68K/OS

Chris Bidmead examines a multi-tasking OS for the 68000 cpu, now available on the Sinclair QL

68K/OS was originally commissioned by
Sinclair as the production operating
system for the QL, and when the Sinclair
machine was launched in January last
year it was 68K/os that was shown to the
press. At that stage QDOS, which was
supplied with the machine to paying
customers, was something Sinclair began
getting together in-house when it became
clear that 68K/OS was not going to leave
room for Superbasic. ironically, QDOS
also got too big, and the first production
machines were sent out with the notorius
extra protruding ROM pack.

GST’s product is now marketed as the
alternative operating system for the QL.
It is aimed at the advanced home user
who wants to do a lot of machine-code
hacking and write personalised utilities in
high- level languages when they come on
stream later. For the student of computer
science, too, GST’s 68K/OS will provide
a low- cost experimentation system to
support course work. It is also designed
for the small independent software
supplier who needs a cheap software
development system.

68K/0S

TATOUZIN 408 i9ar

ri 0T rarrow RGE>

F2 ~ B9 e ane>
F3 ~ 68 spacag QUHF)
Fd ~ 42 vide RCEY
FS5 — 48 vide A
!
0 19Ne CST Camputar Systems Ltd |

from the opening menu.

The 10SS Interface menu.

Bare boards

GST has an agreement with Sinclair to
sell the QL processor board — without
case or keyboard — in conjunction with
its operating system for OEMs who want
to bring low-cost 68000 machines to the
market. The operating system is also
being evaluated by manufacturers of
other 68000-based systems.

Transfer outside the realm of the QL is

Five different screen modes are available

implicit in the design of the product. Like
CP/M, it gathers all its machine-
dependent aspects into a single module,
leaving the bulk of the OS machine-
independent and portable. GST claims to
be able to port the system across to any
other 68000 device within two to three
months.

68K/OS is a single-user multi-tasking OS
inspired by the Unix kernel. The main
advantage over QDOS, apart from its
device independence, is the ease with
which windowing software can be
written, as the operating system comes
complete with an outer wrapping along
the lines of Microsoft Windows.

The early evaluation kit came on a pair of
16K ROMs and required some fairly in-
depth interior reconstruction to install on
the standard QL. Purchasers of the
production version of 68K/OS do not
have to go through these traumas:
conversion is simply a matter of slipping
a small pcb into the expansion slot on the
left-hand side of the machine. A set of
utility programs on Microdrive is also
supplied — see box.

The best news is that you do not lose
QDOS. A switch on the board protrudes
discreetly from beneath the QL’s left
edge, and allows you to revert to the
Sinclair operating system at a touch.

On power-up 68K/OS signs on and
displays options for five different screen
modes, depending on whether you have a
TV or dedicated monitor, and offers a 40-
42- 60- 80- or 85-character wide screen.
The choice at this point affects more than
the size of the characters, because the
screen layout is adjusted accordingly.

On the Hitachi television we used
initially we found the 60-column display
the easiest to read. The ‘Getting Started”’
part of the GST manual was biased
towards the 80-column display, so the
layouts were slightly different, but it was
not difficult to see what was going on.
After your selection of the screen mode
the system loads Adam from the ROM.
Adam is the user interface to the
operating system, the equivalent of
CP/M’s CCP or MS-DOS’s
Command.Com. Using the operating
system’s Menu Manager it divides the
screen into a number of different display
and data areas, the precise layout
depending on the capabilties of your
monitor or TV. Adam makes use of the
five QL function keys to select the basic
functions — see box on page 82.

All code that runs under 68K/OS is
reentrant and position independent. As its
name implies, position-independent code
contaias no absolute addresses, and can
therefore be executed at any point in
memory, which is essential when you are
trying to run several independent
processes simultaneously. Re-entrant

code is code that does not alter itself as it
runs, so that the identical routine can
simultaneously form part of several
processes.

Adam can run itself just like any other
program; an illustrative exercise, even
before mounting any Microdrives, is to
do just that. A second copy of the Adam
layout appears on the screen, overlaying
the first but leaving the top line of the
original Adam screen visible, like a pair
of stacked card-index cards. You can
repeat the process several times, building
up a pile of Adam images.

