
Hardware details of the Aurora board

1. Graphics:

1.1 Screen memory locations:

There are 3 screen areas (instead of 2 like on the standard QL).

In addition to the standard SCR0 (at $20000) and SCR1 (at

$28000) there is the new high-res screen area at $4C0000, the

size of this screen memory is 240 kbytes. Please note that SCR0

and SCR1 are physically resident in the high-res area as well.

The hardware automatically re-codes accesses to SCR0 into the

top left-hand corner of the high-res area, and SCR1 into the top

right-hand corner of the high-res area.

However, accesses to SCR1 are disabled when the resolution and

mode selected is anything over 512x256 mode 4 or 256x256 mode 8.

Accesses to SCR0 are disabled if any mode other than 4 or 8 is

selected.

Access disabling means that the data written to the SCR0 or SCR1

area respectively will not appear in the high-res screen area or

on the screen. Read-back will still be possible because the

GC/SGC shadows SCR0 and SCR1 with it's own RAM, which will

provide readback data. This disabling was done to prevent old

programs which directly access SCR0/SCR1 to interfere with the

new graphics when new modes are in use. If mode 4 or 8 is in use

with a higher resolution, SCR0 will automatically get written

over the contents of the top left-hand corner of the screen, the

only way to disable this is not to write into SCR0!!!

Our next product will move the location of the high-res memory

into a different (higher) address as there will be a higher

maximum RAM limit.

1.2 Screen memory organization:

There are 4 possible screen memory layouts, which depend on the

mode in use. In all modes the lowest address in the memory area

represents the top left-hand pixel, as usual, with higher

addresses progressing to the right and downwards.

Mode 4 and 8 have the usual QL layout with one difference: The

screen memory size is ALLWAYS 1024x960 mode 4 pixels. If a lower

resolution is selected, the top left-hand corner of the 1024x960

is used. Therefore, the line length is CONSTANT, 256 bytes, and

the maximum X and Y coordinates change only (and the number of

lines and screen size). Therefore, the line length must NOT be

calculated from the max X and Y coordinates, but the proper

value from the window definition block must be used.

In modes 16 and 256 the screen area is configured differently,

as a 512 x 480 byte field. Therefore, the line length is again

constant, 512 bytes. In mode 16, each byte holds two pixels, top

4 bits are the 'left-hand' pixel, and bottom 4 bits are the

'right-hand' pixel. In mode 256, each byte represents one pixel.

Again, resolutions lower than the maximum memory size use only

the upper left-hand corner of the memory field.

In any mode, colors are generated from the bits in memory by

converting the various layouts to 3-bit red, green and blue

components, i.e. R,G,B values from 0 to 7. In modes 4 and 8,

each of the components can only assume a value of 0 or 7. In

mode 8, the flash bit is stored, but ignored by the hardware

(i.e. pixels do not flash).

The bit layout in mode 16 and 256 is as follows:

Mode 16:

Bit: 7 6 5 4 3 2 1 0

Pixel info:Gl Rl Bl Il Gr Rr Br Ir

G = green, R = red, B = blue, I = intensity.

The color component values generated are:

GRBI G R B

0000 0 0 0 Black

0001 1 1 1 Dark gray

0010 0 0 4 Dark blue

0011 0 0 7 Blue

0100 0 4 0 Dark red

0101 0 7 0 Red

0110 0 4 4 Dark magenta

0111 0 7 7 Magenta

1000 4 0 0 Dark green

1001 7 0 0 Green

1010 4 0 4 Dark cyan

1011 7 0 7 Cyan

1100 4 4 0 Dark yellow

1101 7 7 0 Yellow

1110 4 4 4 Gray

1111 7 7 7 White

Mode 256:

Bit: 7 6 5 4 3 2 1 0

Pixel info: G2 R2 B2 G1 R1 B1 G0 RB0

G2,1,0 = green, G2=MSB, G0=LSB

R2,1 = red, R2=MSB

B2,1 = blue, B2=MSB

RB0 = Red/Blue compound bit 0.

G2..1 translate directly into a 3-bit value for the green

component

R2..1 and B2..1 translate directly into the top 2 bits of the 3-

bit red and blue components.

RB0 generates, in conjunction with R2..1 the LSB of red, R0, and

in conjunction with B2..1 the LSB or blue, B0, as follows:

R0 = R[2] * RB[0]

 + R[1] * RB[0]

 + /R[2] * /R[1] * /B[2] * /B[1] * RB[0]

B0 = B[2] * RB[0]

 + B[1] * RB[0]

Therefore:

R2 R1 B2 B1 RB0 R B

0 0 0 0 0 0 0

0 0 0 0 1 1 0

0 0 0 1 0 0 2

0 0 0 1 1 0 3

0 0 1 0 0 0 4

0 0 1 0 1 0 5

0 0 1 1 0 0 6

0 0 1 1 1 0 7

0 1 0 0 0 2 0

0 1 0 0 1 3 0

0 1 0 1 0 2 2

0 1 0 1 1 3 3

0 1 1 0 0 2 4

0 1 1 0 1 3 5

0 1 1 1 0 2 6

0 1 1 1 1 3 7

1 0 0 0 0 4 0

1 0 0 0 1 5 0

1 0 0 1 0 4 2

1 0 0 1 1 5 3

1 0 1 0 0 4 4

1 0 1 0 1 5 5

1 0 1 1 0 4 6

1 0 1 1 1 5 7

1 1 0 0 0 6 0

1 1 0 0 1 7 0

1 1 0 1 0 6 2

1 1 0 1 1 7 3

1 1 1 0 0 6 4

1 1 1 0 1 7 5

1 1 1 1 0 6 6

1 1 1 1 1 7 7

This color model has been chosen over one with three bits of

green and red and two bits of blue because the discrete colors

reproduced cover a more uniform area out of the standard color

triangle.

