
CCCCoooonnnnffffiiiigggguuuurrrraaaattttiiiioooonnnn iiiinnnnffffoooorrrrmmmmaaaattttiiiioooonnnn ssssppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnn

Many programs have the facility to configure themselves to set default working
parameters. More usuallythe configurationis done bya separate program which modifies the
working program file. Each program will have a different configuration program, and often
different versions of the same program will have different configuration programs too. All
this makes things verydifficultforusers.

Itis proposed thata standard configuration systemis used on allnew programs and all
new releases of existing programs. If this is done, a single configuration program can be
used on any application software file even even when several application files are
concatenated.

The advantages of this approach are obvious. There are two disadvantages. The first
is thateach program has to carry withit allthe configurationinformation which will makeit
larger. The second is that there is no simple means for doing this with compiled basic
programs. The first will not usually be a problem as it seems unlikely that a 32k program
would have more than about 20 configurable items and their associated descriptions,this
would add at most3%to the program size. The second can be overcome with alittle will.

There are two parts to this system: the first is a standard for the format of a
configurable file, the second is a program to process files. There can be any number of
programs to process files, from any number of suppliers. If the standards for the
configurable file are adhered to,then any supplier's configuration program can be used on
any(other)supplier's software.

The configuration consists ofthefollowinginformation:

ConfigurationID
Configurationlevel
Software name
Softwareversion
Listof
Type ofitem(string,integeretc.)(byte)
Item Selection keystroke(byte)
Pointer toitem
Pointer toitem pre-processingroutine
Pointer toitem post-processingroutine
Pointer to description ofitem
Pointer to attributes ofitem(item type dependent)

End word(value -1)

As time goes by,additionaltypes ofitem arelikely to be added. This willmean that new
versions of the configuration program will be required. These new versions will,of course,
be able to configure alllowerlevelconfigurable files. But,ifa old configuration program is
used,and the level specified in the configuration block is greater than thelevel supported
bythe configuration program,it willhave to give up gracefully.

The configuration ID is word aligned and is the eight characters "<<QCFX>>", this is
followed by two ASCII characters giving the configuration level(minimum "01"). The software
name is a standard string and is followed by a word aligned version identification in a
standard string(e.g. "1.13a"). The word alignedlistofitemsfollows.

1

TTTTyyyyppppeeeessss ooooffff iiiitttteeeemmmm

Level 01 supports 7 types ofitem. These are:string,character,code selection,code,
byte, word and long word. Application specific types of item can be processed by treating
them as strings which are handled entirelybyan application suppliedroutine.

String(type=0)

The form of a configurable string is a word giving the maximum string length,followed
by a standard string. There should be enough room within the application program for the
maximum length string plus one character for a terminator. There is a single word of
attributes with bits setto determine specialcharacteristics.

bit0 do notstrip spaces

Character(type=2)

A characteris a single byte,ifitis a controlcharacter,it willbe written out as a two
character string (e.g. Â = $01). There is a single word of attributes with bits set to
determine the possible characters allowed.

bit0 non printable characters
bit1 digits
bit2 lowercaseletters
bit3 uppercaseletters
bit4 otherprintable characters

bit6 cursorcharacters

bit8 controlchars + $40,translated to controlchars

Bit 8 is,of course, mutually exclusive with bits 0 to 7,although this is not checked.
The configuration blockin an application program mustbe correct.

Code(type=4)

A codeis a single byte which maytake a smallnumber ofvalues. The attributes is alist
of codes giving a byte with the value, a byte with the selection keystroke and a standard
string. Thelistis terminated with an end word(value -1). There are two forms. In the first,
the selection keystrokes are set to zero. In this case,when a code is selected,the value
willstep through allpossible values. Thisis bestsuited toitems which can onlyhave two or
three possible codes. Otherwise the user may select any one of the possible codes,either
from a list (interactive configuration programs) or from a pull down menu (menu driven
configuration programs).

Selection(type=6)

A selection is in the same form as a code, but instead of a byte being set to the
selected value, the value is treated as an index to a list of status bytes. When one is
selected,it is set to wsi.slct($80),the previous selection (if different)is set to wsi..avbl
(zero). If any status bytes are unavailable (set to wsi.unav=$10),then they will be ignored.
The firststatus bytein thelist mustnot be unavailable.

Values(types 8,10,12)

Largely self explanatory. The attributes are the minimum and maximum values. All
values are treated as unsigned.

