QPTR

The Pointer Environment

Copyright 1988 QJUMP Ltd.
Reprinted under license by Jochen Merz Software

5th Edition

Contents

Introduction
The Pointer Toolkit
History, Geography, Philosophy & Economics
Sample BOOT programs
The Pointer Environment
What you get
The Demonstration Programs

Concepts

SuperBASIC
Keywords
Pointer Interface routines
Window Manager routines
Index of keywords

Assembler
Programmer's Interface
Pointer Interface
Window Manager
Setup routines
Drawing routines
Access routines
Ultility routines
Index of TRAPs and vectors
Data Structures
Pointer Interface
Channel definition block
Graphics objects
Window Manager
Window Definition
Structure
Menu Macros
Text Macros
Index of macros
Working Definition
Window Status Area

Pointer Environment Changes

Utilities

Troubleshooting

CONFIG - QJUMP's Standard Configuration

Latest improvements

35
44
52

105
107

111
117
128
130
132
140
143
147
150
151

156

Introduction

The Pointer Toolkit

The Pointer Toolkit is aimed at applications programmers who wish to produce programs of
the new "user-friendly" type. While many writers have produced very successful menu- and
pointer-driven programs, there have so far been no agreed standards, resulting in users having to
learn a new interface for each program, and each programmer having to re-invent the wheel to
implement his own menu and/or pointer system. With the advent of the QJUMP Pointer
Environment, all this is in the past. The programmer is relieved of the burden of writing the whole
of the user interface, often 90% of the programming effort, and can concentrate on providing a
good range of facilities. Users end up with a program which they know how to drive even before
they open the box.

The Pointer Environment is a complex piece of software which has been in development for
over a year at the time of writing, and is still being improved today. We therefore make no
apology for the length of this manual, nor for the amount of effort required to start using the
software: if it were an evening's work to learn all about it, it would not be a useful tool. We realise
that there are likely to be aspects of the software which programmers would like to see treated in
greater detail: anyone experiencing problems in using the software is always welcome to contact
us (preferably by letter) and we will do our best to advise.

The software is in several parts. The Pointer Interface extends and modifies the QL's standard
screen driver (the CON_/SCR_ device), taking care of the non-destructive windows and the
position and appearance of the pointer sprite (arrow, padlock etc.): in addition it provides some
extra TRAPs to read the pointer position, save window contents, write graphics objects and so
on.

The Window Manager provides a set of utilities for manipulating windows. It works on data set
up in memory, defining the size, position, colour and contents of windows. Routines are provided
to draw, move and remove a window, re-draw part of a window, and to get user input via a
window. If used from machine code then the programmer may provide routines to be called under
particular circumstances (e.g. hitting the QUIT item): from SuperBASIC the options are more
limited, since SuperBASIC procedures may not be called from within machine code routines. The
Pointer Interface must be present to use the Window Manager.

The combination of the Pointer Interface and Window Manager is called the Pointer
Environment.

The SuperBASIC Pointer Toolkit gives the SuperBASIC programmer access to the Pointer
Environment via a set of special procedures and functions. While not quite as flexible as machine
code, particularly when using the Window Manager, it provides a suitable base from which to
explore the system before attempting to use it from machine code. Both the Pointer Interface and
the Window Manager must be present to use the Pointer Toolkit.

Various applications are provided as examples of machine code and SuperBASIC programs
using the Pointer Environment: the SuperBASIC programs require the Pointer Toolkit, the
machine code ones do not. The SuperBASIC sprite editor EDSPR uses only the extension rou-
tines that call the Pointer Interface: the painting program PAINT also uses the Window Manager
routines. There is a DEMO program which was written in SuperBASIC and then re-written in
machine code: both versions do the same things, but achieve them in slightly different ways.

QPTR The Pointer Environment 1

For the machine code programmer there are some INCLUDE files of the keys needed to use
the Pointer Environment from assembler programs: a set of macros is also provided to assist with
setting up window definitions. These are suitable use with the GST Macro Assembler and Linker:
other assemblers and linkers may need modified versions.

Where to start

You should read the next section, describing the Pointer Environment and some of the
concepts it uses. Once you understand this you are well on the way to being able to write your
own programs. The next stage is to examine the DEMO program, either the SuperBASIC _BAS
version or the _ASM and _BIN assembler version, depending on how strong you feel! The demo
doesn't do anything very useful, but it does show you how to set up a simple menu with all the
facilities described.

After this, you're on your own. SuperBASIC programmers will find a description of the new
routines in the Keywords section, with a quick reference index at the end. Assembler pro-
grammers have a description of the new TRAPs in the Pointer Interface section, and the manager
vectors in the Window Manager section of the Programmer's Interface chapter. Of interest to all
will be the Concepts chapter, and the Data Structures section of the Programmer's Interface
chapter, although the latter is essential reading only for assembler programmers.

Compiled SuperBASIC

You may wish to compile SuperBASIC programs using the Pointer Toolkit to take advantage
of the increased speed and multitasking which are made possible by compiled SuperBASIC
programs. There are some problems in doing this, whether you are using Digital Precision's
Super/Turbocharge compilers or Liberation Software's Q_Liberator.

Supercharge and Turbo do not permit machine code extensions to return changed parameter
values, and so the extensions to read the pointer position, RPTR, and to set one line of a sprite,
SPLIN, will not work. Furthermore, array parameters are not permitted, so neither SPSET nor the
majority of the Window Manager extensions will work.

Q_Liberator restricts the amount of stack that a machine code extension may use to a smaller
amount than that provided by the interpreter: while both allowances are more than stated in the
QL Technical Guide, the large amount of stack used by the Window Manager causes problems
with Q_Liberated programs compiled using versions up to and including v3.12. Versions 3.21
onwards have an increased stack allowance which fixes this problem, and a utility program,
called STKINC, is provided to overcome this problem in older versions of Q_Liberator - see the
Utilities chapter for details.

Bug "fixes"

Some toolkits and extensions "fix bugs" in SuperBASIC by replacing ROM routines with their
own: where these cause more trouble than they cure the old routine may be restored using the
FIXPF utility, described in the Utilities chapter.

QPTR The Pointer Environment 2

History, Geography, Philosophy & Economics

Why the world is the way it is

As you will have noticed, all QJUMP software comes split into a number of separate
components, which need to be assembled correctly to "install" the new facilities on your QL. Why
have we made life so difficult for you?

In the beginning (always a good start, that), the QL was designed to be an expandable multi-
tasking machine, allowing you to use software from many suppliers simultanously to achieve an
environment that you can work with comfortably. If you feel that your word processor program is
too large or too slow, you can change to another one without changing your spreadsheet or
database, which must surely be an improvement over the pre-packaged "integrated programs"
available for the current series of IBM PCs and clones. The situation is very like buying hi-fi. You
can go for the music centre or tower system, with everything in one box and known to be
compatible, or you can take a little more trouble and buy separate components from different
manufacturers: the latter solution may result in a bird's nest of wire and a pile of different styled
boxes, but the performance will probably be closer to what you were after.

Given the above design philosophy, software for the QL falls into two categories. "Resident
extensions" expand the facilities available to the system, by adding new devices or SuperBASIC
procedures: RAM disks and SuperToolkit 1l are examples of resident extensions. "Transient
programs" provide services to the user, allowing you to edit text or pictures, play games or what
have you: Quill is a typical transient program. As implied by the name, resident extensions are
designet to be loaded at the start of a session, and remain resident until the QL is restarted. They
should be loaded into the "resident procedure area": space for the extensions may be reserved in
this by a call to SuperBASIC's RESPR function, and cannot be freed once allocated. Transient
programs are started by the user as required, and disappear from memory when terminated,
leaving it free for other transient programs. Space for transient programs is allocated in the
"transient program area" by SuperBASIC's EXEC procedure or QPAC II's EXEC etc. menus., and
automatically reclaimed by the operating system when the program is terminated.

A limitation imposed by the operating system in the QL is that while there are programs in the
transient program area, additional space may not be allocated in the resident procedure area. If
you try to allocate more space, using RESPR or LRESPR commands, you will get a "not
complete” error message. ldeally you will know what extensions may be required during a
session, and arrange for them all to be loaded before starting any programs. In an emergency
you can remove all transient programs so that another extension can be loaded, but this is not
very convenient! The reason for the limitation is that transient programs "live" just below resident
extensions in the memory, both "grow" downwards, and transient programs cannot be moved to
make space for new extensions.

QPTR The Pointer Environment 3

The reason for QJUMP's software being split into separate components thus becomes clear.
Some components can be written in such a way that they extend the facilities available via
operating system, for instance by adding new devices or extending old ones. The Pointer
Interface extends the Screen Device Driver, the SPELL device is a completely new one. These
extended facilities can then be used, not only by the other components of the software package
as supplied, but also by other software writers in their own code. The benefits of this approach
are manifold. Firstly, any "dirty" code that is required can be buried out of sight in the extensions,
so applications that use them can be totally clean: if any problems arise from the dirty code then
only the extensions need be changed. Secondly, the extensions will often provide much of the
"difficult" code: writing a menu-driven spelling-checking word processor is much simpler if you
don't have to consider how to implement pull-down menus or the best method of complessing a
word list. Thirdly, applications can be smaller, leaving more space for further applications or user
data, and making them easier to debug. This is particularly valuable with the Pointer Environ-
ment, which occupies about 25k. If it were included in indivdual programs, then they would be
approximately that much bigger, and you would not get the benefit of non-destructive windows in
other programs.

So the typical QJUMP software package consists of a set of "public" extensions, which are
loaded in by your BOOT program, plus the application itself, which may be EXECuted as
required. The applications themselves tend to be quite small, because they share the extensions
with others.

Where it is useful to run more than one copy of an application at once, a further trick may be
addeed: a separate job may be started for each copy, but the same code can be shared by both
jobs, thus economising on the total space required. This will only work if the application has been
written properly, so that is does not modify its own code or embedded data. In this case the code
is said to be "re-entrant". This approach is used by the "hotkey" facility provided by the QRAM
package, and is improved by the HOTKEY System II, which comes with QTYP II, QPAC II, QD or
the QL-Emulator for the ATARI ST. Each time when a given hotkey is pressed a new copy of an
application is started as if executed from microdrive or disk, but without the same speed or
memory penalty.

QPTR The Pointer Environment 4

Some sample BOOT files

The QL's BOOT facility is intended to be used to set up the QL with all the resident extensions
required for a session, which may come from many different sources. The BOOT file is also used
in much commercial software to give users instant access to their new software - many users
never progress beyond this point, but re-boot their QLs every time they wish to change programs!

Modifying your existing BOOT program to cope with new software can vary from the very easy
to the impossible. Very easy BOOT files would consist of EXEC devN_filename, in which case no
changes are necessary to your own BOOT. Difficult conversions are where the software's original
BOOT file indulges in copyright messages, pretty borders, playing tunes or other methods of
obscuring the useful bits of code. Impossible BOOT files are those which include POKEs, or start
an application with a CALL statement - these can sometimes be used, but require the attention of
an expert machine code hacker to convert them to a sanitary form.

To modify your BOOT program, you will have to determine which resident extensions are
needed to run the software. This may be apparent from the manual, or can be found by
examining the software's own BOOT file: any code loaded by statements of the form:

base=RESPR(size):LBYTES devN_filename,base:CALL base

may be assumed to be a resident extension. The statements can be copied into your own
BOOT file at the appropriate point, and the file itself copied to your normal BOOT disc. The
above form may be scattered over a number of lines, or obscured by reserving just one area with
the RESPR call and LBYTESIing several files into it, but the principle remains the same.

In the following examples, the file sizes given are not necessarily accurate: you should use the
QRAM Files menu or SuperToolkit Il to find the actual size required. It is assumed that the boot
medium is in "flpl_": this can of course be changed to any device of your choice. All the
examples use the "ptr_gen" version of the Pointer Interface, which works with the QJUMP
Internal Mouse Interface, the QL-Emulator for the ATARI ST or the Sandy SuperMouse interface,
as well as the keyboard. It supersedes previous versions of the Pointer Interface such as
"ptr_kbd", "ptr_imi" and that invoked by the Sandy SuperMouse POINTER command.

1)A simple BOOT file to load and enable QRAM

100 base=RESPR(12388):LBYTES flpl ptr gen,base:CALL base
110 base=RESPR(7762):LBYTES flpl wman,base:CALL base

120 base=RESPR(25882):LBYTES flpl hotkey,base:CALL base
130 HOTKEY

The HOTKEY statement in line 130 starts a transient program called HOTKEY, which is
responsible for acting on the "ALT /" keystroke and starting QRAM. Once this program is
present, it is impossible to reserve space for any more resident extensions without removing the
HOTKEY program, so the HOTKEY statement will always occur after all the RESPR statements
in the BOOT file.

QPTR The Pointer Environment 5

2) Including SuperToolkit Il with QRAM

100
110
120
130
140
or
100
110
120
130
140

base=RESPR(16384):LBYTES flpl tk2 rext,base:CALL base
base=RESPR(12388):LBYTES flpl ptr gen,base:CALL base
base=RESPR(7762):LBYTES flpl wman,base:CALL base
base=RESPR(25882):LBYTES flpl hotkey,base:CALL base
HOTKEY

TK2 EXT

base=RESPR(12388):LBYTES flpl ptr gen,base:CALL base
base=RESPR(7762):LBYTES flpl wman,base:CALL base
base=RESPR(25882):LBYTES flpl hotkey,base:CALL base
HOTKEY

Line 100 initialises SuperToolkit Il, in the first case from a file "tk2_rext" produced using the
configurable version of the toolkit, in the second case from the ROM on a suitably-equipped disc
interface.

