
68K/OS
Chris Bidmead examines a multi-tasking OS for the 68000 cpu, now available on the Sinclair QL

68K/OS was originally commissioned by
Sinclair as the production operating

system for the QL, and when the Sinclair

machine was launched in January last

year it was 68K/os that was shown to the
press. At that stage QDOS, which was

supplied with the machine to paying

customers, was something Sinclair began

getting together in-house when it became
clear that 68K/OS was not going to leave

room for Superbasic. ironically, QDOS

also got too big, and the first production

machines were sent out with the notorius
extra protruding ROM pack.

GST’s product is now marketed as the

alternative operating system for the QL.

It is aimed at the advanced home user

who wants to do a lot of machine-code

hacking and write personalised utilities in

high- level languages when they come on

stream later. For the student of computer
science, too, GST’s 68K/OS will provide

a low- cost experimentation system to

support course work. It is also designed

for the small independent software
supplier who needs a cheap software

development system.

Bare boards

GST has an agreement with Sinclair to

sell the QL processor board — without

case or keyboard — in conjunction with

its operating system for OEMs who want
to bring low-cost 68000 machines to the

market. The operating system is also

being evaluated by manufacturers of

other 68000-based systems.
Transfer outside the realm of the QL is

implicit in the design of the product. Like
CP/M, it gathers all its machine-

dependent aspects into a single module,

leaving the bulk of the OS machine-

independent and portable. GST claims to
be able to port the system across to any

other 68000 device within two to three

months.

68K/OS is a single-user multi-tasking OS
inspired by the Unix kernel. The main

advantage over QDOS, apart from its

device independence, is the ease with

which windowing software can be
written, as the operating system comes

complete with an outer wrapping along

the lines of Microsoft Windows.

The early evaluation kit came on a pair of

16K ROMs and required some fairly in-

depth interior reconstruction to install on

the standard QL. Purchasers of the

production version of 68K/OS do not
have to go through these traumas:

conversion is simply a matter of slipping

a small pcb into the expansion slot on the

left-hand side of the machine. A set of
utility programs on Microdrive is also

supplied — see box.

The best news is that you do not lose

QDOS. A switch on the board protrudes
discreetly from beneath the QL’s left

edge, and allows you to revert to the

Sinclair operating system at a touch.

On power-up 68K/OS signs on and
displays options for five different screen

modes, depending on whether you have a

TV or dedicated monitor, and offers a 40-

42- 60- 80- or 85-character wide screen.
The choice at this point affects more than

the size of the characters, because the

screen layout is adjusted accordingly.

On the Hitachi television we used
initially we found the 60-column display

the easiest to read. The ‘Getting Started’’

part of the GST manual was biased

towards the 80-column display, so the
layouts were slightly different, but it was

not difficult to see what was going on.

After your selection of the screen mode

the system loads Adam from the ROM.
Adam is the user interface to the

operating system, the equivalent of

CP/M’s CCP or MS-DOS’s
Command.Com. Using the operating

system’s Menu Manager it divides the

screen into a number of different display

and data areas, the precise layout
depending on the capabilties of your

monitor or TV. Adam makes use of the

five QL function keys to select the basic

functions — see box on page 82.
All code that runs under 68K/OS is

reentrant and position independent. As its

name implies, position-independent code

contaias no absolute addresses, and can
therefore be executed at any point in

memory, which is essential when you are

trying to run several independent

processes simultaneously. Re-entrant

code is code that does not alter itself as it
runs, so that the identical routine can

simultaneously form part of several

processes.

Adam can run itself just like any other
program; an illustrative exercise, even

before mounting any Microdrives, is to

do just that. A second copy of the Adam

layout appears on the screen, overlaying
the first but leaving the top line of the

original Adam screen visible, like a pair

of stacked card-index cards. You can

repeat the process several times, building
up a pile of Adam images.

Like Unix, 68K/OS sets independent

default data directories and program

directories, and the Adam screen

provides a separate window for each. If

you have chosen the TV type of display

the two directory screens replace each

other as you toggle with the F3 button.
With 80 or more characters to the screen

line there is room for the two screens to

appear simultaneously side by side. In

this mode the same F3 key swaps the
cursor between the two areas.