Like Unix, 68K/OS sets independent
default data directories and program
directories, and the Adam screen
provides a separate window for each. If
you have chosen the TV type of display
the two directory screens replace each
other as you toggle with the F3 button.
With 80 or more characters to the screen
line there is room for the two screens to
appear simultaneously side by side. In
this mode the same F3 key swaps the
cursor between the two areas.

Mounting

Also Unix-like is the idea of mounting
devices. Maths purists will be delighted
that under 68K/OS the drives are known
as 0 and 1, but this will be yet another
source of confusion to QL users who
have come to know their drives as 1 and
2. The only time you really need the unit
numbers is during the act of mounting.
The full physical device names are
MDO: and MD1:, to allow for a variety
of non-Microdrive devices, but individual
cartridges also have logical names.
Mount a cartridge called Mydata on
MDZ1: and the directory will henceforth
be known as MD:Mydata. When you
have finished with Mydata you dismount
it to tell the system it is no longer
available. Adam provides options to
perform this mounting and dismounting
explicitly, but normally they are never
used. The operations take place
automatically as a by-product of setting
the program or data default.

The mounting concept makes it easy to
extend the operating system to include
new devices — such as floppies, hard
discs, etc. — as they come along, but is
rather cumbersome when all you are
dealing with is a pair of Microdrives.
Once program and data cartridge have
been mounted, Adam is no longer
available by default. You can still get to
it by giving its full path name of
<logical device>:<filename>

in this case

ROM: ADAM

Alternatively you can change the default
program directory to ROM:, access
Adam, then reset the default directory to
what it was before, giving its logical
name. This happens quickly because
Adam keeps the full directory of each
mounted logical device. You can, of
course, reset the directory by giving the
physical name, but this will evoke an
implied mount, re-reading the directory
from the tape.

Adam has a third screen area, which is
used to log session activity. Here the
names of the various programs used
during the session are allowed to
accumulate, together with a note of what
became of them.

At this stage we noticed that the TV set
was incapable of displaying the row of
tiny dots in the left-hand corner that are
supposed to give an indication of
processor activity. We didn’t miss that
very much until we came to run the time
and data utility, which replaces these dots
with a rather more useful digital clock.
No doubt the television could have been
adjusted to bring this into view, but on
the Hitachi the internal control was hard
to get at, and we were in no mood to fool
with high voltages. As luck would have
it, at this point a very handsome black
monitor specially designed for the QL
arrived from Microvitec. Now we were
able to switch to 85 characters per line,
and see a full screen of crisp, easily
readable characters.

There is one crucial difference between
68K/OS and a single-tasking system like
CP/M. All the components of CP/M are
synchronous. 68K/OS, on the other hand,
also supports asynchronous processes
that take place in their own time, almost
as if they were running on separate
processors. One practical implication of
this to the user is the way 68K/OS
appears to be able to read and write to the
Microdrives without pausing in its
service of an application program.

Aside from these asynchronous
processes, the interface between the
operating system and applications
running under it divides into four
categories of functions, each category
having its own entry point. Specific
functions within the categories are
differentiated in the conventional way by
loading a different function number into
the DO register.

One entry point, called the SP vector, is
reserved for direct assaults on the
hardware-dependent system primitives,
notably the graphics routines. Software is
provided to draw points, lines, blocks and
conic sections, but these functions are
strictly specific to the QL and so should
be avoided by applications that aspire to
be portable.

Another entry point, the input/output
subsystem or I0SS, creates a connection
to device drivers, which are either
standard to the operating system or
supplied by the user. Device drivers can
be interrupt driven, polled or run as
asynchronous programs, but the interface

with the IOSS ensures that whatever the
level of complexity of the device driver,
it simply appears as a subroutine to the
rest of the operating system.

Limitations

Unfortunately hardware limitations mean
that it still has not been possible to make
the resident driver for the two RS-232
devices work entirely sensibly. You still
have to put up with not being able to set
separate baud rates for send and receive,
so Prestel-type comms requires
expensive additional hardware. If you
want different baud rates on each line
you have to confine communication to
transmitting, and give up any idea of
receiving; there can be no soft
handshaking, for example. These
hardware shortcomings are, frankly, tatty
but QL users should console themselves
with the thought that they could spend
over twice as much on a Tandy 1000 and
get no RS-232 at all.

A third entry point, the DFM vector,
takes care of all the display-file manager
calls. Display files are sets of linked lists
retained in RAM that maintain the
contents of windows, allowing them to
scroll or be overlaid without loss of data.