3) A BOOT file for QRAM and QTYP together

100
110
120
130
140

base=RESPR(5424):LBYTES flpl qtyp_spell,base:CALL base
base=RESPR(12388):LBYTES flpl ptr gen,base:CALL base
base=RESPR(7762):LBYTES flpl wman,base:CALL base
base=RESPR(29538):LBYTES flpl hotkey,base:CALL base
HOTKEY

As for the SuperToolkit II example, the SPELL extensions are loaded in the normal way: the
QTYP program itself is assumed to be included in the "flpl_hotkey" file with QRAM.

4) SuperToolkit II, QMON, QRAM, QTYP, QPTR, and RAM disc

100
110
110
120
130
140
150
160
170
200
210
220
230
240
250
260

base=RESPR(16384):LBYTES flpl tk2 rext,base:CALL base
base=RESPR(11242):LBYTES flpl gmon_bin,base:CALL base
base=RESPR(5424):LBYTES flpl qtyp_spell,base:CALL base
base=RESPR(12388):LBYTES flpl ptr_gen,base:CALL base
base=RESPR(7762):LBYTES flpl wman,base:CALL base
base=RESPR(29538):LBYTES flpl_ hotkey,base:CALL base
base=RESPR(9234):LBYTES flpl gptr,base:CALL base
base=RESPR(5108):LBYTES flpl ramprt,base:CALL base
HOTKEY
OUTLN #0;512,256,0,0
IF RMODE=8 THEN

WINDOW #0;448,40,32,216
ELSE

WINDOW #0;512,50,0,206
END IF
AT #0;1,0

This loads all QJUMP products. Apart from having to load "wman" after "ptr_gen", the order of
files is unimportant. As usual, the call to HOTKEY must come last. Lines 200 onward are needed
if the Pointer Toolkit is to function correctly.

QPTR The Pointer Environment 6

5) QRAM and Jochen Merz's QD

100 base=RESPR(12388):LBYTES flpl ptr gen,base:CALL base
110 base=RESPR(7762):LBYTES flpl wman,base:CALL base

120 base=RESPR(25882):LBYTES flpl hotkey,base:CALL base
130 base=RESPR(14386):LBYTES flpl menu_rext,base:CALL base
140 HOTKEY

QD Version 2 or 3 from Jochen Merz Software requires the Menu Extension if it is to run, so
the "menu_rext" file is loaded in the BOOT file. A copy of this Editor may then be started at any
time by EXECuting it from SuperBASIC, thus:

EXEC flpl QD

It may also be started from QRAM's or QPAC II's Files menu, of course.

6) QRAM and Q_Liberator runtime system and extensions

100 base=RESPR(10016):LBYTES flpl glib_run,base:CALL base
110 base=RESPR(1928):LBYTES flpl glib _bin,base:CALL base
120 base=RESPR(1476):LBYTES flpl glib_ext,base:CALL base
140 base=RESPR(12388):LBYTES flpl ptr gen,base:CALL base
150 base=RESPR(7762):LBYTES flpl wman,base:CALL base

160 base=RESPR(25882):LBYTES flpl hotkey,base:CALL base
170 HOTKEY

This example loads the extensions used to run the Q_Liberator compiler, which may then be
run as detailed in the manual. As the runtime system is also loaded, any Q_Liberated programs
which do not include it may also be EXECuted.

QRAM is supplied with a utility called BOOT_MAKE, which may be used to speed loading of
resident extensions by putting them all into one long file, which loads faster than many shorter
files. As a side-effect, there may be a slight reduction in the amount of memory required.

BOOT_MAKE produces two files, a SuperBASIC file normally called "flp1_boot", and the
resident extensions file which is of the same name but with the extension "_rext". Extension files
may be copied from any number of source media into the " rext" file, changing the source
medium as required: as the destination medium is always being written to, it must stay in the
drive until BOOT_MAKE has finished. The dialogue to produce an BOOT file equivalent to that
described in example 5 above might be as follows:

Boot filename> flpl boot

Command (ESC to finish)>

Extension file (ESC to finish)> flp2 xtras
Extension file (ESC to finish)> flp2 ptr_ gen
Extension file (ESC to finish)> flp2 wman
Extension file (ESC to finish)> flp2 hotkey
Extension file (ESC to finish)>

Command (ESC to finish)> hotkey

Command (ESC to finish)>

The resulting BOOT file would be

100 base=RESPR(52106):LBYTES flpl boot_rext,base:CALL base
110 hotkey

QPTR The Pointer Environment 7

Pointer Environment

The Pointer Environment for the QL is a comprehensive display- handling interface which im-
proves on the QL's simple window system. It differs from the QL's standard interface in two
respects. Firstly, the interface allows overlapping non-destructive windows. Secondly, a window
(and by association a job) may be selected for attention directly, using a pointer, as well as
indirectly, using the "CTRL C" key on the keyboard.

These differences are intended to be as invisible as possible to existing software: in particular,
a considerable amount of time has been spent ensuring that the commonly-used Psion packages
will run happily. The major implication of the differences is that significantly more memory is
required when using the Pointer Environment.

The Pointer Environment is implemented as two levels. The normal entry is to the Window
Manager level, which handles windows and menus. The Pointer Interface level is used by the
Window Manager and provides extra Trap #3 entries as used for standard 10 operations.

Pointer

All pointer input from the user is directed to a point on the display. The pointer may be visible
or invisible, and it may be moved by the cursor keys, joystick or pointing device or else its
position may be set directly, either by the Window Manager as a result of a single keystroke, or
by an application program.

An object shown on the display may be "hit" by moving the pointer to the object and pressing
SPACE, the fire button on a joystick or the left button on a mouse. Within a menu, a keystroke
may cause a "hit" as well as setting the pointer position. This allows a menu to be treated either
as a single key command system, or else as a point and hit menu system. A "hit" on an item will
usually select or de-select that item, but only rarely causes other action to be taken.

ENTER or the right mouse button is known as "do": this differs from a "hit" in that it usually
selects the current item and results in an action being performed. The exact interpretation of the
difference is ultimately left to the programmer.

Note that an application may only get pointer input from a "managed" window. It is thus very
important that any window intended for pointer input should have had its outline set, to signal to
the Pointer Interface that it is managed: see the SuperBASIC Keywords section, the Concepts
chapter, and the Assembler Programmer's Interface section for details.

QPTR The Pointer Environment 8

Windows

In the context of the Pointer Environment, a window is more than just a portion of the display.
An application using the display has just one primary window. Sub-windows may be enclosed
within this window, allowing multi-window operation of application programs. An application may
open secondary windows within its primary window, but it may not use the area of the display
outside its primary window. A secondary window may have sub-windows itself, each enclosed
within the secondary window area. Such secondary windows are frequently used to provide
pull-down menus. Depending on the complexity of the application, it may be useful to pull down
further windows from within a pull-down menu: these "daughter” pull-down windows are limited to
be within their parent primary, not their parent pull-down, otherwise pull-down menus would have
to get progressively smaller!

The distinction between a sub-window and a secondary window is that a sub-window is merely
a division of a window: it does not have its own channel. A secondary window, however, is a
genuine 10 channel with its own independent existence. The Window Manager utilities assume
that when one or more secondary windows have been pulled down, all IO operations by that job
will be carried out within the most recently pulled-down secondary until it is thrown away.

The size and position of a window (primary or secondary) may be changed by the job that
owns it at any time: it is up to the programmer to provide this facility, where appropriate, to
enable the user to adjust the display to execute as many jobs as he wishes at any one time.

Where primary windows overlap, the window below is locked until the window above is moved
or removed, or the window below is brought to the top of the pile. It is possible to move a window
to the top of the pile by "hitting" it. While a window is locked it may not be modified, so
applications which rely on continuous modification of their windows (e.g. the ubiquitous clock
programs) will not work as intended. It is possible to unlock windows, so that they become
destructive.

Menus

The Window Manager includes facilities for handling menus. A menu is a collection of items
which may be "hit". Menu items may be of several types: text, blobs, patterns and sprites. Menu
items may also have several uses. "Hitting" an item may cause an action, it may select the item
for some future action or it may cause a further pull down menu window to be invoked.

The primary window, and any other window pulled down, is treated as a menu. There are a

number of standard menu items which will appear in many windows: these have standard "hit"
keystrokes which should be used to keep software consistent between different packages.

QPTR The Pointer Environment 9

CANCEL should always be present to enable a window to be removed without doing any (further)
operation. This item should be "hit" by the keystroke ESC.

HELP should usually be present to provide assistance to the user. This item should be "hit" by
the keystroke F1.

DO may sometimes be present to do any actions set up within the window. This item should be
"hit" by the keystroke ENTER.

MOVE should usually be present to allow the window to be moved. This item should be "hit" by
the keystroke CTRL F4.

SIZE will be present if it is possible to change the size of a window. This item should be "hit" by
the keystroke CTRL F3.

WAKE will be present if it is possible to update the contents of a menu. This item should be "hit"
by the keystroke CTRL F2.

SLEEP allows you to put the current menu to sleep, which means, set it to a button. This item
should be "hit" by the keystroke CTRL F1.

A window is usually divided into sub-windows. There are information sub-windows, which are
used for titles, general information etc.. There are menu sub-windows, which are used for col-
lections of similar items under the control of the Window Manager level. And there are application
sub-windows which are only used by the application code. An application sub-window has a
similar structure to a menu sub-window, but omits part of the standard definition.

It is not necessary for menu items to be within a menu sub-window, they can be put anywhere
within the window. This type of item is termed a loose menu item.

Sub-Windows

The function of the menu and application sub-windows is defined by the application itself
(hence the name). Frequently they will be used to display large amounts of information, facilities
being provided to scroll, pan or fold this information if there is not enough room for all the items or
information within the sub-window.

The menu items for scrolling, panning and folding a sub-window are part of the definition of a
sub-window, and should appear whenever the sub-window is too small to display all the
information.

There may be a "scroll bar" to the right of a scrollable sub-window. This scroll bar is a map
showing the portion of the sub-window contents which is actually visible within the vertical range
of the sub-window contents. "Hitting" the scroll bar will scroll the sub-window to the hit position.
Within the sub-window there may be arrow bars to allow the sub-window to be scrolled a row or a
page at a time.

Similarly there may be a "pan bar" below a pannable sub-window. Panning and scrolling may
also be invoked by ALT arrow and SHIFT ALT arrow keystrokes.

Folding a sub-window is accomplished by splitting the sub-window and independently scrolling
or panning part of the sub-window. In order to keep track of which parts of a folded sub-window
are visible, there may be an index row above the sub-window or an index column to the left of the
sub-window (or both). Splitting or joining the parts of the sub-window is accomplished by a "do"
keystroke on the scroll or pan bar to the right of or below the sub-window.

QPTR The Pointer Environment 10

Objects, Items etc.

An object is something represented on the display. An object may be text, a sprite, a pattern
or a blob. Text is just readable characters. A sprite is a picture of something, on a transparent
background: a sprite is the only type of object which may be used as both a pointer and a menu
item. A pattern is a (repeating) pattern of colours, but has no limits and so no shape. A blob
defines a shape, but has no colour or pattern. Combining a blob with a pattern produces a visible
object.

An item is part of a menu. An item may consist of more than one object. All the objects
comprising an item are linked together, and so "hitting" one object within an item selects all the
objects. To simplify the code and to make execution as fast as possible, all the objects within one
item should be contiguous within the object list.

There are three main states for a menu item: unavailable (cannot be selected), available and
selected. In addition, an available or selected item may be the current item (the item that the
pointer points to) or not. The current item is indicated by a border around it, and the three main
states are indicated by various colour attributes, blobs or patterns.

Window Definition

When a window is pulled down, or redrawn, the window definition provides all the information
required to draw the window, its border, the menu items in the window, the sub-windows and
their borders and the menu items within the sub-windows. After a window is pulled down, the
menu definition provides all the information to process hits. Unfortunately, because a window
may be moved and have its size and shape altered, much of the information will tend to be
variable. The basic window definition is treated as invariant, as this will usually be either in ROM
or in program RAM. On setting up a window, a variable RAM based "working definition" will be
created. The table overleaf shows the structure of a window definition: it is described in more
detail in the Data Structures section of the Assembler chapter.

QPTR The Pointer Environment 11

Window definition
window size
window origin
window attributes
window pointer sprite
window help pointer
loose menu item attributes

loose menu object list
object hit area
object justification rules
object type (text, sprite, pattern, blob)
object selection keystroke
object pointer
item number
action routine pointer

information sub-window list
information sub-window size
information sub-window origin
information sub-window attributes
information object list
object size
object origin
object type (text, sprite, pattern, blob)
object attributes
object pointer

application sub-window list
menu / application sub-window size
menu / application sub-window origin
menu / application sub-window attributes
pointer sprite pointer
setup routine pointer
draw routine pointer
hit routine pointer
control routine pointer
maximum number of control sections
sub-window selection keystroke

sub-window control definitions
control block pointer
index size/spacing
index item attributes
control item attributes

QPTR The Pointer Environment

12

menu item attributes

number of columns and rows
offsets to start of columns/rows
object spacing lists

object spacing

object hit area
row list

start object pointer

end object pointer
object lists

object justification rules

object type (text, sprite, pattern, blob)

selection keystroke
object pointer
item number

action routine

Event Vector

The event vector is a record of all the events which have occurred since a call was made.
There are several levels to the complete Pointer Environment. On entry to each level, its events
in the vector are cleared: on return through a level, the events which have occurred within that

level are added to the vector.