Mounting

Also Unix-like is the idea of mounting

devices. Maths purists will be delighted
that under 68K/OS the drives are known

as 0 and 1, but this will be yet another

source of confusion to QL users who

have come to know their drives as 1 and
2. The only time you really need the unit

numbers is during the act of mounting.

The full physical device names are

MDO: and MD1:, to allow for a variety
of non-Microdrive devices, but individual

cartridges also have logical names.

Mount a cartridge called Mydata on

MD1: and the directory will henceforth
be known as MD:Mydata. When you

have finished with Mydata you dismount

it to tell the system it is no longer

available. Adam provides options to
perform this mounting and dismounting

explicitly, but normally they are never

used. The operations take place
automatically as a by-product of setting

the program or data default.

The mounting concept makes it easy to

extend the operating system to include
new devices — such as floppies, hard

discs, etc. — as they come along, but is

rather cumbersome when all you are

dealing with is a pair of Microdrives.
Once program and data cartridge have

been mounted, Adam is no longer

available by default. You can still get to

it by giving its full path name of
<logical device>:<filename>

in this case

ROM: ADAM

Alternatively you can change the default

program directory to ROM:, access

Adam, then reset the default directory to

what it was before, giving its logical

name. This happens quickly because

Adam keeps the full directory of each
mounted logical device. You can, of

course, reset the directory by giving the

physical name, but this will evoke an

implied mount, re-reading the directory
from the tape.

Adam has a third screen area, which is

used to log session activity. Here the

names of the various programs used
during the session are allowed to

accumulate, together with a note of what

became of them.

At this stage we noticed that the TV set
was incapable of displaying the row of

tiny dots in the left-hand corner that are

supposed to give an indication of

processor activity. We didn’t miss that
very much until we came to run the time

and data utility, which replaces these dots

with a rather more useful digital clock.

No doubt the television could have been
adjusted to bring this into view, but on

the Hitachi the internal control was hard

to get at, and we were in no mood to fool

with high voltages. As luck would have
it, at this point a very handsome black

monitor specially designed for the QL

arrived from Microvitec. Now we were

able to switch to 85 characters per line,

and see a full screen of crisp, easily

readable characters.

There is one crucial difference between

68K/OS and a single-tasking system like
CP/M. All the components of CP/M are

synchronous. 68K/OS, on the other hand,

also supports asynchronous processes

that take place in their own time, almost
as if they were running on separate

processors. One practical implication of

this to the user is the way 68K/OS

appears to be able to read and write to the
Microdrives without pausing in its

service of an application program.

Aside from these asynchronous

processes, the interface between the
operating system and applications

running under it divides into four

categories of functions, each category

having its own entry point. Specific
functions within the categories are

differentiated in the conventional way by

loading a different function number into
the DO register.

One entry point, called the SP vector, is

reserved for direct assaults on the

hardware-dependent system primitives,
notably the graphics routines. Software is

provided to draw points, lines, blocks and

conic sections, but these functions are

strictly specific to the QL and so should
be avoided by applications that aspire to

be portable.

Another entry point, the input/output

subsystem or lOSS, creates a connection
to device drivers, which are either

standard to the operating system or

supplied by the user. Device drivers can

be interrupt driven, polled or run as
asynchronous programs, but the interface

with the lOSS ensures that whatever the

level of complexity of the device driver,

it simply appears as a subroutine to the

rest of the operating system.

Limitations

Unfortunately hardware limitations mean

that it still has not been possible to make
the resident driver for the two RS-232

devices work entirely sensibly. You still

have to put up with not being able to set

separate baud rates for send and receive,
so Prestel-type comms requires

expensive additional hardware. If you

want different baud rates on each line

you have to confine communication to
transmitting, and give up any idea of

receiving; there can be no soft

handshaking, for example. These

hardware shortcomings are, frankly, tatty
but QL users should console themselves

with the thought that they could spend

over twice as much on a Tandy 1000 and

get no RS-232 at all.
A third entry point, the DFM vector,

takes care of all the display-file manager

calls. Display files are sets of linked lists

retained in RAM that maintain the
contents of windows, allowing them to

scroll or be overlaid without loss of data.