1.3 Detecting the Aurora board

The Aurora can be detected at reset as follows:

At reset the Aurora mimics the 8301 ULA and will automatically

set itself into 512x256 mode 4, SCR0 active. Because of the

hardware remapping of SCR0 into the high-res screen area,

anything written into the first 128 bytes of SCR0 can be read in

the first 128 bytes of the high-res area, BUT NOT THE OTHER WAY

AROUND!!! because the GC/SGC shadows only SCR0 and SCR1 and not

the high-res area. Write only to SCR0 and read only from the

high-res area to test for Aurora, not the other way around. In

the previous specifications this step was replaced by a test for

RAM at $4C0000, I do not recommend that because the address will

change with our next product, and the current address will most

likely hold ordinary RAM and not Aurora screen RAM.

After the presence of a high-res area is detected, the amount of

the high-res area RAM should be tested. This will be either 240

kbytes or 128 kbytes. If the amount is 240 kbytes, Aurora is

detected. If the amount is 128 kbytes, a LCD board is detected

(see 1.5 for details).

1.4 Control registers

The graphics portion of the Aurora is controlled by 3 registers.

One is the standard, write only, mode control register (MCR) as

found on the 8301 ULA. There is also a write only extended mode

control register (EMCR) for controlling the additional

resolutions and modes, and a read only monitor preset register

(MPR):

+-------+----+----+----+----+----+----+----+----+

|ADDRESS| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

+=======+====+====+====+====+====+====+====+====+

|W$18043| AR |////|////| M1 | M0 |////|HR1 |HR0 | EMCR

+-------+----+----+----+----+----+----+----+----+

|W$18063|SCR1|////|////|////| M0 |////|BLK |////| MCR

+-------+----+----+----+----+----+----+----+----+

|R$18043|////|////|////|MT1 |////|MT0 |////| IE | MPR

+-------+----+----+----+----+----+----+----+----+

The bits in the MCR and EMCR are automatically reset to 0 when

the system is reset.

The MCR has the usual assignment, for compatibility:

BLK = blank screen when 1 is written, enable screen when 0 is

written

M0 = select mode 4 (0) or mode 8 (1)

SCR1 = select SCR0 (0) or SCR1 (1) to be displayed on screen

The behavior is slightly different in conjunction with the EMCR.

In particular, the bits behave in a QL compatible manner when

the EMCR bits are all 0. M0 in the EMCR is the same bit as M0 in

the MCR. SCR1 in the MCR should be 0 if anything but the QL

compatible resolutions and modes are used, otherwise the screen

will be garbled.

The EMCR controls the new modes and resolutions:

HR1..0 select the horizontal resolution (future implementations

will use bit 2 as HR2, so currently it must be written as 0):

HR1 HR0 Horizontal resolution

0 0 512 pixels

0 1 640 pixels

1 0 768 pixels

1 1 1024 pixels

M1..0 select the color mode (future implementations will use bit

5 as M2, so currently it must be written as 0):

M1 M0 Mode

0 0 Mode 4

0 1 Mode 8 (implemented only for compatibility)

1 0 Mode 16

1 1 Mode 256

The AR bit controls the aspect ratio, and hence the vertical

resolution in conjunction with HR1..0 (Future implementations

will use bit 6 as AM, aspect modifier, currently bit 6 must be

written as 0):

AR Aspect ratio

0 2:1 (vertical res. = horizontal res. * 1/2), QL style pixels

1 4:3 (vertical res. = horizontal res. * 3/4), square pixels

IMPORTANT:

The actual resolution displayed will depend on the monitor

preset, which can be read from the MPR AND the mode selected

(for reasons of limited high-res screen area size). The

resolution selected by HR1..0 and AR in principle does NOT

depend on the mode, except in mode 8, where the resolution

selected refers to mode 4, but the number of pixels in one line

is halved, as usual in mode 8 (this was done to maintain

compatibility), and by limit of the high-res area size.

Because the high-res area size is fixed, 240 kbytes, the

resolutions in modes with more colors will be limited. The

limiting logic is simple - if the resolution chosen is higher

than a limit, the limit is used instead. Limits apply

independently for x and y directions. In particular:

Mode 4: No limits (high-res area size is larger than maximum

resolution, that being 1024 x 768).

Mode 16: Maximum vertical resolution is limited to 480 lines.

Mode 256: Horizontal resolution is limited to 512 pixels, and

maximum vertical resolution is limited to 480 lines.