The vector is a long word, each major level has 8 bits reserved for its own events

Pointer level bit 0 keyclick
bit 1 key down
bit 2 key up
bit 3 pointer moved
bit 4 pointer out of window
bit 5 pointer in window
bit 6
bit 7
Sub-window level bit 8 sub-window split
bit 9 sub-window join
bit 10 sub-window pan
bit 11 sub-window scroll
bit 12
bit 13
bit 14
bit 15
Window level bit 16 do
bit 17 cancel
bit 18 help
bit 19 move window
bit 20 change size
bit 21 sleep
bit 22 wake
bit 23

QPTR The Pointer Environment

13

What you get

The following two files are used to add the Pointer Toolkit facilities to the QL when you start it.
You will probably wish to merge the BOOT file with your existing BOOT to include other
extensions.

BOOT

BOOT_REXT contains PTR_GEN, WMAN, QPTR and STK2

Qram owners wishing to re-create their BOOT_REXT to include the Pointer Toolkit and
upgraded Pointer Interface and Window Manager should include these files in this order. The
PTR_GEN version of the Pointer Interface supports the QJUMP Internal Mouse Interface, the
Thor and Atari ST keyboard and mouse interfaces, and the Sandy SuperQBoard with mouse
interface. If for some reason you have both the SuperQBoard and QIMI then the QIMI is used.
SuperQBoard owners should omit the POINTER command from their BOOT file, as PTR_GEN
replaces and upgrades the built-in version of the Pointer Interface. If you have SuperToolkit Il
then you can omit STK2.

PTR_GEN Pointer Interface, general version
WMAN Window Manager

QPTR SuperBASIC Pointer Toolkit

STK2 cut-down version of SuperToolkit Il

The following three files are SuperBASIC demonstrations of the Pointer Toolkit.

DEMO_BAS SuperBASIC version of the demo

PAINT_BAS painting program, uses the Window Manager

PAINT compiled version of the above

EDSPR_BAS sprite designing program, does not use the Window Manager

The following files contain the assembler sources for a machine-code version of the above
DEMO_BAS program, suitable for assembling and linking using the GST Macro Assembler. The
last four are: two files of keys required, the linker command file to link with, and a ready-
assembled and linked version of the program.

DEMO_ACTION_ASM action and hit routines

DEMO_DRAW_ASM
DEMO_INIT_ASM
DEMO_MLYOT_ASM
DEMO_MMAIN_ASM
DEMO_SETUP_ASM
DEMO_SPRITE_ASM
DEMO_TEXT_ASM
DEMO_WMAN_ASM
DEMO_KEYS
DEMO_SMS
DEMO_LINK
DEMO_BIN

window drawing routine
initialisation and termination

menu layout

main menu definition

menu setup routine

sprites used in the demo

text used in the demo

action routines that call the Window Manager
keys for the above files

SMS2 keys used in the above files
linker command file

assembled version of the demo

QPTR The Pointer Environment 14

The following files may be INCLUDEd in your own assembler files to define suitable symbols
for the manipulation of the data structures in the Pointer Environment.

WMAN_KEYS keys for vectors etc.

WMAN_WDEF window definition structure
WMAN_WSTATUS window status area structure
WMAN_WWORK working definition structure
WMAN_MENU_MAC menu generating macros
WMAN_TEXT_MAC text string generating macros

QDOS IO keys used to access the Pointer Interface
QDOS_PT external keys for the Pointer Interface
PTR_KEYS internal keys for the Pointer Interface
KEYS_ COLOUR some useful colours

KEYS K symbolic names for keystrokes

Two utility programs are provided to modify screen images and compiled SuperBASIC
programs. There is also a procedure to restore the ROM definitions of SuperBASIC procedures
and functions. These are documented in the Utilities chapter.

CVSCR convert screen utility
STKINC stack increase utility
FIXPF SuperBASIC "ROM restore" utility

Versions of the Pointer Interface and Window Manager as shipped with Qram v1.07 are
included - they will only be of interest to writers of commercial software who wish their products to
be compatible with older versions of the Pointer Environment.

OLD_PTR_KBD old version of Pointer Interface (v1.05)
OLD_WMAN old version of Window Manager (v1.03)

CONFIG - the standard configuration program - is explained in the last part of this manual.
Two files are provided to allow you to implement own configuration blocks in your assembly

programs.
CONFIG the CONFIG program itself
CONFIG_MAC macros for setting up config blocks

CONFIG_DEMO_ASM a demonstration of the use of the macros

QPTR The Pointer Environment 15

The Demonstration Programs

Four demonstrations are included with the Pointer Toolkit. The SuperBASIC ones will all run
on a QL as set up by the BOOT file supplied. When you get to the stage of reconstructing your
own BOOT file to add QPTR to it, you should note that the demos use SuperToolkit Il routines,
as included in the STK2 file. In addition, it is vital that SuperBASIC is flagged as "managed" -
lines 110 to 160 of the BOOT file supplied contain the magic to do this, and may usefully be
copied into your own BOOT file.

Two of the demonstrations are of no practical use, but serve to compare and contrast the way
in which the facilities of the Pointer Environment are used from SuperBASIC and machine code.
These are the files starting with the DEMO _ prefix.

The SuperBASIC program EDSPR demonstrates that it is possible to write pointer-driven
programs without using the Window Manager parts of the Pointer Toolkit: you should also find it
of use when designing sprites for use in machine code programs.

The SuperBASIC program PAINT demonstrates one or two areas of the Window Manager
interface not used in the DEMO _files, such as partial window operations and the graphics object
drawing operations.

Both EDSPR and PAINT have been successfully compiled and run, using the Q_Liberator
compiler: a compiled version of PAINT is supplied. If you re-compile PAINT, you may need to
process the result with the STKINC utility to run it, as it uses the Window Manager. EDSPR may
be compiled and run as is, because it does not use the Window Manager. See the Utilities
chapter for more detalils.

The DEMOQO_ programs

The DEMO_ programs come in two versions: the version ending in _BAS is SuperBASIC, and
may be LOADed and RUN in the normal way: the version ending in _BIN is machine code, and
may be EXECuted from the SuperBASIC command line or the FILES menu of Qram.

Programs using the Window Manager go through a number of similar stages in their
execution. They start by using the pointer information TRAP IOP.PINF to find the Window
Manager vector. This may fail due to the absence of either the Pointer Interface or the Window
Manager, it which case the program will probably have to give up. SuperBASIC programs find the
Window Manager vector every time a Pointer Toolkit routine which requires it is used.

The next stage is to combine the static definition of the initial window with any dynamic
information that may be required. The static definition is normally contained within the program
itself, either in SuperBASIC DATA statements or in a Window Definition generated by the
assembler using the macros provided or DC.x directives. The dynamic information may be
generated before, during or after the conversion of the static definition to a "working definition", or
any convenient combination of the three. For instance, the assembler version of the demo has a
zero pointer to the "You have used the BEEP..." information in its static definition, and generates
the complete string and resets the pointer in the working definition once the working definition
has been mostly set up by the WM.SETUP routine.

Once a working definition has been generated, the window may be positioned and drawn - this

is one operation in SuperBASIC, and two in machine code. User-defined code may be supplied to
draw some non-standard parts of the window, for instance the musical staff in the demo program.

QPTR The Pointer Environment 16

Now that the window is visible, input may be invited and acted upon. In machine code, the
Window Manager can be made to do some of the hard work of deciding what the input consisted
of and calling an appropriate action routine. In SuperBASIC this selection of an action routine has
to be done by the SuperBASIC program itself.

The SuperBASIC version splits into three major units. Lines 1000 to 9999 contain the "action”
part of the program, which sets up the data structures and changes them in response to user
input. Lines 10000 to 19999 contain the "initialisation" part of the program, and also the data
used to describe the window layout. Lines 20000 onwards contain "setup" routines usable in any
SuperBASIC programs to set up window definitions.

The window you see is defined by the contents of the DATA statements in lines 12000 to
19999. It has four "loose menu items", defined in lines 12620 to 12720. It has two "information
sub-windows", defined in lines 12840 to 12960: these contain two and one "information items"
respectively, defined in lines 12730 to 12830. There are two "application sub-windows": the one
defined in lines 13550 to 13590 has a short definition, implying that anything happening in that
window needs to be dealt with by SuperBASIC. The second application sub-window is also a
menu sub-window: the items it contains are defined in lines 12970 to 13140, their "spacing lists"
in the X and Y directions in lines 13150 to 13320, and the "row list" splitting the linear item list
into rows in 13330 to 13420. The "control definition" is set up in lines 13430 to 13500: this gives
the two independently-scrollable sections. Three sprites are defined in lines 12200 to 12610: the
first two are used as pointers, the last in the "move window" loose menu item. One set of
standard colours and window attributes are used for all items and windows: these are defined in
lines 12110 to 12190 and 12040 to 12100 respectively.

The definitions mentioned above are initialised by the setup functions and procedures at the
end of the program. These expect DATA statements of the appropriate form, which are READ
into arrays and the data structures set up by calling the corresponding MK_xxx function which is
provided by the Pointer Toolkit. The result of this is passed back and may be used in subsequent
DATA expressions: for instance, the main application window table, defined in lines 13520 to
13670, is then referred to in line 13740 by a DATA statement defining the contents of the window.
The variable used here is main_awt: similarly the other variables main_sprite, main_lot and
main_iwt have been defined earlier and are now referred to when setting up the main definition.
The necessity to do this results in the "bottom-up" sequence of window definition in SuperBASIC,
as opposed to the "top-down" sequence possible in assembly code, and which is probably more
readable.

Once set up, the "action" part of the program then uses the Pointer Toolkit procedure
DR_PULD to draw the window, and waits for user input by using the RD_PTR procedure. The
result of the input is then acted upon. If the input occurred in the first application sub-window,
then a note of the appropriate pitch and duration is played: clearly, any action could be taken
here, depending on the application, so such sub-windows are very flexible but require more effort
on the part of the programmer. The second sub-window, being a menu sub-window, is taken care
of entirely by the Window Manager. Finally a hit on a loose menu item produces a returned
sub-window number (swnum%) of -1, and radically different effects depending on which item is
hit. Quit is quite simple, and just stops the program after discarding the window contents with a
call to DR_UNST: ALL copies its resulting state to all items of the menu sub-window, and
re-draws that sub-window: BEEP makes a simple beep, and changes and re-draws an
information sub-window: and the move window item uses the supplied routine to move the
window, and then resets its own state to available. The SELect ON construction here is peculiar
to the SuperBASIC interface to the Window Manager. In the machine code version each item has
its own "action routine" which is called as a result of the Window Manager having done its own
equivalent of the SELect ON.

QPTR The Pointer Environment 17

The machine code version in DEMO_BIN is made up of all the _ASM files, assembled and
linked together as specified by the LINK file. MENU_ASM and SPRITE_ASM define the data
structures, INIT_ASM and SETUP_ASM convert them into a "working definition", DRAW_ASM
provides a routine for drawing the staves in the first application sub-window, and ACTION_ASM
provides all the routines used to act on user input. The principal difference in operation between
this demonstration and the one written in SuperBASIC is that all actions are called directly from
the Window Manager: the only action resulting from the initial call to WM.RPTR returning is after
Quit has been hit to kill the job off.

The status area for the window is set up in the job's data area, which is pointed to by A6. A
small amount of space is left below this to keep information which does not belong in the
window's status area, such as the Window Manager vector. Note the use of dummy COMMON
blocks to allocate the correct amount of space for the status area, the menu status block, the
section control block and the variable information item. This method of making the Linker do all
the hard work does take extra time when re-assembling and linking the program, but saves more
by removing the need to check every file manually when a small change is made.

The EDSPR program

This simple program may be used to design sprites, blobs and patterns for use in other
programs. It produces output that can be assembled directly to produce sprite definitions, or
edited to produce blobs or patterns. You will also need to edit the output for use in SuperBASIC
programs. To convert a sprite to a blob, you should remove the pattern and set the relative
pointer to it to zero. Sprites to be used as patterns must be a multiple of 16 pixels wide, but
require no modification. To generate a graphics object that is valid in more than one mode,
separate definitions for each mode should be linked together by altering the relative pointer from
its default zero value.

You are provided with a 5x5 initial grid, with each block representing one pixel of the sprite to
be designed. The grid may be expanded and contracted in both directions by using the ADD and
DELete ROW and COLumn items found in the Functions menu: the pointer sprite will change to
show which function is currently active. Pixels may be set to any colour or transparent (black and
white stipple) by selecting the required colour from the palette to the left of the main editing grid.
The area above the palette signals the currently selected colour, and also acts as a "test area" so
that you can see what the sprite you are designing looks like actual size and on varying
backgrounds.

The Functions menu also allows you to set the origin of the sprite and to change display
modes. After using either of these options, or selecting SET PIXel mode, or changing the colour
to be used, the program is in SET PIXel mode and the pointer is the default arrow.

The Files menu gives you the options of saving or loading sprites designed with EDSPR: the
filename is made up of the program default plus the given name plus the _ASM extension. The
file format is suitable for assembling with the GST Macro Assembler, and also includes a
human-readable copy of the definition: this is what is used when loading a sprite design.

QPTR The Pointer Environment 18

The PAINT program

This program demonstrates pull-down windows, menus of sprites, patterns and blobs, and the
various graphics object-drawing routines. It was developed progressively as a test-bed for the
Pointer Toolkit, and is thus of fairly modular construction but of only moderate readability! To
document it fully would double the size of this manual, so we suggest that you make a listing, and
experiment with the program.