’mm RV

iz ul

This File dwing dets 2 S i lel elo ono b cooumert wing e
PP i e B reodr (le Tle sechariom 1y S vord proceses .

D Sxogrcat

s paragwh 3 L de omriel Al seler ot wing U S
PP e ioe e, Tiges e 5 Sh0d SoviOr indepancient sechans Se

T e o 6L O b bty SO gt Dt TCErcE 1a

.: ot s Filns,

two copies ol Adam.

3 i g Feclin E ProgTats X (Bdete log [REL Sptes sode

Running mulitipie copies of Adam.

The snag with windowing under Super-
Basic is that if one window overlaps
another the contents of the earlier
window are destroyed. This can only be
avoided by writing additional code that
takes responsibility for checking for any
damage done by overlapping windows
and repairing it as necessary. Separate
tasks therefore have to know what the
others are up to. Display files, on the
other hand, result in windows that can
coexist, and even occupy the same

The word processor sandwiched belween

physical location, without being mutually
destructive. And you can actually scroll
text through the windows without losing
any of it.

The final entry point, the OS vector, is
used to access the remainder of the
hardware-independent functions like
memory management, heap allocation
and multi- process handling. Of these the
most novel is the menu manager, a
collection of functions designed to make
it easy for applications programs to
provide a consistent user interface. It
draws heavily on the window functions
to create two kinds of special window:
the menu window and the list-selection
window.

The menu window writes a set of
indestructible prompts and reads data
keyed into input fields, which it also
provides. Variable messages can be
displayed, to provide context-sensitive
help, for instance. The second kind of
window displays a scrollable list of
items, from which the user can make
selections for transfer to the menu
window.

Functions like memory management are,
of course, crucial to an operating system.
But you might be forgiven for asking
whether the more exotic functions of
windowing and menu management.
should not rather be supplied as library
routines, to be appended to application
programs as needed. Why have them
permanently taking up precious
operating-system space? The ability to
delete and rename files is conventionally
a resident part of the operating system,
yet CP/M and MS-DOS users coming to
68K/OS will be surprised to find they
have to be loaded from the Microdrives
as transient programs.

On the QL there may be some argument
for this inversion. Because scrollable
text- window routines are already part of
the operating system and reside in ROM,
an application package like a word
processor does not have to pull all that
code into RAM every time you load it.
The advantage of an operating system
that takes care of things like windowing
becomes clear when you power up
WP.Prog, the pre-release copy of the
word processor GST plans to release to
run under 68K/Os. It loads far faster than
the Psion equivalent, as it only contains
about 16K of code — though it is only
fair to point out that the GST offering has
fewer functions than Psion’s Quill. This
is partly because the tricky business of
displaying and scrolling text through a
window, which forms a large part of any
word processor, is taken care of by the
operating system. When it comes, the full
word processor is destined to occupy a
16K EPROM for mounting on one of the
spare slots on the 68K/OS plug-in board.

Out of hand

The windowing can get out of hand, as
we discovered when trying to save text to

a full microcassette from inside the GST
word processor. An error window opens
towards the top of the screen, inviting
you to make more disc space. Thanks to
multitasking you can do this by returning
to Adam, expanding the Adam screen
until you can see all the data directory,
and then evoking Delete.Prog.

This utility also opens a window of its
own to ask you to confirm the delete, and
rather unnecessarily takes half the screen
to do it. When this window closes again
you expect to see the lower half of the
screen restored. But in fact half the word
processor screen popped up here. More
curiously still, if you try to repeat the
save and have not deleted enough files,
the Disk Full warning pops up
underneath the top half of the Adam
screen, so you do not see it until you hop
across to shrink the remains of the Adam
screen.

The word processor is still in its
prerelease stage, so it is not fair to judge
it. But it does seem to indicate that the
operating-system window manager —
presumably now a mature part of the
product — rather curiously allows an
application package to think it is showing
you a window, while another process of a
lower priority is blocking the view.

This serves as a reminder that, as it
stands, the operating system is not
designed for fools and is not foolproof. |
found, for example, that it is possible to
corrupt the directory relatively easily.
Log a cartridge called, say, Progsa on to
md1:

and load a program from it into memory.
Swap the cartridge in md1: for a second
cartridge — let’s call it Progsb — and try
setting it as the default program device.
The operating system will tell you that
you cannot do this, as the directory — of
Progsa — is already in use, signposting
the activity of the process we have
loaded. You might be inclined, by using
Alt-FI, to kill the process that is causing
the trouble. Don’t! If you do, the system
will write the directory back to drive
mdl:, assuming that Progsa is still there.
As it isn’t Progsb will receive the Progsa
ditectory, lose its own directory and
consequently all hope of finding its own
files again.