The snag with windowing under Super-

Basic is that if one window overlaps

another the contents of the earlier
window are destroyed. This can only be

avoided by writing additional code that

takes responsibility for checking for any

damage done by overlapping windows
and repairing it as necessary. Separate

tasks therefore have to know what the

others are up to. Display files, on the

other hand, result in windows that can
coexist, and even occupy the same

physical location, without being mutually

destructive. And you can actually scroll

text through the windows without losing

any of it.

The final entry point, the OS vector, is

used to access the remainder of the
hardware-independent functions like

memory management, heap allocation

and multi- process handling. Of these the

most novel is the menu manager, a
collection of functions designed to make

it easy for applications programs to

provide a consistent user interface. It

draws heavily on the window functions
to create two kinds of special window:

the menu window and the list-selection

window.

The menu window writes a set of
indestructible prompts and reads data

keyed into input fields, which it also

provides. Variable messages can be

displayed, to provide context-sensitive
help, for instance. The second kind of

window displays a scrollable list of

items, from which the user can make

selections for transfer to the menu
window.

Functions like memory management are,

of course, crucial to an operating system.

But you might be forgiven for asking
whether the more exotic functions of

windowing and menu management.

should not rather be supplied as library

routines, to be appended to application

programs as needed. Why have them

permanently taking up precious

operating-system space? The ability to

delete and rename files is conventionally
a resident part of the operating system,

yet CP/M and MS-DOS users coming to

68K/OS will be surprised to find they

have to be loaded from the Microdrives
as transient programs.

On the QL there may be some argument

for this inversion. Because scrollable

text- window routines are already part of
the operating system and reside in ROM,

an application package like a word

processor does not have to pull all that

code into RAM every time you load it.
The advantage of an operating system

that takes care of things like windowing

becomes clear when you power up

WP.Prog, the pre-release copy of the
word processor GST plans to release to

run under 68K/Os. It loads far faster than

the Psion equivalent, as it only contains
about 16K of code — though it is only

fair to point out that the GST offering has

fewer functions than Psion’s Quill. This

is partly because the tricky business of
displaying and scrolling text through a

window, which forms a large part of any

word processor, is taken care of by the

operating system. When it comes, the full
word processor is destined to occupy a

16K EPROM for mounting on one of the

spare slots on the 68K/OS plug-in board.

Out of hand

The windowing can get out of hand, as
we discovered when trying to save text to

a full microcassette from inside the GST

word processor. An error window opens

towards the top of the screen, inviting

you to make more disc space. Thanks to

multitasking you can do this by returning

to Adam, expanding the Adam screen
until you can see all the data directory,

and then evoking Delete.Prog.

This utility also opens a window of its

own to ask you to confirm the delete, and
rather unnecessarily takes half the screen

to do it. When this window closes again

you expect to see the lower half of the

screen restored. But in fact half the word
processor screen popped up here. More

curiously still, if you try to repeat the

save and have not deleted enough files,

the Disk Full warning pops up
underneath the top half of the Adam

screen, so you do not see it until you hop

across to shrink the remains of the Adam

screen.
The word processor is still in its

prerelease stage, so it is not fair to judge

it. But it does seem to indicate that the

operating-system window manager —
presumably now a mature part of the

product — rather curiously allows an

application package to think it is showing

you a window, while another process of a
lower priority is blocking the view.

This serves as a reminder that, as it

stands, the operating system is not

designed for fools and is not foolproof. I

found, for example, that it is possible to

corrupt the directory relatively easily.

Log a cartridge called, say, Progsa on to

md1:
and load a program from it into memory.

Swap the cartridge in md1: for a second

cartridge — let’s call it Progsb — and try

setting it as the default program device.
The operating system will tell you that

you cannot do this, as the directory — of

Progsa — is already in use, signposting

the activity of the process we have
loaded. You might be inclined, by using

Alt-Fl, to kill the process that is causing

the trouble. Don’t! If you do, the system

will write the directory back to drive
mdl:, assuming that Progsa is still there.