The area that you can work on defaults to a size of 640x640 pixels: you can move about this
area as required, using the MOVE option from the Tools menu. If you convert an existing
512x256 screen image using the CVSCR utility supplied, and load this, you will not be able to
move as far.

The Files menu allows you to save or load all the picture, or just the paste buffer: if you hit the
filename then you can enter a different name to be used for the save or load operation. The
selected operation will take place when you hit the OK item or do a "do" keystroke.

While drawing, a "hit" will usually start drawing whatever object has been selected in the Tools
menu. Further "hits" will draw a line or flip between changing an ellipse's aspect ratio and its size/
inclination. A "do" will draw the object at its currently shown position, and an ESCape will
abandon the current object. While in "doodle" mode, a "hit" will drop a blob or sprite, and a "do"
will draw a line of blobs (but not sprites) from the last blob dropped to the current pointer position.

The spray option allows densities of between 5% and 95% when spraying patterns: note that
with a combination of a small brush (blob) and a low density you may find that no pixels are
sprayed.

Cut and paste work on rectangular areas smaller than the drawing area. If you wish to import
an existing screen into the PAINT program, some work is necessary, as a whole 512x256 screen
is too big to paste into the drawing area. The recommended method is as follows:

a) convert the screen image using the CVSCR utility

b) within PAINT, LOAD the converted image (ALL the picture, not the paste BUFFER)

¢) use CUT and SAVE BUFFER to carve out the chunks you want from the screen image

d) re-start PAINT, or load a bigger picture to get back to a large picture area

e) use LOAD BUFFER and PASTE to put the chunks of the screen image where you want them

The Brush menu allows you to select various sizes and shapes of brush, which are combined
with the selected paint when spraying or doodling. There are also two sprites (a flower and an
apple) which are used directly, and not combined with the current paint. You may either hit the
required brush and then the OK item, or "do" the required brush to select it.

The Paint menu provides access to various patterns with which to draw, and is used in a
similar way to the Brush menu. The patterns at the top of the menu are all the possible
checkerboard combinations of the colours available in the current mode, and may be used to
draw objects of any sort. Lower down you will find various special patterns which can only be
used when in the doodling and spraying modes: these become unavailable if the line, ellipse or
block modes are selected. The first four or eight of these special patterns are stipples of the basic
colours with "transparent” ink, which allow you to blacken, whiten, redden etc. parts of your
drawing. There are also red gingham and brickwork patterns, two sizes of latticework with
transparent holes in, and a green and transparent grass pattern.

QPTR The Pointer Environment 19

The "Buffer" paint converts the contents of the paste buffer into paint, which may be used for
doodling or spraying. The area saved in the paste buffer must be at least 16 pixels wide, this
being the minimum allowable width for a pattern. When you select this option, the Paint menu is
thrown away and you must position the pattern to line it up with the existing picture as required -
this is similar to the "paste" option in the Tools menu. In this case, however, the buffer is only
pasted in temporarily, and it is truncated in the horizontal direction, so that the width is a multiple
of 16 pixels.

QPTR The Pointer Environment 20

Concepts

This chapter is intended as a reference guide to the new concepts introduced by the Pointer
Environment, as well as some old ones that have acquired a new significance within the Pointer
Environment. Any terms used in the description of a concept that themselves have a description
in this section are shown in Courier thus.

Action routine

Any item, be it a loose menu item or member of a menu sub-window, may be
provided with an action routine. This will be called from within the Window Manager
whenever a "hit" or "do" keystroke is made and the item is the current item and the item is not
unavailable.

Within the Pointer Toolkit only pre-defined action routines are used, as it is not possible to call
SuperBASIC routines from machine code.

Application object 1list

The objects in a menu sub-window are grouped into one or more application object
lists (in SuperBASIC, one list only). The list is arranged into rows by the sub-window's row
list.

An application object list defined from SuperBASIC also contains, at the start, the set of item
attributes which are to be used with the objects defined in the list.

Application spacing list

The objects in a menu sub-window are arranged in a regular array of rows and
columns: however, these rows and columns need not all be of the same height or width. A pair of
spacing lists is required, one for the rows and one for the columns: there must be as many entries
in the row spacing list as there are rows, and similarly for the columns. An entry in a spacing list
defines (a) the size of the object itself, and (b) the spacing between the start of this object and the
next: this should obviously be greater than the size of the object! If a row, say, consists of a
number of objects of various heights, then the corresponding entry in the row spacing list should
allow just enough space for the highest object.

Application sub-window

An application sub-window is an area of an application's window used for a particular purpose,
for instance the drawing area in a drawing program or a file list in a file copying utility. Since the
uses of such an area are very variable, the Wwindow Manager requires the application

program to provide routines to draw, read the pointer in, and modify such a sub-window.

A special case of an application sub-window is a menu sub-window, which can use some
special routines provided by the Window Manager.

QPTR The Pointer Environment 21

Application sub-window list

The application sub-window definitions used in any window will all take up different amounts of
memory, depending on their complexity. It is therefore impossible to arrange them into a list in
the same way as, say, loose menu items, which are all the same size. An application
sub-window list of regular-sized entries is therefore used, which consists of a set of pointers to
the sub-window definitions, followed by a pointer with a "silly" value (zero, in fact) which marks
the end of the list.

Blob

A blob is a set of data somewhere in memory defining the shape of a graphics item, say a
circle. Given a set of suitably defined patterns, one could use such a blob to draw red, green,
white, brickwork, gingham etc. circles.

Bottom window

The bottom window is special, in that it is the window that will become top of the pile when
"CTRL C" is pressed.

Control definition

A menu sub-window which is (or may be) divided into one or more sections requires
a control definition to tell the Window Manager where each section starts in the sub-window,
which is the first visible row or column in the section, and how many visible rows or columns
there are in the section. This control definition will be modified by the sub-window's control
routine as the user scrolls, pans, splits or joins the sections.

Control routine

When the pointer is within an application sub-window the action to be taken when a
pan/scroll bar or index item is "hit" depends on the application itself. Therefore an
application must supply a control routine for each sub-window which can be called by the
Window Manager when either of those items is "hit". In the case of amenu sub-window,
the Window Manager provides a standard control routine WM.PANSC which will prove useful in
the majority of cases.

When using the Pointer Toolkit, only pre-defined control routines may be used as it is not
possible to call SuperBASIC routines from machine code. If a menu sub-window is defined then
the standard WM.PANSC routine is used, otherwise the RD_PTR call which entered the Window
Manager returns.

QPTR The Pointer Environment 22

Draw routine

All application sub-windows may be supplied with a draw routine, which is called by
the window Manager atthe appropriate point when drawing the contents of a window for the
first time. In the case of a menu sub-window this draw routine will frequently be a call to the
Window Manager's own menu-drawing routine WM.MDRAW. Note that whether a draw routine is
supplied or not, the Window Manager will always draw the sub-window's border and will clear it to
the background colour, unless the "do not clear" flag is set. If a menu sub-window has index
items and/or sections then a separate routine, WM.INDEX, must be called to draw the
index items and/or pan/scroll bars etc..

When using the Pointer Toolkit, only pre-defined draw routines may be used as it is not
possible to call SuperBASIC routines from the code. If the sub-window is a menu sub-window
then the WM.MDRAW routine is used, otherwise no draw routine is used. If the sub-window has
sections or index items these will also be drawn.

Hit area

A window's hit area covers the same area as the outline, but excluding the shadow. If a
special pointer is defined for use within a window, it will appear only when the pointer is within the
hit area of that window, and the window is unlocked.

Hit routine

When the pointer is within an application sub-window the action to be taken when
the pointer is moved or a key is pressed depends on the application itself. Therefore an
application must supply a hit routine for each sub-window which can be called by the Window
Manager when either of the above events takes place. In the case of a menu sub-window,
the Window Manager provides a standard hit routine WM.MHIT which will prove useful in the
majority of cases.

When using the Pointer Toolkit, only pre-defined hit routines may be used as it is not possible
to call SuperBASIC routines from machine code. If a menu sub-window is defined then the
standard WM.MHIT routine is used, otherwise the RD_PTR call which entered the Window
Manager returns.

Index items

Amenu sub-window may have index items at the top and/or left-hand edge to show what
is in a given column or row: for instance a spreadsheet might use the index items to show the row
numbers and column letters. An index item list is of the same form as an application
object list.

Information object list
An information object list defines the size, position, type and so on of each object that appears
inan information sub-window.Aswitha loose item list, itisterminated with a

special value: unlike loose objects, however, information items are fairly static and do not require
item numbersoOraction routines.

QPTR The Pointer Environment 23

Information sub-window list

The information that appears in a window may usefully be grouped into a number of
information sub-windows, each with its own window attributes and information
object list. These sub-windows are defined in a list of regularly spaced entries, terminated
by a special value, called an information sub-window list.

Initial position

When a window is positioned by the window Manager, the pointer will always appear at
the position specified by the window origin in the window definition. When the call is
made to the Window Manager to position the window, the application may specify how the poin-
ter is to be moved to achieve this: an initial pointer position of (-1,-1) requests that the pointer be
moved as little as possible, and a positive pair of co-ordinates requests that the pointer be moved
as near as possible to that absolute position. The existing or given position may have to be
modified if the window would fall outside the screen or its primary with the pointer at this position:
this modification will be as small as possible.

Item

An item consists of one or more objects, all of which are in the same window or menu
sub-window, and have the same item number. A "hit" on any one of the objects
comprising a given item will cause all the objects in that item to be re-drawn with the new sta-
tus.

Item attributes

An item, whetheritisa loose menu item orcontained in a menu sub-window,
may have one of three statuses. When the item's status changes it will be re-drawn using a
different set of item attributes, depending on its new status. For each of the three possible
statuses, there are four attributes that may change: the background colour, on which the object is
drawn: the text colour, used if there is any text in the item: the blob shape, used if part of the
item is a pattern: and the pattern, used if part of the item is a blob. Thus selecting a pattern
from a menu might change its blob from a circle to a tick, and change its background from white
to green.

Item number

In each loose or application object 1list, the objects are given item
numbers. These item numbers associate one or more objects with each flag in the status
block, so that a "hit" on one object may affect the appearance of more than one object, but will

only directly change the status of one item.

Note that the Pointer Toolkit restricts you to one object per item, as item numbers are
assigned automatically by the various MK__ routines.

QPTR The Pointer Environment 24

Locked window

A window is locked while there is another primary window which (a) is above it in the
pile, and (b) overlaps it. Most attempts to output to or input from a locked window will wait until
the call times out or the window becomes unlocked: the exception is a pointer read (RPTR)
with both bits 4 and 5 (in and out of window) set, which always returns immediately.

Loose menu item

It is frequently useful to have, within a window, a set of menu items that are permanently
visible without having to pull down a sub-menu or pan/scroll a menu sub-window.
Such items are often positioned in an irregular manner, as opposed to the regular row and
column array of a menu sub-window. This need is catered for in the window Manager by
having a set of "loose" menu items which each have their own position and size, as well as the
usual type, action routine etc.

Loose item 1list

Allthe loose menu items in a window are defined in one loose item list, containing data
on their size, position, type and so on. The end of the list is marked by an entry of a special value
which cannot occur anywhere else - experience shows that omitting this is a frequent cause of
"mysterious" problems!

A loose item list defined from SuperBASIC also includes the set of item attributes to
be used with the objects defined in the list.

Managed window

A window is said to be managed if its out1line has been set by a call to OUTLN. Only if a
window and its primary are managed will you be able to use it for pointer input or make use of
sub-windows: there are also differences when size checking on an OUTLN or
WINDOW call, and CLOSing the window.

The BOOT program as supplied on the QPTR master medium sets SuperBASIC's outline:
lines 110 to 160 must be copied to your own BOOT program if the Pointer Toolkit is to work
correctly.

Menu sub-window

A menu sub-window is a special case of an application sub-window, consisting of
objects arranged in a regular array of rows and columns. Similar or related objects will
frequently be grouped together, for instance filenames in one column, file lengths in the next. De-
pending on the application single or multiple objects may be selected, and pan/scroll
bars may be required to allow the user to view all the objects in the menu. The objects are
defined in one or more application object 1lists, grouped into rows by the row
1ist, with spacings between objects defined by spacing lists.

QPTR The Pointer Environment 25

Outline

All windows, primary or secondary, have an outline. The primary window's outline is
either set by an explicit call to OUTLN, or is maintained by the Pointer Interface to be just big
enough to enclose the primary and all its secondaries: the first case is that of a managed
window, the second is said to be unmanaged.

If the outline of a primary has been set, making it managed, you will get an "out of range" error
if you try to set any of its secondaries outside it, either with WINDOW or with OUTLN. If you
reduce the primary's outline with a further call to OUTLN, any secondaries whose area would
then fall outside the new outline are reset so that their outline, hit and active areas are all the
same as the primary's new hit area (i.e. as big as possible). Since their size has (probably)
changed, any save area they may have is discarded.

Pan/Scroll bars

A menu sub-window may not be big enough to show all the objects in the menu: in
this case the sub-window will usually provide pan and/or scroll bars to allow the user to move
sideways or up and down through the objects respectively.

Pattern

A pattern is a set of data somewhere in memory that defines the colours with which a graphics
item may be drawn: for instance, a brickwork pattern would consist of red blocks with white lines
between them. Using suitable blobs, one could draw brickwork-coloured squares, triangles,
circles, crescents and so on.