Attention to the details of true
multitasking makes the addition of
68K/OS a great improvement on the
standard QL. But it leaves you without
any applications software, or even high-
level languages to develop your own. An
assembler is supplied as an extra, but one
of the attractions of the 68000 generation
of chips is supposed to be that we can say
goodbye to assembler writing forever.
Even regarded as an assembler system,
there is one very important utility
missing — a debugger. Like the high-
level languages, this is promised for the
future. But until it arrives the system will
require a lot of patience from its users,
significantly, G5T has been developing
what utilities there are under the
Motorola Exormacs system and not under

68K/OS.

What we missed most in the new
environment was SuperBasic, one of the
best things about the QL as bought in the
shops. GST hopes to offer a Basic of its
own soon, and Fortran and Pascal are
rumoured to be on the way.

Swapping programs and data with QDOS
is also not a solution. The two operating
systems use quite different formatting,
and cannot read each other’s cartridges.

BN e e e S S

i&

are LhEatEth St Celary £ Curoor fode & File

Graphics drawing.

The GST hardware.

Conclusions

*68K/0S is an ambitious, fully fledged
multi-tasking operating system for the
QL and other 68000-based machines. It
comes with excellent documentation on
an easy- to-fit expansion board that
allows you to revert to QDOS at the
touch of a switch.

* The dearth of languages makes 68K/OS
something of an anomaly — a
development system for what is supposed
to be a high-level language chip, with the
only language being ASM.

*68K/OS costs £99.95, which includes a
brief Users’ Manual. Purchasers of the
system are going to want to go into it all
a lot more deeply, and won’t mind
forking out £4.95 for the highly detailed
and well- written System Programmers’
Manual.

*Unlike CP/M, 68K/OS does not include
the assembler as a standard operating-
system utility, and it will cost you
another £39.95.

Utilities on
Microdrive

Format.prg — A program to format a new
microdrive cartridge or wipe an existing
cartridge.

Copy.prog — Copies program and data
files one by one between cartridges.
Time.prog — Sets system date and time.
Dump.prog — Dumps a screen image to
an Epson FX-80.

Edit.prog — An easy to use screen editor
with a help screen; a real joy comared
with Quill, and a lot faster.

Draw.prog — Lets you create drawings on
the screen using a menu and two sets of
hair-line cursors used for positining
rectangles, circles, ellipses, squares,
lines, pixels. Text can be added and areas
can be filled with various colours. Your
keystrokes can be saved to a file which
can be called up later. Not a serious
utility — it is intended as a demonstration
of how application programs can tap into
the OS facilities.

Slides.prog — Allows you to display
serially a set of pictures created by
Draw.prog. Fun for demos.

Print.prog — a program to print out a file.
This is where you begint 0 mi9ss the
simplicity of CP/M with its built in Type
command/

Rename.prog — Renames files. Here
again, you need a separate program to do
what other operating systems take charge
f themselves.

I0SSMenu.prog — Lets you experiment
with the input/output sub-system and also
serves as a demonstration of the menu-
handling abilities of the system.
Fount.prog — An under-documented teser
for use with Edit and some pre-defined
founts. There are no details about how to
create your own founts.

Function-key
assignments

FI-Selects the Run mode. The program
directory can be scanned using the cursor
keys, and a program selected by pressing
the Escape key when the cursor is against
the correct directory entry. This copies
the name into the command-line window.
Alternatively the name of the program to
run can be typed in the normal way.

F2 — Selects the function mode. This is
used for setting up the default program
and data drives or devices, or explicitly
mounting or dismounting them.

F3 — Swaps the directory selection
between program and data.

F4 — Updates the log and directory
screens something which is not done
automatically at the termination of each
program.

Alt-F1 — takes you straight out of
whatever you are doing and into the
System mode. From here you can skip
about between the various jobs currently
running, expand or contract the window
area on a particular display, suspend that
job, restart it, kill it, or bring a
completely new task to life. You can also
perform a warm boot into Adam.