Additional limits may apply depending on the monitor preset

values. Where more limits apply, the lowest value is used as the

actual limit. The maximum x and y coordinates have to be

adjusted according to these limits for every given resolution

and monitor preset setting.

The MPR has three bits:

MT1..0 = return the general type of monitor selected

IE = returns interlace enable bit

Maximum vertical resolutions obtainable for any MT1..0 and IE

combination are as follows:

MT1 MT0 IE Monitor type Max. vert. resolution

0 0 0 QL standard, NI 288 lines

0 0 1 QL standard, I 576 lines

0 1 0 VGA NI 576 lines

0 1 1 VGA I 768 lines

1 0 0 SVGA NI 576 lines

1 0 1 SVGA I 768 lines

1 1 0 Multisynch NI 768 lines

1* 1* 1* Multisynch diag.* 960 lines*

* This is a special diagnostic mode which displays a 1024x960

interlaced picture on a multisynch monitor when 1024x768 is

selected, hence displaying the contents of the whole high-res

screen area. Whether the software will support this is optional

- this combination of MT and IE bits is not used in normal

operation.

1.5 The LCD board

The LCD board is a fringe development of the Aurora. It can

operate on it's own (standard QL) or with the Aurora. When it

operates with a standard QL, it offers increased resolution (up

to 640x480, the size of the LCD panel), and will be detected by

the fact that the high-res area is 128 kbytes in size. When it

operates with the Aurora, it is transparent (cannot be detected)

and follows settings for the Aurora whenever possible

(resolutions higher than 640x480 have the top left-hand corner

displayed on the LCD panel, and the panel is blanked if mode 16

or 256 is selected).

The MCR and EMCR registers appear as on the Aurora. Writing a 1

into M1 in EMCR will blank the screen as the LCD does not

support a 16 or 256 color mode. An additional screen size limit

always applies, which is that the maximum screen resolution is

640x480. Mode 8 is not accurately reproduced (similar to the

QVME). There is no MPR register, and no additional facilities

except graphics. Automatic SCR0 and SCR1 area relocation

operates exactly as on the Aurora.

2. ROM disc, extended ROM sizes

2.1 Extended ROM concept

The Aurora features an extended ROM socket which can hold ROM-

like chips (EPROM, Flash...) with up to 512 kbytes capacity.

Because the memory map does not allow direct access to all of

the 512 kbytes, the ROM is paged into 32 kbyte pages. To

maintain QL compatibility, the hardware has been arranged so

that the first 48 kbytes of the ROM (any size) initially appear

at address $00000, so the system can start up from that address.

In order for this to happen, a valid QL ROM image has to be

present in the first 48 kbytes of the ROM, or a bootstrap

program which will be correctly recognized by the GC/SGC

firmware. The GC/SGC shadow the ROM area, by copying it to

faster RAM. Once the GC/SGC firmware is initialized, the

contents of addresses $00000 to $0BFFF will be read from the RAM

copy and not from the actual ROM chip. When a SGC is used, the

actual ROM chip can be read at address $400000 to $40BFFF. The

paging mechanism is used to present any 32k page out of the

total ROM capacity at this address. The page can then be read

and copied to RAM for execution. At present I do not know how

the actual ROM chip can be accessed instead of the shadowed copy

on a GC.

2.2 ROM paging register

The ROM paging register is a write-only register at address

$18041, which is automatically initialized to 0 at reset. The

lower 4 bits contain the ROM page number. Each page is 32 kbytes

in size, and there can be up to 16 pages for a total capacity of

512 kbytes. If a ROM smaller than 512 kbytes is used, the pages

will repeat, modulo (ROM size). Hence, a 64 kbyte ROM will only

have pages 0 and 1 (with 0 repeating in 2,4 and 6, and 1

repeating in 3,5 and 7), a 128 kbyte ROM will have pages 0,1,2,3

(repeated in 4,5,6,7, then in 8,9,A,B and in C,D,E,F) a 256

kbyte ROM will have pages 0 to 7 (repeated in 9 to F), and a 512

kbyte ROM will have all pages.

+-------+----+----+----+----+----+----+----+----+

|ADDRESS| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

+=======+====+====+====+====+====+====+====+====+

|W$18041|////|////|////|////|RP3 |RP2 |RP1 |RP0 | RPR

+-------+----+----+----+----+----+----+----+----+

A mechanism should be provided to detect the size of the ROM and

limit the number of pages accessed. It is recommended that the

contents of the ROM be copied to RAM as needed to form files or

executable code. The code to copy the ROM should be atomic

especially if the ROM is accessed as a file device, to prevent

the contents of the RPR from being smashed by another thread.

3. Additional features

The Aurora has an extra IO area, 15.5 kbytes in size, located at

$18100 to $1BEFF. The extended ROM slot header has a decoded

select pin which goes low when this area is accessed. The exact

use of this area has not been decided upon yet, and for now I

recommend that no special measures be taken about it, except to

prevent OS code from accessing it in hopes it will find a

repeated copy of some control register in the 8302 ULA or the

QIMI interface.