Pick

A window is said to be picked to the top of the pile if an action by the user or a program
causes it to be transferred to the top. This transfer consists of a number of internal
re-arrangements which you aren't very interested in (honest!), saving any primary that's about
to be overlapped, restoring the contents of the picked window to the screen, and unlocking it. You
can pick a window either from a program, using PICK, or by pointing to a visible bit of it with the
pointer and hitting a key or mouse button, or typing "CTRL C". The last of these always picks the
bottom window, the former two pick a specified window.

Pile

The set of primary windows present at any time may be thought of as resembling a pile
of overlapping sheets of paper on a desk (the screen). There is a slight difference, in that two
windows that do not overlap are always at different levels in the pile, even if they appear to be at
the same level. A typical pile, viewed from the side (not possible!) might look like this:

----- <- top window
<- unlocked, but not top
------- <- locked
----------- <- bottom window, also locked

QPTR The Pointer Environment 26

Pointer

If the mouse (if any) is moved or a read pointer call is made, a pointer of some sort will appear
on the screen: this may take various forms depending on the state of the window to which it
points.

Pointer Environment

The combination of the Pointer Interface and the Window Manager forms the
complete Pointer Environment with both high and low level access for the programmer.

Pointer Interface

The Pointer Interface provides an extended and modified console driver, and forms the lower
level of the Pointer Environment. For the programmer it provides some extra TRAP #3s
(D0=$6C to $7F) to allow applications to read the pointer and so on

Primary window

Any job running in the QL may have a number of windows open at any one time: one of these,
usually the first one used for I1/O not the first one opened) is designated the job's primary
window. This window's outline defines the area restored when the job is picked to the top
of the pile. If the outline of a primary is explicitly set by OUTLN then the window becomes
managed, and size checking is performed in a slightly different way. If the outline is not
explicitly set, then the primary is unmanaged, and the outline can be "stretched" by opening
new secondaries Oor moving existing ones.

Scan order

While the pointer is visible the Pointer Interface keeps track of which window contains it by
scanning the pile. Itis worth knowing how this is done, so that you know why the pointer is that
boring little arrow and not the super-duper sprite you just designed! More seriously, if the sprite
isn't what you expect then it's probably because the window you're using to read the pointer is
unmanaged, or because its primary is unmanaged. Overleaf is a description of how the
Pointer Interface decides which window contains the pointer, and thus which sprite to display.

QPTR The Pointer Environment 27

FOR all primaries in current display mode, from top down
IF pointer in this primary
IF primary is managed
FOR all its secondaries, in reverse order of use
IF this secondary is managed
IF in this secondary
SET channel ID to secondary
SET no sub-window
SET secondary's pointer sprite
FOR all sub-windows of secondary
IF in sub-window
SET pointer sprite
SET sub-window number
EXIT sub-window
END IF
END FOR sub-window
EXIT to CHECK_POINTER_SPRITE
END IF
END IF
END FOR secondaries
SET channel ID to primary
SET no sub-window
SET primary's pointer sprite
FOR all sub-windows of primary
IF in sub-window
SET pointer sprite
SET sub-window number
EXIT sub-window
END IF
END FOR sub-window
EXIT to CHECK_POINTER_SPRITE
ELSE
FOR primary and all second., in reverse order of use
IF in active area
SET channel ID
SET default sprite
SET no sub-window
EXIT to CHECK_POINTER_SPRITE
END IF
END FOR all windows
SET no channel ID (-1)
SET no sprite
SET no sub-window
EXIT to CHECK_POINTER_SPRITE
END IF
END IF
END FOR primaries
FOR all primaries in other mode
IF in primary
SET channel ID
EXIT to CHECK_POINTER_SPRITE
END IF
END FOR primaries
SET in no window

QPTR The Pointer Environment

28

CHECK_POINTER_SPRITE:
IF whole screen locked
SET pointer sprite to "locked"
ELSE
IF window size/move/query
SET pointer sprite to "size/move/query"
ELSE
IF channel in other mode
SET pointer sprite to "other mode"
ELSE
IF channel busy or doing keyboard read
SET "busy" or "keyboard"
END IF
END IF
END IF
END IF
FOR all versions of the pointer sprite
IF this version is OK in this mode
EXIT to SET_POINTER_RECORD
END IF
END FOR versions
SET pointer sprite to "arrow"

SET_POINTER_RECORD:
fill in pointer, channel ID, relative co-ordinates,
sub-window number, window definition
clear event vector and keystroke/keypress

Secondary window

A job may have more than one window open at once: the first used of these will be designated
the primary window, all the rest will be secondaries. When a secondary's outline is set,
that area of the screen is saved, so that when the outline is set again it may be restored (and the
new area saved).

Sections

When amenu sub-window is too small to show all its objects at once, it may be found
convenient to split the sub-window into one or more sections which can be pan/scrolled
through the data: for instance, one would require two sections to look at the top and bottom of a
spreadsheet simultaneously. The actions of panning, scrolling, splitting and joining the sections of
a sub-window are taken care of by that sub-window's control routine.

Setup

The process of converting from a window definitiontoaworking definition
is the setup stage. In the machine code case it is accomplished by the Window Manager
routine WM.SETUP. The SuperBASIC routines DR_PPOS and DR_PULD do a similar job on the
definition set up by the MK_WDEF routine, and also call the appropriate positioning and window
drawing routines.

QPTR The Pointer Environment 29

Setup routine

When Wwindow Manager setsup an application sub-window the data structures
to be generated depend on the application itself. Therefore an application may supply a setup
routine for each sub-window which can be called by the Window Manager during the setup stage.
In the case of a menu sub-window, the Window Manager provides a standard setup routine
WM.SMENU which will prove useful in the majority of cases.

When using the Pointer Toolkit, only pre-defined setup routines may be used as it is not
possible to call SuperBASIC routines from machine code. If a menu sub-window is defined then
the standard WM.SMENU routine is used, otherwise no setup routine is used.

Size checking

When a WINDOW or OUTLN call is made, the size required must be checked. If the window
to be re-sized is unmanaged, then the check requires that the new size will fit on the screen:
this is also the case when an OUTLN call is made for the primary window of a job. If the
window to be resized is a managed secondary window, then it must fall within the hit area of its
primary.

Sprite

A sprite, as used by the Pointer Interface, is a set of data somewhere in memory which
defines both the shape and colour of a graphics object. Such an object may be (a) drawn within a
window, or (b) used as a pointer: the familiar arrow, padlock, K and no-entry pointers are all
sprites. This is somewhat different from the games programmer's definition of sprites, which
move around of their own accord colliding with one another in a most unsettling manner.

Status

Any loose menu itemoriteminamenu sub-window has an associated status: this
may be unavailable, available, or selected. This status is shown visually by changing the colours
or shapes of the ob jects which comprise the item, and is recorded in a status block for
use by the application. The colours and shapes used for each status are defined by the item
attributes, each window having one set for its loose menu items (if any), and one set for the
items in each menu sub-window.

Status block

A window will have a status block for its loose menu items, and one for each of its
menu sub-windows. Each item has a one-byte flag, which will take different values depen-
ding on the item's status, at a position in the block corresponding to the item number. In
addition, the flag may have its bottom bit set to indicate to the Window Manager that its
status has changed and that the object should be re-drawn. Action routines are usually
called with a pointer to a status block and an item number, so that the status of the item whose
action routine has been called may be checked or modified.

QPTR The Pointer Environment 30

Sub-menu

A sub-menu is very similar to an ordinary menu, but is contained in a secondary window
that has been pulled down within its pr imary. Depending on the application a sub-menu might
appear at a fixed point or close to the pointer. Usually sub-menus contain a set of associated
options for which there isn't room in the main menu, or which would make it too cluttered. An
example is the SORT sub-menu in QRAM.

Sub-window

Any managed window may have a list of sub-windows attached to it. When a RPTR call has
been made, the Pointer Interface will scan through the pile of windows and set the pointer
sprite to that defined for the sub-window containing the pointer (if any). If the pointer read returns
then the co-ordinates of the pointer will be relative to the sub-window, making a programmer's life
easier, we hope! The position of a sub-window is defined relative to its window, so it does not
need to be reset if the window is re-defined.

A sub-window is only of relevance when doing a pointer read, to change the pointer sprite
seen and the sub-window number and position returned: you cannot print to or clear sub-
windows. If you wish to modify the area corresponding to a sub-window, you have to set a real
window channel to that area - the Window Manager provides a routine to do this.

The window Manager uses a sub-window for each application sub-window to determine
whether the pointer is in an application sub-window or the main body of the window.

Timing out

It is possible to specify how long the QL should keep trying to do an I/O call for before giving
up and returning a "not complete" error message - this is called timing out. All the Pointer Toolkit
routines keep trying indefinitely, and thus never time out, but you may find that some other
programs (or programming languages) use finite timeouts, and therefore fail to do some 1/O
sequences correctly if they try to do them while their windows are 1ocked.

Top window

The top window in the pile is special in that it is always unlocked since nothing can
overlap it, and it is the only window allowed to use the keyboard for input.
Unlocked window

A primary window is said to be unlocked if there is no primary above it in the pile which
overlaps it. While a window is unlocked all attempts to output to it will succeed: attempts to do
keyboard input from it will succeed if it is the top window. If a window is not unlocked then
output will appear either when the window becomes unlocked, or not at all if the output call

times out before the window becomes unlocked.

In addition, an unlockable window is always unlocked, regardless of any overlapping
windows.

QPTR The Pointer Environment 31

Unlockable window

A window may be made unlockable, in which case all output to it will appear instantly,
regardless of whether there is an overlapping window or not: this is done by a special version of
the PICK routine. This is what life was like before the Pointer Environment, jolly messy!

Unmanaged window

A window is said to be managed if no OUTLN call has been made to set its outline: in this
case it is assumed that the job using the window is unaware of the existence of the Pointer
Interface, and thus the effect of some I/O calls is slightly changed. For instance, any sub-
windows are ignored during a pointer read. There are also some differences between
unmanaged and managed windows when they are CLOSEGJ.

Unset

Once a primary or pull-down window has been set up and drawn, the definition will
remain until the application removes it. The Window Manager provides a routine to do this
which does all the operations required to make it safe to modify or remove the window's
working definition. This routine is WM.UNSET

The SuperBASIC unset routine not only calls the WM.UNSET vector, but converts all the
absolute pointers in the data structures back into their relative forms.

Window definition

A window definition is an embryonic form of a full working definition, which is
converted into the latter by a setup routine, frequently with the addition of some extra data: for
instance, a file-copying program might generate its own application object list from
the directory of a disc.

It may be convenient for applications written in different languages to have different window
definition formats, and to provide their own setup routines.

Window Manager

The Window Manager is a set of utility routines which assist with the maintenance of windows,
and which forms the higher level of the Pointer Environment. A number of routines are
provided which translate and interpret data structures either set up by or contained within a
program. Translation involves conversion of a window definition of the form recognised
by the Window Managerto aworking definition. Interpretation frequently takes the form
of drawing or re-drawing part of a window.

Since the Window Manager is able to call various application-supplied routines, quite
complicated effects can be achieved without the programmer having to write all the "boring bits".

QPTR The Pointer Environment 32

Working definition

Whereas a window definition may take many forms, a working definition must always
be of the same form. The first action of any application will usually be to translate the window
definition into a working definition using its setup routines: subsequently the Window
Manager will be able to work on the data structure produced, as it will now be in a standard
form.

A typical window

1) A sprite type loose menu item, centred in the space allocated to it. This is the "move window"
item, which should be present in most applications. It is "hit" by the standard key "CTRL F4" and
specially treated within the Window Manager by generating a "move window" event.

2) Two text type loose menu items: these are also centred. The View item is specific to the
application, and is "hit" by the V key. The HELP item should be present in most applications, and
is therefore "hit" by a standard help key, F1, and specially treated within the Window Manager by
generating a "help" event.

3) Two information objects, both of them text. The medium name and statistics object is in a
window of its own, so that it can be re-drawn when necessary.

4) A menu sub-window. The objects in this are centred vertically, but left-justified horizontally.
Both objects in a row, the filename and the file statistics, have the same item number, and thus
share the same state; in this example, all files are available. Sub-windows like this do not have a
separate channel of their own.

5) The current item in the primary window, which is also selected.
6) The current item in the pull-diwn window: this has not been selected, so it still shows in the

available colours. Because this is a pull-down window, it has its own status area, so there is no
confusion between this current item and the previous one.

QPTR The Pointer Environment 33

7) The pointer: while this remains within the border showing that the DO item is current, a "hit"
will select that item. As the pointer is moved, the Window Manager removes and replaces this
border around whichever menu item the pointer is within.

8) A pull-down window. In contrast to the sub-window, this does have its own channel, which is
opened when the window is pulled down and closed when it is discarded. This is an example of a
secondary window, and thus lies entirely within its primary.

9) Scroll arrows: whenthe number of files is too large for the menu sub-window, the application
increases the number of control sections from none to one, and calls the Window Manager
routine provided to draw these bars. The Window Manager also provides the routine to scroll
through the list of files.

10) Scroll bar: this allows easy scrolling through the whole range of files.

QPTR The Pointer Environment 34

SuperBASIC

Keywords

The Keywords added by the Pointer Toolkit are split into two groups. The first deals with those
routines which use only the Pointer Interface, the second with the routines that also require the
Window Manager.

Pointer Interface routines

Optional parameters are included in square brackets, thus [option], or curly brackets
{XpOS rYPOS }.

Where this is of the form [#ch,] it shows that a channel number may be specified. If in any
case it is not, the channel number defaults to #1 as usual.