As it isn’t Progsb will receive the Progsa

ditectory, lose its own directory and

consequently all hope of finding its own
files again.

Attention to the details of true

multitasking makes the addition of
68K/OS a great improvement on the

standard QL. But it leaves you without

any applications software, or even high-

level languages to develop your own. An
assembler is supplied as an extra, but one

of the attractions of the 68000 generation

of chips is supposed to be that we can say

goodbye to assembler writing forever.
Even regarded as an assembler system,

there is one very important utility

missing — a debugger. Like the high-

level languages, this is promised for the
future. But until it arrives the system will

require a lot of patience from its users,

significantly, G5T has been developing

what utilities there are under the
Motorola Exormacs system and not under

68K/OS.

What we missed most in the new

environment was SuperBasic, one of the

best things about the QL as bought in the

shops. GST hopes to offer a Basic of its

own soon, and Fortran and Pascal are
rumoured to be on the way.

Swapping programs and data with QDOS

is also not a solution. The two operating

systems use quite different formatting,
and cannot read each other’s cartridges.

Conclusions

•68K/OS is an ambitious, fully fledged

multi-tasking operating system for the

QL and other 68000-based machines. It

comes with excellent documentation on

an easy- to-fit expansion board that

allows you to revert to QDOS at the

touch of a switch.
• The dearth of languages makes 68K/OS

something of an anomaly — a

development system for what is supposed

to be a high-level language chip, with the
only language being ASM.

•68K/OS costs £99.95, which includes a

brief Users’ Manual. Purchasers of the

system are going to want to go into it all
a lot more deeply, and won’t mind

forking out £4.95 for the highly detailed

and well- written System Programmers’

Manual.
•Unlike CP/M, 68K/OS does not include

the assembler as a standard operating-

system utility, and it will cost you

another £39.95.

Utilities on

Microdrive

Format.prg – A program to format a new

microdrive cartridge or wipe an existing

cartridge.

Copy.prog – Copies program and data

files one by one between cartridges.

Time.prog – Sets system date and time.

Dump.prog – Dumps a screen image to
an Epson FX-80.

Edit.prog – An easy to use screen editor

with a help screen; a real joy comared

with Quill, and a lot faster.
Draw.prog – Lets you create drawings on

the screen using a menu and two sets of

hair-line cursors used for positining

rectangles, circles, ellipses, squares,
lines, pixels. Text can be added and areas

can be filled with various colours. Your

keystrokes can be saved to a file which

can be called up later. Not a serious
utility – it is intended as a demonstration

of how application programs can tap into

the OS facilities.

Slides.prog – Allows you to display
serially a set of pictures created by

Draw.prog. Fun for demos.

Print.prog – a program to print out a file.

This is where you begint o mi9ss the
simplicity of CP/M with its built in Type

command/

Rename.prog – Renames files. Here

again, you need a separate program to do
what other operating systems take charge

f themselves.

IOSSMenu.prog – Lets you experiment

with the input/output sub-system and also
serves as a demonstration of the menu-

handling abilities of the system.

Fount.prog – An under-documented teser

for use with Edit and some pre-defined
founts. There are no details about how to

create your own founts.

Function-key

assignments

Fl-Selects the Run mode. The program
directory can be scanned using the cursor

keys, and a program selected by pressing

the Escape key when the cursor is against

the correct directory entry. This copies

the name into the command-line window.

Alternatively the name of the program to

run can be typed in the normal way.

F2 — Selects the function mode. This is
used for setting up the default program

and data drives or devices, or explicitly

mounting or dismounting them.

F3 — Swaps the directory selection
between program and data.

F4 — Updates the log and directory

screens something which is not done

automatically at the termination of each
program.

Alt-F1 — takes you straight out of

whatever you are doing and into the

System mode. From here you can skip
about between the various jobs currently

running, expand or contract the window

area on a particular display, suspend that

job, restart it, kill it, or bring a
completely new task to life. You can also

perform a warm boot into Adam.