2

IIIItttteeeemmmm SSSSeeeelllleeeeccccttttiiiioooonnnn KKKKeeeeyyyyssssttttrrrrooookkkkeeee

The item selection keystroke is an uppercased keystroke which will select the item in
the main menu. The action of selecting theitem willdepend on the item type. For a code or
select item a pull-down window may be opened to enable the user to select the appropriate
code. For character item,a single keystroke will be expected. for all other types ofitem,
the item will be made available for editing. For interactive configuration programs, the
selection keystroke has no meaning.

PPPPooooiiiinnnntttteeeerrrr ttttoooo IIIItttteeee mmmm

The pointer toitem,and allthe otherpointersin the definition,are relative addresses
storedin a word(e.g. dc.w item-*).

PPPPooooiiiinnnntttteeeerrrr ttttoooo IIIItttteeee mmmm PPPPrrrreeee----PPPPrrrroooocccceeeessssssssiiiinnnngggg RRRRoooouuuuttttiiiinnnneeee

It is possible to provide a pre-processing routine within the main program which will
be called before anitem is presented for changing. This willbe when theitemis selectedin
a menu configuration program, or before the prompt is written in an interactive
configuration program. If there is no pre-processing routine,the pointer should be zero.
The amount of pre-processing that application program can do is notlimited. It could just
set ranges, or it could do the complete configuration operation itself,including pulling
down windows.

| |
| Pre-processing Routine |
| |
| Callparameters Return parameters |
| |
| D0 item set/error |
| D1+ scratch |
| D7 0/Window Managervector D7 scratch |
| |
| A0 pointertoitem A0 scratch |
| A1 pointerto description A1 (new)ptrto description |
| A2 pointerto attributes A2 (new)ptrto attributes |
| A3 pointerto 4kbyte space A3 scratch |
| A4+ scratch |
| |
| Completion codes set as D0 |
| >0 item set,do notpromptorchange |
| =0 ok |
| <0 error |
| |

The space pointed to by A3is not used by the configuration program and can be used by
the application code. Initially it is clear. The application code may use up to 512 bytes of
stack.

If D0(and the status)is returned <0,then the Configuration program will write out an
error message and stop.

3

PPPPooooiiiinnnntttteeeerrrr ttttoooo IIIItttteeee mmmm PPPPoooosssstttt----PPPPrrrroooocccceeeessssssssiiiinnnngggg RRRRoooouuuuttttiiiinnnneeee

Itis possible to provide a post-processing routine within the main program which will
be called for each item before configuration starts, and for each item after any item is
changed. Itcan be used to setlimits or other dependencies.

| |
| Post-processing Routine |
| |
| Callparameters Return parameters |
| |
| D0 inforeset/error |
| D1.b setthisitem justchanged D1.b item status(avbl/unav) |
| D2+ scratch |
| D7 0/Window Manager Vector D7 scratch |
| |
| A0 pointertoitem A0 scratch |
| A1 pointerto description A1 (new)ptrto description |
| A2 pointerto attributes A2 (new)ptrto attributes |
| A3 pointerto 4kbyte space A3 scratch |
| A4+ scratch |
| |
| Completion codes set as D0 |
| >0 bit0item reset |
| bit1descriptionreset |
| bit2attributesreset |
| =0 ok |
| <0 error |
| |

The space pointed to by A3is not used by the configuration program and can be used by
the application code. Initially it is clear. The application code may use up to 512 bytes of
stack. If an item description is changed,it should occupy the same number of lines as the
originaldescription.

The status values for D1 are WSI.AVBL($00)iftheitem can be changed or WSI.UNAV($10)
iftheitemis notavailableforchanging.

If D0 and the status are<0,A1 and A2 and theitem status willnot be updated,the error
messsage willbe written out,no further postprocessing routines willbe called,and(for an
interactive Configuration program)theitem willbere-presented.

A post-processing routine can also be used to set up initial descriptions and
attributes.

DDDDeeeessssccccrrrriiiippppttttiiiioooonnnn ooooffff IIIItttteeeemmmm

The description ofanitem isin theform ofa string.

Each description can have several lines, separated by newline characters. Each line
should be nolongerthan 64characters,exceptthelastline mustallow spacefor thelongest
item. Interactive programs mayappend alistofstates orselections to the description.

PPPPooooiiiinnnntttteeeerrrr ttttoooo aaaattttttttrrrriiiibbbbuuuutttteeeessss

The attributes areitem dependent. Seeitem typesfordescriptions.

4