Where an option occurs in square brackets that parameter may be specified or not as desired;
where it occurs in curly brackets it may be specified zero, one or more times. For some optional
parameters a table of the default values is given, with the effect the default value will have. If the
default value is given as "none", then the procedure or function will do something different if the
parameter is given, and there is no value that you can give this parameter that will have the same
effect as omitting it. For instance, the RPIXL function just reads the colour of a pixel if no scan
direction is given, but always scans if a scan direction is given, and no value of the scan direction
parameter means "do not scan".

Separators are significant only where specified: otherwise you may choose any of the five
possibilities (, ; !\ TO), depending on which you find the most readable.

HOT STUFF strl$[,str2$]

Option Default Meaning
str2$ stuff only str1$

This procedure puts a string into the HOTKEY buffer: str1$ is put in the buffer first,
immediately followed by str2$ if present. The string in the HOTKEY buffer may be retrieved by
typing "ALT SPACE" in any job, which will act as if the characters of the string had been typed
instead of the "ALT SPACE".

This facility is available only if the HOTKEY job (supplied with QRAM) is active.

LBLOB [#ch,][TO]{xpos,ypos{ TO xpos,ypos},}blob,pattern

This procedure draws one or more lines of blobs. Apart from the optional channel number and
the required blob and pattern, the parameters consist of co-ordinates preceded by TO or a
comma: those preceded by a comma set the start point for drawing, those with a TO draw a line
of blobs to the given end point and reset the start point to that end point. The start point is also
set by the WBLOB procedure, and is kept in SuperBASIC's channel table between calls, so suc-
cessive LBLOB TO ... calls will work as expected.

Co-ordinates are in pixels, blobs which would fall wholly or partly outside the window are not
drawn.

QPTR The Pointer Environment 35

MKPAT addr,buffer

Converts a screen save buffer, as created with the PSAVE function, into a pattern. The
contents of the buffer are copied to the address given in addr, and there must be enough
memory there for that copy of the buffer plus a graphics object header (18 bytes). The amount of
memory required may be determined by a call to the SPRSP function, giving a width parameter
the same as the x-size of the buffer, and a height parameter of half the buffer height.

The width will be truncated to the nearest 16 pixels, so the saved image in the buffer must be
at least 16 pixels wide.

MS HOT [#ch, Jhot$

Set the string stuffed into the current keyboard queue when both mouse buttons are pressed
simultaneously. The string hot$ may be 0, 1 or 2 non-null characters to clear or set 1 or 2
characters to be stuffed. Because these characters appear in the keyboard queue before any
further processing is done, they may be translated by the ALTKEY or HOTKEY processes to
produce longer strings or start HOTKEY jobs.

You are advised to use this procedure only in BOOT files or utilities which invite the user to
supply a mouse hotkey, e.g. system control panels.

MS SPD [#ch, Jaccel[,wakeup]

Option Default Meaning
wakeup none don't change wakeup speed

This procedure modifies the response of the keyboard and mouse pointer movement. The
accel parameter sets the acceleration of the mouse, making the pointer move quickly or
sluggishly: it also affects the gradual speed increase when the pointer is driven from the key-
board.

The wakeup parameter applies only to the mouse, and sets the minimum speed that has to
be reached before the (currently invisible) pointer appears: a high value will mean that an
accidental nudge of the mouse while you are typing wlil be less likely to cause the pointer to
appear.

Both parameters are limited to a range of 0 to 9.

You are advised to use this procedure only in BOOT files or utilities which invite the user to
change the mouse response, e.g. system control panels.

OUTLN [#ch,]xsize,ysize,xorg,yorg[,xshad,yshad][,move]

Option Default Meaning

xshad 0 no x shadow

yshad 0 no y shadow

move 0 discard window contents

The OUTLN procedure sets the "outline" of a window, and signals to the Pointer
Interface that the window is "managed” - see the CONCEPTS section for explanations of these
terms. Only managed windows with managed "primaries® may be used for pointer input:
SuperBASIC's primary window is usually #0.

The three optional parameters default to zero, but you can specify the move key, the shadow
widths, or both if you wish. The shadow will appear to the right or the bottom if xshad or yshad
are positive. The move key will discard the current window contents if it is zero, or move them to
the new position if it is set to 1 - you must keep the x and y sizes the same for this to work! If you
set the outline of a secondary window, then the area underneath it will be saved, and restored
when the outline is set again: this allows you to implement pull-down windows without having to
do the saves and restores yourself.

QPTR The Pointer Environment 36

result =PICK([#ch,]job-ID | key)

This function picks the primary window belonging to a given job to the top of the "pile" on the
screen, in the same way that the user can pick windows with "CTRL C" or by pointing and hitting
with the pointer. The job-ID may be specified as two numbers, <job number>, <tag>, or as
one composite number, <tag>*65536+<job number>: this is consistent with SuperToolkit II.
Alternatively a key may be specified. If this is -1 then whichever job is at the bottom of the pile
will be picked to the top: if it is -2, then the window specified will be marked "unlockable".

If the job specified doesn't have a window, or doesn't exist, then the result will be -2, the
QDOS error code for "invalid job" - otherwise it will be zero, signalling success.

This function should be used with discrimination, unless you find it particularly amusing to
have windows popping up at random.

Example:
1000 IF PICK(job_id)<0 THEN PRINT "Can't pick ";job_name$

PREST [#ch, lbuffer,bufxo,bufyo,xsize,ysize,winxo,winyo,keep

This procedure restores a block, xsize by ysize pixels, froma buf fer into a window. If
keep is set to 1 then the buffer is kept, if O then it is discarded. The buffer may also be
discarded by using the SuperToolkit Il procedure RECHP.

result=PSAVE([#ch,]buffer,bufxo,bufyo,xsize,ysize,winxo,winyo
[/ bufxs,bufys])
Option Default Meaning
bufxslys none buffer is set up, address is valid
This function saves a block from a window into a bu f f er in memory: the block size

and origin in the window are given in xsize, ysize, winxo and winyo, and the origin in the
buffer of the block to be overwritten is given in bufxo and bufyo. A new buffer is set up by
specifying a buffer size in terms of pixels, in bufxs and bufys - in this case the result
returned is the address of the buffer. This function, and its complementary procedure PREST,
allow the generation of graphics data over an area bigger than the screen of the QL. Note that
when the buffer is set up, it is cleared to black, and that the only way of modifying it is with
PSAVE.
Example:

100 REMark Save the top left 100x100 pixels of channel 1

110 REMark into the top left of a new 512x768 buffer.

120:

130 buffer=PSAVE(0;0,0;100,100,0,0;512,768)

140 :

150 REMark Now draw a big circle, and save that 100

160 REMark pixels across the buffer.

170:

180 FILL 1:CIRCLE 50,50,30

190 d=PSAVE(buffer;100,0;250,200,0,0)

200:

210 REMark Now restore some of what we saved before,

220 REMark and some of the circle, at the bottom

230 REMark right of the window.

240 :

250 PREST buffer;50,50;100,100,150,100;1

result=RMODE

This function reads the current display mode, returning 4 for 4-colour mode and 8 for 8-colour.
This function can and should be used to avoid doing MODE calls to set the display mode to the
one the QL is in already!

QPTR The Pointer Environment 37

result=RPIXL([#ch,]xstart,ystart[,direction[,colour[,same]]])

Option Default Meaning
direction none no scan
colour -1 start pixel is reference colour
same 0 scan to different colour pixel

The simple form of this function returns the colour (0-7) of the pixel at xstart,ystart.

If a direction is given, the function scans horizontally or vertically from the start point
(O=up, 1=down, 2=left, 3=right) until a pixel of a different colour is found, and returns the
co-ordinate of that pixel. Since the scan is horizontal or vertical the other co-ordinate remains
constant.

If a colour is given then the scan looks for a pixel of a different colour to that given: if no
colour is given, or the given colour is specified as -1, then the colour of the start pixel is used.

If the same flag is given, a value of 1 scans for a pixel of the same colour as the reference: a
value of 0 scans for a different colour.

If the scan reaches the edge of the window without finding a pixel of the required colour then
the co-ordinate returned is -1.

RPTR [#ch,]xabs%,yabs%,term%,swnum®,xrel%,yrels%, bt$

Read the pointer position in the given window, which must be "managed" - see the description
of OUTLN and the Concepts chapter for more details. The procedure will return under various
circumstances, depending on the value of term#%:

Bit setreturns if...
0 ...a keyboard key or mouse button is pressed.
1 ...a keyboard key or mouse button is, or continues
to be, pressed. Normal auto-repeat speeds apply.
...a keyboard key or mouse button is released.
...the pointer is moved from the given absolute co-ordinates
...the pointer is, or moves, out of the window
...the pointer is in, or moves into, the window
Bit 6 is reserved - do not set it! Bit 7 selects a special mode, in which all other jobs'
windows are locked, and a special sprite appears depending on the values of bits 0 and 1:

abhowiN

Bit set sprite shown

1 "window change size"

0 "window move", unless bit 1 is set
neither "empty window"

Bits 2 to 6 should all be clear when bit 7 is set. The co-ordinates returned are always
absolute, rather than relative to the origin of the window used to make the call.

Apart from the above "window request” mode, the co-ordinates returned in xrel% and
yrel% will be relative to the origin of a window or "sub-window". If the pointer was in a
sub-window then the value of swnum% will be O or greater, otherwise it will be -1. See the de-
scription of SWDEF to find out about sub-windows.

If a "return on move" is requested then xabs% and yabs#% are used as the reference point -
when the pointer is moved from this position then the call will return. These variables are
normally set up at the start of the program, and subsequently updated only via the RPTR call.

QPTR The Pointer Environment 38

The value of bt$ is a single character string. If a button or key press happened, the
character will correspond to the key except for the following "event keystrokes":

Key CHR$ Event

None 0 no key pressed
SPACE/left mouse 1 hit
ENTER/right mouse 2 do

ESC 3 cancel

F1 4 help

CTRL F4 5 move window
CTRL F3 6 change size

The values of xabs%, yabs%, term% and swnum% should be set before calling this
procedure, as they are used to determine when the call will return. On return all the parameters
will be set to the appropriate values. Note that if you call the procedure
with the wrong type of variable (float instead of integer, for
instance) then you'll get some very odd results - wuse only
integers for the first six parameters, and a string for the
last.

As this routine returns values through the parameter list, it is not compatible with the
Super/Turbocharge compilers.

Examples:

1000 xa%=0 : ya%=0 : kystk=1 : swnum%-=-1
1010 OUTLN 256,202,256,0;1 : BORDER 1,255
1020 REPeat |

1030 rt%=kystk : REMark Return when a key is hit
1040 RPTR xa%,ya%,rt%,swnum%o,x%,y%,bt$
1050 PRINT #2;x%,y%,CODE(bt3$)

1060 END REPeat |

1000 REMark Set up current absolute position
1010 REMark and sub-window number:

1020 REMark OUTWN-+INWIN returns instantly
1030 :

1040 OUTLN 256,202,256,0;1 : BORDER 1,255
1050 outwn=16:inwin=32:rt%=outwn+inwin
1060 xa%=0:ya%=0:swnum%-=-1

1070 RPTR xa%,ya%,t%,swnum%,x%,y%,bt$

result=SPRSP(width,height)

This function calculates the memory space required to store the definition of a sprite of the
given width and height, both in 4-colour mode pixels. This is particularly useful for loading
multiple sprites into one piece of memory by calculating the space for each and then allocating it
all at once: this reduces overheads and heap fragmentation.

SPHDR addr,xsize,ysize,xorg,yorg,md[,next]
SPHDR addr,next

This procedure sets up a sprite header to be filled by the SPLIN procedure: there must be
enough room at the address given in addr for a sprite of the required size.

The sprite may be linked to the next one in a list, either as an option on the long form of the
procedure, or using the short form. Such linked sprites may be defined for use in different modes,
as specified by md. When used as a pointer or drawn using WBLOB or WSPRT, the list will be
searched for a definition suitable for use in the current mode.

QPTR The Pointer Environment 39

Example:
1000 REMark Set up a pointer for #1, shape depending
1010 REMark on mode.
1100 :
1110 REMark First the pointer that appears
1120 REMark in mode 4
1130:
1140 sprd=ALCHP(SPRSP(9,9))
1150 SPHDR spr4;9,9,5,5;4
1160 linum%=0
1170 SPLIN spr4,linum9%,' ww '
1180 SPLIN spr4,linum%," waw '
1190 SPLIN spr4,linum%,' waaw '
1200 SPLIN spr4,linum%," wawaw '
1210 SPLIN spr4,linum%," wawwawww'
1220 SPLIN spr4,linum%,'waaaaaaaw'
1230 SPLIN spr4,linum%, wwwwwawww'
1240 SPLIN spr4,linum%," waw '
1250 SPLIN spr4,linum%," www '
1300 :
1310 REMark Now set up a sprite to appear in mode 8
1320 REMark and link it to the mode 4 sprite.
1330:
1340 spr8=ALCHP(SPRSP(20,10))
1350 SPHDR spr8;20,10,10,5;8;spr4
1360 linum%=0
1370 SPLIN spr8,linum%," wwwwww '
1380 SPLIN spr8,linum%," wwaaaaww '
1390 SPLIN spr8,linum%," wawwwwaw '
1400 SPLIN spr8,linum%," wawwwwaw '
1410 SPLIN spr8,linum%," wwaaaaww '
1420 SPLIN spr8,linum%, wwawwwwaww'
1430 SPLIN spr8,linum%,'waww wwaw'
1440 SPLIN spr8,linum%, wawwwwwwaw'
1450 SPLIN spr8,linum%,'wwaaaaaaww'
1460 SPLIN spr8,linum%," wwwwwwww '
1500 :
1510 REMark Attach it to #1
1520 :
1530 OUTLN 256,202,256,0;1 : BORDER 1,255
1540 SWDEF : SWDEF -1;252,200,0,0;spr8
1600 :
1610 REMark Read the pointer: the sprite you see
1620 REMark depends on the display mode
1630:
1640 ax%=0:ay%=0:swnum%=0:rt=1
1650 REPeat |
1660 rt%-=rt
1670 RPTR ax%,ay%,rt%,swnum%,xr%,yr%,bt$
1680 END REPeat |

QPTR The Pointer Environment

SPLIN addr,linum%,patts$

Fill in one line of pixels in a sprite. The header must have been set up previously using the
SPHDR procedure. The line to set is given by 1inum$%, with line 0 being the top: if the line
number is too big you will get an "out of range" error. The pixel colours are specified in patts$,
as for SPSET. If the line number parameter is a variable then it will be incremented after this call,
so successive calls to SPLIN will set successive lines of a sprite: this feature will not work with
the Super/Turbocharge compilers.

