Configuration information specification

Many programs have the facility to configure themselves to set default working
parameters. More usually the configuration is done by a separate program which modifies the
working program file. Each program will have a different configuration program, and often
different versions of the same program will have different configuration programs too. All
this makes things very difficult for users.

It is proposed that a standard configuration systemis used on all new programs and all
new releases of existing programs. If this is done, a single configuration program can be
used on any application software file even even when several application files are
concatenated.

The advantages of this approach are obvious. There are two disadvantages. The first
is that each program has to carry with it all the configuration information which will make it
larger. The second is that there is no simple means for doing this with compiled basic
programs. The first will not usually be a problem as it seems unlikely that a 32k program
would have more than about 20 configurable items and their associated descriptions, this
would add at most 3% to the program size. The second can be overcome with a little will.

There are two parts to this system: the first is a standard for the format of a
configurable file, the second is a program to process files. There can be any number of
programs to process files, from any number of suppliers. If the standards for the
configurable file are adhered to, then any supplier's configuration program can be used on
any (other) supplier's software.

The configuration consists of the following information:

Configuration ID
Configuration level
Software name
Software version
List of
Type of item (string, integer etc.) (byte)
Item Selection keystroke (byte)
Pointer to item
Pointer to item pre-processing routine
Pointer to item post-processing routine
Pointer to description of item
Pointer to attributes of item (item type dependent)
End word (value -1)

As time goes by, additional types of item are likely to be added. This will mean that new
versions of the configuration program will be required. These new versions will, of course,
be able to configure all lower level configurable files. But, if a old configuration program is
used, and the level specified in the configuration block is greater than the level supported
by the configuration program, it will have to give up gracefully.

The configuration ID is word aligned and is the eight characters "«QCFX»'", this is
followed by two ASCII characters giving the configuration level (minimum "01"). The software
name is a standard string and is followed by a word aligned version identification in a
standard string (e.g. "1.13a"). The word aligned list of items follows.

Types of item

Level 01 supports 7 types of item. These are: string, character, code selection, code,
byte, word and long word. Application specific types of item can be processed by treating
them as strings which are handled entirely by an application supplied routine.

String (type=0)

The form of a configurable string is a word giving the maximum string length, followed
by a standard string. There should be enough room within the application program for the
maximum length string plus one character for a terminator. There is a single word of
attributes with bits set to determine special characteristics.

bit0 donot strip spaces

Character (type=2)

A character is a single byte, if it is a control character, it will be written out as a two
character string (e.g. "A = $01). There is a single word of attributes with bits set to
determine the possible characters allowed.

bit0 non printable characters
bit1 digits

bit2 lower case letters

bit3 upper case letters

bit4 other printable characters

bit 6 cursor characters
bit 8 control chars + $40, translated to control chars

Bit 8 is, of course, mutually exclusive with bits 0 to 7, although this is not checked.
The configuration block in an application program must be correct.

Code (type=4)

A code is a single byte which may take a small number of values. The attributes is a list
of codes giving a byte with the value, a byte with the selection keystroke and a standard
string. The list is terminated with an end word (value -1). There are two forms. In the first,
the selection keystrokes are set to zero. In this case, when a code is selected, the value
will step through all possible values. This is best suited to items which can only have two or
three possible codes. Otherwise the user may select any one of the possible codes, either
from a list (interactive configuration programs) or from a pull down menu (menu driven
configuration programs).

Selection (type=6)

A selection is in the same form as a code, but instead of a byte being set to the
selected value, the value is treated as an index to a list of status bytes. When one is
selected, it is set to wsi.slct ($80), the previous selection Gf different) is set to wsi..avbl
(zero). If any status bytes are unavailable (set to wsi.unav=$10), then they will be ignored.
The first status byte in the list must not be unavailable.

Values (types 8,10,12)

Largely self explanatory. The attributes are the minimum and maximum values. All
values are treated as unsigned.

Item Selection Keystroke

The item selection keystroke is an uppercased keystroke which will select the item in
the main menu. The action of selecting the item will depend on the item type. For a code or
select item a pull-down window may be opened to enable the user to select the appropriate
code. For character item, a single keystroke will be expected. for all other types of item,
the item will be made available for editing. For interactive configuration programs, the
selection keystroke has no meaning.

Pointer to Item

The pointer to item, and all the other pointers in the definition, are relative addresses
stored in a word (e.g. dc.w item-*).

Pointer to Item Pre-Processing Routine

It is possible to provide a pre-processing routine within the main program which will
be called before an item is presented for changing. This will be when the itemis selected in
a menu configuration program, or before the prompt is written in an interactive
configuration program. If there is no pre-processing routine, the pointer should be zero.
The amount of pre-processing that application program can do is not limited. It could just
set ranges, or it could do the complete configuration operation itself, including pulling
down windows.

Pre-processing Routine

Call parameters Return parameters

DO item set / error
D1+ scratch

D7 0/ Window Manager vector D7 scratch

Al pointer to description Al (new) ptr to description
A2 pointer to attributes A2 (new) ptr to attributes
A3 pointer to 4 kbyte space A3 scratch

A+ scratch

Completion codes set as DO
>0 item set, do not prompt or change
=0 ok

|

|

|

|

|

|

|

|

A0 pointer to item A0 scratch |
|

|

|

|

|

|

|

|

<0 error |
|

The space pointed to by A3 is not used by the configuration program and can be used by
the application code. Initially it is clear. The application code may use up to 512 bytes of
stack.

If DO (and the status) is returned <0, then the Configuration program will write out an
error message and stop.

Pointer to Item Post-Processing Routine

It is possible to provide a post-processing routine within the main program which will
be called for each item before configuration starts, and for each item after any item is
changed. It canbe used to set limits or other dependencies.

Post-processing Routine
Call parameters Return parameters
DO info reset / error
D1.b set this item just changed Dl.b item status (avbl/unav)

D2+ scratch
D7 0/ Window Manager Vector D7 scratch

A0 pointer to item A0 scratch

Al

A2 pointer to attributes A2 (new) ptr to attributes
A3 pointer to 4 kbyte space A3 scratch

A+ scratch

Completion codes set as DO
>0 bit 0 item reset
bit 1 description reset
bit 2 attributes reset
= ok

|
|
|
|
|
|
|
|
|
|
pointer to description Al (new) ptr to description |
|
|
|
|
|
|
|
|
|
<0 error |
|

The space pointed to by A3 is not used by the configuration program and can be used by
the application code. Initially it is clear. The application code may use up to 512 bytes of
stack. If an item description is changed, it should occupy the same number of lines as the
original description.

The status values for D1 are WSI.AVBL ($00) if the item can be changed or WSI.UNAV ($10)
if the item is not available for changing.

If DO and the status are <0, Al and A2 and the item status will not be updated, the error
messsage will be written out, no further postprocessing routines will be called, and (for an
interactive Configuration program) the item will be re-presented.

A post-processing routine can also be used to set up initial descriptions and
attributes.

Description of Item
The description of an item is in the form of a string.

Each description can have several lines, separated by newline characters. Each line
should be no longer than 64 characters, except the last line must allow space for the longest
item. Interactive programs may append a list of states or selections to the description.

Pointer to attributes

The attributes are item dependent. See item types for descriptions.

