 PRINT "File not found"
170 LET error number = 0

180 ON error number = 3 TO 5

190 PRINT "Microdrive file not found"

200 LET error number = 0
210 ON error number = REMAINDER
220 PRINT "Unknown error"

230 END SELect

If the select variable is used in the body of the SELect
statement then it must match the select variable given in the
select header.

short:

The short form of the SELect statement allows simple single line selections to be made. A
sequence of SuperBASIC statements follows on the same logical line as the SELect
statement. If the condition defined in the select statement is satisfied then the sequence of
SuperBASIC statements is processed.

syntax: SELect ON select_variable = select_list : statement *[:statement] *
example: i. SELect ON test data =1 TO 10 : PRINT "Answer within
range"

ii. SELect ON answer = 0.00001 TO 0.00005 : PRINT
"Accuracy OK"
iii. SELect ON a =1 TO 10 : PRINT a ! "in range"
comment:

The short form of the SELect statement allows ranges to be tested more easily than with
an IF statement. Compare example ii. above with the corresponding IF statement.

SEXEC
Qdos

Will save an area of memory in a form which is suitable for loading and executing with the
EXEC command.

The data saved should constitute a machine code program.

syntax: start_address:= numeric_expression {start of area}
length:= numeric_expression {length of area}
data_space:= numeric_expression {length of data area which will

be required by the program}
SEXEC device, start_address, length, data_space

example: SEXEC mdvl program,262144,3000,500

comment:

The Qdos system documentation should be read before attempting to use this command.

SIN

maths function

SIN will compute the sine of the specified parameter.

syntax: angle:= numeric_expression {range -10000..10000 in radians}
SIN(angle)
example: . PRINT SIN(3)

ii. PRINT SIN(3.141592654/2)

SQRT

maths function

SQRT will compute the square root of the specified argument. The argument must be
greater maths functions than or equal to zero.

syntax: SOQRT {range >= 0}
(numeric_expression)
example: i. PRINT SQRT(3) {print square root of 3}
i. LET C = {let c become equal to the square root of
SQRT (a”2+b"2) ar2 + b"2}
STOP
BASIC

STOP will terminate execution of a program and will return SuperBASIC to the command
interpreter.

syntax: STOP

example: i. STOP
iii IF n = 100 THEN STOP

You may CONTINUE after STOP.
comment:

The last executable line of a program will act as an automatic stop.

STRIP

windows

STRIP will set the current strip colour in the window attached to the specified or default
channel. The strip colour is the background colour which is used when OVER 1 is
selected. Setting PAPER will automatically set the strip colour to the new PAPER colour.

syntax: STRIP [channel,] colour
example: i. STRIP 7 {set a white strip}

ii. STRIP 0,4,2 {set a black and green stipple strip}
Comment:

The effect of STRIP is rather like using a highlighting pen.

TAN

maths functions

TAN will compute the tangent of the specified argument. The argument must be in the
range -30000 to 30000 and must be specified in radians.

syntax: TAN (numeric_expression) {range -30000..30000}

example: i. TAN(3) {print tan 3}
ii. TAN(3.141592654/2) {printtan PI/2}

TURN TURNTO

turtle graphics

TURN allows the heading of the 'turtle’' to be turned through a specified angle while
TURNTO allows the turtle to be turned to a specific heading.

The turtle is turned in the window attached to the specified or default channel.

The angle is specified in degrees. A positive number of degrees will turn the turtle anti-
clockwise and a negative number will turn it clockwise. Initially the turtle is pointing at O
degrees, that is, to the right hand side of the window.

syntax: angle:= numeric_expression {angle in degrees}

TURN [channel,] angle
TURNTO [channel,] angle

example: i. TURN 90 {turn through 90 degrees}
i. TURNTO O {turn to heading O degrees}

UNDER

windows

Turns underline either on or off for subsequent output lines. Underlining is in the current
INK colour in the window attached to the specified or default channel.

syntax: switch:= numeric_expression {range 0..1}
UNDER [channel,] switch

example: i. UNDER 1 {underlining on}
ii. UNDER O {underlining off}

WIDTH

windows

WIDTH allows the default width for non-console based devices to be specified, for example
printers.

syntax: line_width:= numeric_expression
WIDTH [channel,] line_width

example: . WIDTH 80 {set the device width to 80}
ii. WIDTH #6,72 {set the width of the device attached to
channel 6 to 72}

WINDOW

windows

Allows the user to change the position and size of the window attached to the specified or
default channel. Any borders are removed when the window is redefined. Coordinates are
specified using the pixel system relative to the screen origin.

syntax: width:= numeric_expression
depth:= numeric_expression
X:=numeric_expression
y:=numeric_expression
WINDOW [channel,] width, depth, x, y

example: WINDOW 30, 40, 10, 10 {window 30x40 pixels at 10,10}