SPRAY xorg,yorg,blob,pattern,pixels

This procedure works in a similar way to WBLOB, but instead of writing the whole blob it
writes only a few pixels from it: the number of pixels written is given by the pixels parameter.
These are chosen "at random" from the blob to give a spray effect. Somewhere between 5% and
20% of the total number of pixels in the blob usually gives a good result. If you spray several
times with the same parameters the blob will gradually fill in, but there is no guarantee that it will
ever do so completely, even if the pixels parameter is the same as the total number of pixels
in the blob.

SPSET addr,xorg,yorg,md,shape$(ysize,xsize)

This procedure sets up the data for a sprite, in a suitable form for a particular QL mode as
specified in md. The size is given by the dimensions of the string array shape$ defining the
sprite: for convenience you may pass an array slice. The sprite's origin must also be given in
Xorg,yorgdg.

The colour of each pixel of the sprite is specified by a character in the string array, the top left
pixel being specified by shape$ (0, 1), the top right by shape$ (0,xsize), the bottom
right by shape$ (ysize-1,xsize) and so on. Note that the rows run from 0 to n-1, as in
other arrays, but the columns from 1 to n as for strings.

The colour characters permitted are "aurmgcyw ", standing for pixels that are blAck, blUe,
Red, Magenta, Green, Cyan, Yellow, White and transparent (space).

Example:

100 DIM shape$(10,10):RESTORE 180

110 READ xsize,ysize,xorg,yorg,md

120 FOR i=0 TO ysize-1:READ shape$(i)

130 addr=ALCHP(SPRSP(xsize,ysize))

140 SPSET addr,xorg,yorg,md,shape$(0 TO ysize-1,1 TO xsize)

150 REMark Concentric rings with a hole in the centre

160 DATA 7,7,3,3,4

170 DATA ' www '

180 DATA 'wgggw '

190 DATA ‘wgrrrgw'

200 DATA 'wgr rgw'

210 DATA ‘'wgrrrgw'

220 DATA "wgggw '

230 DATA "www '

QPTR The Pointer Environment 41

SWDEF [#ch,][swnum[,xsize,ysize,x0org,yorg[,sprite]]]

Option Default Meaning

swnum none clear all sub-window definitions
Xsize..yorg none clear given sub-window definition
sprite none use default sprite

This procedure sets or clears a sub-window definition. If no parameter is given then the
sub-window list for the window is removed entirely: if just the sub-window number swnum is
given, then that sub-window definition is removed: and if a definition is given, then that
sub-window is (re-)defined. Optionally the address of a sprite definition, sprite, may be
appended, in which case the pointer will change to that sprite when it is within the sub-window.

The origin given is relative to the "hit area" of the window, which must be "managed". The
sub-window definition for the main part of the window may be set by specifying a sub-window
number of -1: the origin in this case is absolute. Removing the sub-window definition of the main
part of the window will reset the sprite to the default, and the area to the hit area.

Note that if you wish to use N sub-windows, you must specify all sub-windows from 0 through
N-1, and in addition the window's primary must be managed (must have had its outline set with
OUTLN). Sub-windows are checked starting at sub-window 0, up to the first unset one, and then
the main part. To avoid fragmenting the heap more than is necessary, you are advised to define
the highest numbered sub-window first.

Example:

100 REMark Remove all current definitions, and put

110 REMark one sub-window across the top of #1, and one

120 REMark down the side with a special "hand" sprite.

130:

140 SWDEF

150 SWDEF 1;250,20,0,0

160 SWDEF 0;40,100,0,21;hand

WBLOB [#ch,]x,y,blob,pattern

This procedure writes the blob into the given channel, using the pattern, at the given
co-ordinates x,y. These co-ordinates are also used to update the default start point for the
LBLOB procedure. The blob specifies the shape of what appears, the pattern the colour, so you
would need one blob and three patterns to draw red, yellow and blue flowers. In this version the
blob is not drawn if it overlaps the edge of the window, or falls outside it. The blob and pattern are
pointers to items of the appropriate sort - probably loaded into the heap with an ALCHP followed
by an LBYTES, or set up from SuperBASIC by calls to SPSET, SPHDR or SPLIN. In early
versions of the Pointer Interface no check is made on the blob and pattern, and the blob drawing
routine can be crashed quite easily by duff data: you have been warned!

Note that any sprite may be used as a blob, and any sprite whose width is a multiple of 16
may be used as a pattern.

QPTR The Pointer Environment 42

WSPRT [#ch,]x,y,sprite

This procedure is very similar to WBLOB, except that the sprite data structure defines
both shape and colour information, so you would need three complete sprite definitions to draw
red, yellow and blue flowers - but they could all be different shapes. The same comments apply
with regard to drawing outside the window and using valid sprite definitions.

A feature of versions 1.13 onward of the Pointer Interface is that the built-in sprite definitions
may be written if a small integer is specified rather than an address:

Value of sprite Sprite drawn
Pointer arrow

Lock

Window request
40r8

Keyboard

No Entry
Window Move
Window Resize

~N~Nooaph~hwNEFLO

WREST [#ch]
This procedure restores the saved area of the given window. The save area is lost. This
procedure should be used only when the window size has not changed.

QPTR The Pointer Environment 43

Window Manager routines

The following SuperBASIC routines form an interface to the Window Manager. They are in
four groups, definition routines, drawing routines, access routines and change routine.

The majority of these routines make use of arrays to pass long parameter lists to them with
the minimum of typing: unfortunately routines which use array parameters are not compatible with
the Super/Turbocharge compilers, and you will be unable to compile programs which use them
with these compilers.

The amount of stack used by the Window Manager on some calls is greater than that
permitted for machine code SuperBASIC procedures or functions: this has not caused us any
problems with the interpreter, but has resulted in crashes with program compiled with
Q_Liberator, versions up to 3.12. Versions from 3.21 onwards allow more stack, and do not suffer
from this problem. If you have Q_Liberator v.312 or earlier then compiled programs may be used
if processed with the STKINC utility: see the Utilities chapter for more details.

Definition routines

These set up parts of a window working definition, given parts of the window definition in one
or more arrays. Each is a function which returns the address of the data structure set up: these
addresses are then used as parameters in further calls to the Window Manager routines.

lilst=MK LIL(attr(3,3),size%(n,1),0rg%(n,1),jus%(n,1),sks$,
type%(n),strg$(p,m),pspr(q),pblb(r),ppat(s))

Make a loose item list, complete with attributes.

There are n+1 items in the list. Each item has its own size, origin and justification in the
appropriate arrays, the x-attribute being in arr%(i,0) and the y in arr%(i,1). The
justification specifies whether the object is to be left/top justified (positive values), right/bottom
justified (negative values) or centred (zero). Non-zero values give the distance in pixels from the
appropriate edge of the area defined by the size and origin of the item.

The type$% array specifies not only the type of each item in the bottom byte of each word, but
also the action to be taken on "hitting" each item: if the top byte is zero, then no further action is
taken, if non_zero then the RD_PTR call returns: if +1, the item's status is reset to available
before returning, if -1 no change is made to the status. To set the top byte to +1 or -1, add +256
or -256 to the item type. The value of the bottom byte may be 0, 2, 4 or 6 for string, sprite, blob or
pattern items: up to p+1 elements of type % may have a bottom byte of 0, g+1 of 2, and so on.
When an element specifies that an object should be of a given type, then the next object is taken
from the appropriate array. Thus if type% contains the values 0, 2, 2, 4, 2 and 6 the objects will
come from strg$(0), pspr(0), pspr (1), pblb(0), pspr(2) and
ppat(0).

If an item is null (a zero length string or zero pointer) then it is assumed that the item is
absent: such items may be reset later with the CH_ITEM procedure.

QPTR The Pointer Environment 44

iolst=MK_IOL(size%(n,1),org%(n,1),imod(n),types(n),
strg$(p,m),pspr(q),pblb(r),ppat(s))

Make an information object list. size%, org%, type% and the object arrays are the
same as for a loose item list. There are no justification or select key arrays, and the top byte of
type$ is ignored. Objects are taken in turn from the strg$, pspr, pblb and ppat
arrays, depending on the contents of type %, as for the MK_LIL function.

If an information object is a piece of text, or a blob or pattern, additional information is
required to draw it: in the case of text, you need to specify how big it is and what colour: a blob
needs to be drawn using a pattern: and a pattern needs to drawn using a blob. The imod array
specifies this additional information: if item N is a blob or pattwern then imod (N) contains a
pointer to a pattern or blob to combine with it. If item N is text then the colour and size are
combined using the magic formula

<ink>*65536+<csize_x>*256+<csize_y>
So a lagre red piece of text would have an attribute of 2*65536+3*256+1, or 131841.

aolst=MK_AOLST(iattr(3,3),jus%(n,1),sk$,types(n),
strg$(p,m),pspr(q),pblb(r),ppat(s))

Make an application sub-window object list. Very similar to a loose manu item list, except
that there are no size or origin attributes. If the bottom byte of type (0) is odd then the list is
assumed to be of index items, and the item number is set to $FFFF and the action routine to 0. In
this case the attributes specified are those to be used for the index items (see below).

cdef=MK_ CDEF (maxsed%,arrc%,barc%,secc?)

Make a control definition list: this specifies the maximum number of sections into which the
sub-window can be split, and the colours for the arrows (arrcg), bars (barc%) and bar
sections (secc %). After this area is reserved enough space for a section control block with up to
maxsec$ sections.
aslst=MK_ASL(size%(n,1l)[,isiz%,ispc%])

Make an application sub-window spacing list. size%(i,0) gives the hit size,
size% (1i,1) the spacing. The sizes and spacings for the index bars may also be set. Two
spacing lists are required for each sub-window, one for each axis.
rwlst=MK_RWL(aolst,se%(n,1))

Make an application sub-window row list. There are n nows, the i'th starting with item

se% (i, 0) and ending just before item se% (i, 1). The object listis at aolst, as returned by
a call to the MK_AOL function.

QPTR The Pointer Environment 45

apw(n)=MK_APPW(wdef%(3),wattr%(3),ptr,sks$,
[x_cdef,y cdef,
x off%,y offs,
X _aslst,y aslst,
X_aolst,y aolst,
rwlst])

Make an application sub-window definition. If a menu sub-window is required, all
parameters must be given, although the pointers to the control definitions and index list
definitions (x_cdef, y_cdef, x _aolst, andy_ aolst) may be zero: the spacing list
and row-list pointers (x_aslst, y_aslst and rwlst) are required. The pointer and select
key (ptr and sk$) may be zero and the null string if these are not required. The number of
items in a spacing list, index item list and row/column must be consistent.

As a special case a sub-window may be defined with only the first four parameters, in
which case a special hit routine is used which results in a RD_PTR call returning every time the
pointer is moved or a key is hit in that sub-window.

iwlst=MK_IWL(wdef%(n,3),wattr%(n,3),iolst(n))

Make an information sub-window list. Each information sub-window has a soze and
position in wdef% (i), attributes given by wattr% (1i): the pointer to the object list in
iolst (1) should be the result of a call to the MK_IOL function.

awlst=MK_AWL(apw(n))

Make an application sub-window list. The array of pointers, to sub-window definitions
generated by the MK_APPW function, is copied and terminated with a long word of zero.

wdef=MK_WDEF (wdef%(3),wattr%(3),ptr,lilst,iwlst,awlst)

Make a complete window definition. Any of the last four pointers may be zero. If non-zero,
ptr should point to a sprite definition to be used as the pointer in the window, while 1ilst,
iwlst and awlst are the results of calls to the MK_LIL, MK_IWL and MK_AWL functions.

The window position specified in the wde £ % array parameter is NOT the absolute position
at which the window will be drawn, but the initial position of the pointer within the window when it
is drawn.

QPTR The Pointer Environment 46

Drawing routines

These procedures set up and draw a window from definitions generated by the definition
functions above, and allow an application to re-draw part of a window. Routines are also provided
to position a given window channel "over" part of a window, so that embellishments may be
added and so forth. This is particularly useful in the case of pull-down windows, whose channels
are inaccessible to the SuperBASIC program.

The wde £ parameters required by all these routines is the result of a call to the MK_WDEF
function.

DR_PPOS [#ch, Jwdef,xpos%,ypos%[,1flag%(n)]
{,aflag%(p,q)[,ctx%(maxsec%,2)][,cty%(maxsec%,2)]}

Position a primary window, or ...

DR_PULD wdef,xpos%,ypos%[,1lflag%(n)]
{,aflag%(p,q)[,ctx%(maxsec%,2)][,cty%(maxsec%,2)]}

... pull down a window. After a window has been positioned or pulled down then it is
drawn. A flag array is passed for the loose items (L£1ag$%) and a flag array (af1ag$) and zero,
one or two control definition arrays (ctx% and cty %) for each menu sub-window, and the items
drawn with the given statuses. The channel for a pull-down window is opened, a primary
window's channel must already be open.

When the window appears, the pointer will always be set to the initial pointer position within
the window as specified when the window definition was set up. If the positioning parameters
xpos% and ypos#$ are set to -1, then the pointer will be moved as little as possible (often no
distance) to accomplish this. If, however, xpos% and ypos$% are set to some other value, then
the pointer will be set as close to that absolute position as possible before the window is pulled
down.

A window is always positioned so that its X origin is a multiple of two: this ensures that any
stipples used in the window remain "in phase" at all times.

DR_LDRW wdef,lflag%(n)

The flag array 1f1ag% (n) is copied into the loose items status block, and the loose items
are then re-drawn. If no change bit is set in any flag, then all items are re-drawn, otherwise only
changed items are re-drawn.

DR_ADRW wdef,aswnum%,aflag%(p,q)
[,ctx% (maxsec%,2)][,cty%(maxsecs,2)]

The flag array aflag% is copied into the status block of the application sub-window
referred to by the aswnum® parameter, the control definition arrays ctx% and cty$% (if any)
copied into the control block, and the menu sub-window is re-drawn, using the same rules as for
loose menu items. If element (0,1) of a control definition is non-zero, then the whole sub-window
is re-drawn, regardless of the item status changes.

QPTR The Pointer Environment 47

DR_IDRW wdef,infwm

This procedure re-draws any of the first 32 information sub-windows in the window given by
wdef. The infwm is interpreted as a bit map of the windows to be re-drawn, with a clear bit
corresponding to a window to be re-drawn. Thus a value of -2=3FFFFFFFE will re-draw
information sub-window 0 only, -6=$FFFFFFFA will re-draw windows 0 and 2, and so on.

DR_AWDF [#ch, Jwdef,swnum?

Set a channel to cover the same screen area as the given application sub-window.

DR_IWDF [#ch, Jwdef, iwnum?

Set a channel to cover the same screen area as the given information sub-window.

DR_LWDF [#ch, Jwdef,item?

Set a channel to cover the same screen area as the given loose item.
DR_UNST wdef

Unset a window definition. A window that was pulled down is removed and its channel
closed.

QPTR The Pointer Environment 48

Access routines

RD_PTR wdef,item%,swnum?,event?,xrel%,yrels
[,1flag%]{,aflag%[,ctx%][,cty%]}

Read the pointer via the Window Manager: the call returns when a window event occurs, or
a return item is "hit". In addition to the returned parameters, the item statuses are copied back
into the appropriate arrays. The item number and sub-window number of the last item hit are
returned in item% and swnum$, and the event causing the return in event%: this may be 128
for a hit on an item causing an automatic return, or one of the following values, caused by an
"event generating" keystroke:

Event name Keystroke event$% value
Do ENTER 1

Cancel ESC 2

Help F1 4

Move CTRL F4 8

Resize CTRL F3 16

Sleep CTRLF1 32

Wake CTRL F2 64

The flag and control arrays are copied into the relevant status areas on entry. If any of the
statuses have changed (signalled by odd flag values), the changed items only are re-drawn: if a
control definition has changed, then the whole of that menu is re-drawn. This frequently avoids
the need for explicit re-draw calls.

The returned pointer co-ordinates xrel% and yrel% are relative to the top left corner of
the sub-window.

If the pointer is in an application sub-window which is not a menu sub-window, then the call
will return whenever a key is pressed or the pointer is moved. Since such a sub-window has no
items in it, the keystroke and keypress are returned in the high and low byte of i tem%. Note that
moving the pointer via the cursor keys produces keystrokes, whereas moving it with a mouse
does not.

QPTR The Pointer Environment 49

Change routines

CH_ITEM wdef,swnum%,item%,type%,selkey$,value

Change the given item in the given sub-window to the new value, type and select key,
givenin value, type% andselkey$. The type of the value may be string or floating point,
depending on the type of the item. Special values are:

swnum$ -1 for loose item, -n for information item in information

window n-2 (n>1): thus -2 to alter information window 0,
-3 to alter window 1 etc...

type$ -1 for no change

selkey$ " for no change (ignored in information window)

chr$(0) for no select key

CH_PTR wdef,swnum?%,newptr

Change the pointer sprite for a sub-window. If the sub-window number given in swnum#% is
-1 then the main window's sprite is re-defined. If the address of the pointer sprite, given in
newptr, is zero then the default sprite is used. This is the same as the main window's sprite for
a sub-window, and is the arrow sprite for the main window.

CH WIN wdef[,xdsiz%,ydsiz%]

Change a window's size or position. If only the wde £ parameter is given then the window's
position is changed, otherwise the size change required is returned in xdsiz% and ydsiz%.
Since the window's layout will probably change fairly drastically when the size changes, it is up to
the programmer to decide the effect of the result returned. Note that changing the position of a
primary window does not change the positions of its secondaries: any sub-windows of the moved
window do move with it, as their positions are defined relative to it.

As for the initial positioning of a window, the X origin will always be a multiple of four, and
the Y origin a multiple of two, to keep stipples "in phase".

QPTR The Pointer Environment 50

Array parameters

Some forms of array parameters are used in many of the above routines: their dimension
and contents are defined below.

Array name Contents
wattr%(3) Window Attributes
Element Data
0 shadow depth
1 border width
2 border colour
3 paper colour
iattr(3,3) Item Attributes
Element Data
0,0 current item border width
0,1 current item border colour
0,2/3 spare,0
1,0 unavailable item background colour
11 unavailable item ink colour
1,2 unavailable item pointer to blob
1,3 unavailable item pointer to pattern
2,0TO3 available item
3,0TO3 selected item

Note that only the current/unavailable attributes are used for index items, but that the available
and selected attributes must still be set. If a separate attribute array is used for index items, rows
2 and 3 may be left as 0.

wdef%(3) (Sub-)window size/position definition
Element Data
0 window X size
1 window y size
2 window x origin (Initial pointer position, when
3 window y origin used in main window def.)

The flag arrays determine the status of each item in a window: if an item's status is changed
by the program, a re-draw may be requested by adding 1 to the required status. The re-draw will
take place either when specifically requested by a call to one of the re-draw routines, or
automatically on a call to RD_PTR.

Iflag%(n) and Loose item flag array and

aflag%(n,m) menu item flag array

Flag value Item status
0 available

16 unavailable

128 selected

cta%(maxsc%,2) Control definition array

Element Data

0,0 current number of control sections
0,1 <>0 if the control definition is changed
i,0 start pixel position
i,1 start column/row
i,2 number of columns/rows

QPTR The Pointer Environment 51

Index of keywords

The keywords are summarised in alphabetical order, together with an indication of what action
they perform. Those marked PTR require the Pointer Interface, WMAN need the Window
Manager in addition: unmarked ones are independent of either. Those marked P are procedures,
F are functions: an A signifies that the routine uses array parameters, and an R that it returns
results through its parameter list. Having either of the latter properties makes a program using the
routine uncompilable with the Super/Turbocharge compilers.

CH_ITEM WMAN P change a menu item

CH_PTR WMAN P change a menu or sub-window's pointer sprite
CH_WIN WMAN PR change a window's position or size
DR_ADRW WMAN P A re-draw an application sub-window
DR_AWDF WMAN P put window over application sub-window
DR_IDRW WMAN P A re-draw an information sub-window
DR_IWDF WMAN P put window over information sub-window
DR_LDRW WMAN P A re-draw loose menu item(s)

DR_LWDF WMAN P put window over loose item

DR_PPOS WMAN P A position and draw a primary window
DR_PULD WMAN P A position and draw a pull-down window
DR_UNST WMAN P unset and remove a window

HOT_STUFF P put string(s) into the hotkey buffer

LBLOB PTR P draw line(s) of blobs

MKPAT P turn a part-window save area into a pattern
MK_AOL F A make an application sub-window object list
MK_APPW F A make an application sub-window definition
MK_ASL F A make an application sub-window spacing list
MK_AWL F A make a list of application sub-windows
MK_CDEF F make a control definition

MK_IOL F A make an information object list

MK_IWL F A make an information window list

MK_LIL F A make aloose item list

MK_RWL F A make an application sub-window row list
MK_WDEF F A make a window definition

MS_HOT PTR P set mouse-hotkey string

MS_SPD PTR P set mouse speed parameters

OUTLN PTR P set a window's outline and shadow

PICK PTR F pick/unlock a job

PREST PTR P part window restore from buffer

PSAVE PTR F part window save to buffer

RD_PTR WMAN PRA read pointer via window manager

RMODE F read current display mode

RPIXL PTR F read/scan for pixel colour

RPTR PTR PR read pointer directly

SPHDR P set up sprite header

SPLIN PR set up one line of sprite

SPRAY PTR P spray pixels

SPRSP F calculate space required for a sprite
SPSET PTR P A set up sprite definition from array

SPTR PTR P set pointer to new position

SWDEF PTR P (re)set sub-window definition/pointer sprite
WBLOB PTR P write a blob

WSPRT PTR P write a sprite

QPTR The Pointer Environment 52

Assembler

Programmer's Interface

Pointer Interface

The base level of the Pointer Interface is accessed through extended I0SS trap #3 operations.
These traps are used in the same way as ordinary QDOS 10 calls, but there are some distinctive
characteristics.

Where an x,y coordinate pair is required, this is passed as a long word with the x coordinate in
the upper word, and the y coordinate in the lower word.

In place of the single window area used by normal console output calls (set by SD.WDEF) the
Pointer Interface recognises four different window areas. The largest is the window outline: this is
the total area occupied by a window. The second largest is the window hit area: this is the
window outline less the window's shadow. These two areas are set by the pointer trap
IOP.OUTL. The outline (of a secondary window) is used by the save and restore traps
(IOP.WSAV and IOP.WRST). The outline and hit areas of the primary windows are use by the
buried layers of the Pointer Interface to determine which windows are locked by other windows
which are on top.

Within the hit area there is the window area set by SD.WDEF. This is the area within which all
output will be put: this area will often be fairly dynamic.

Also within the hit area there are all the sub-windows. The sub-window area definitions are in
a list which is set by the pointer trap IOP.SWDF. This sub-window list holds not only definitions of
the sub-window areas, but, for each area, a pointer to the sprite to be used as a pointer when the
pointer is in that area. The only pointer trap which uses the sub-window definitions is IOP.RPTR
(read pointer). If the pointer is within a sub-window of the window, then the pointer coordinates in
the pointer record are set relative to that sub-window.

As the sub-window definition list is held outside the 10 sub-system, it is important that the list
be detached from the window channel before the memory holding the list is returned to QDOS.
This will not be a problem if the window channel is closed first or both are returned by the job
being removed from the machine.

Before using any of the Pointer Interface calls, it is as well to check whether the Pointer
Interface is installed, and locate the Window Manager routines.

The Pointer Interface provides facilities for pointer control, pointer access and window control
as well as some additional 10 calls to access the area under the pointer. Some 10 calls to
windows which overlap the area occupied by the pointer will cause the pointer to be removed
from the screen before the call is executed. When this occurs the pointer will be restored about a
fifth of a second after the last standard 10 call to the screen. The pointer will, however, appear as
soon as a pointer position is requested. Where possible, the screen operations will be carried out
without blanking the pointer.

You will find a set of symbols defined in QDOS_IO for use with these TRAPSs.

QPTR The Pointer Environment 53

Additional 10 calls

Name

IOP.FLIM
IOP.SVPW
IOP.RSPW
IOP.SLNK
IOP.PINF
IOP.RPTR
IOP.RPXL
IOP.WBLB
IOP.LBLB

IOP.WSPT
IOP.SPRY

IOP.OUTL
IOP.SPTR
IOP.PICK
IOP.SWDF
IOP.WSAV
IOP.WRST

DO

$6¢
$6d
$6e
$6f
$70
$71
$72
$73
$74

$76
$77

$7a
$7b
$7c
$7d
$7e
$7f

Function

Find window limits
Partial window save
Partial window restore
Set linkage block
Information enquiry
Read pointer

Read pixel at x,y
Write blob at x,y
Write line of blobs

Write sprite at X,y
Spray pixels in blob

Set window outline

Set pointer position

Pick window

Set window definition pointer
Save window area

Restore window area

QPTR The Pointer Environment

54

Trap#3 DO=$6C IOP.FLIM

Find window limits

Call parameters Return parameters
D1 D1 preserved
D2 O D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al pointer to result area Al preserved
A2 A2 preserved

A3+ all preserved
Error returns:

ICHN channel not open
IPAR D2<>0

This call finds the limits of where a window's outline may be set by a call to IOP.OUTL -
setting the outline outside this will give an "out of range" error, setting it within this area will not,
unless the window's primary is moved after the call to IOP.FLIM. Al points to a four-word area of
memory into which the limits are returned in the usual X-size, Y-size, X-origin, Y-origin format.
These are absolute co-ordinates. A primary is limited to the whole screen area, a secondary to its
primary's outline.

QPTR The Pointer Environment 55

Trap#3 DO=$6D IOP.SVPW

Save part window

Call parameters Return parameters

D1 x,y start of block in area D1 address of save area
D2 0 orx,y size of save area D2 preserved

D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al size/start of window block Al preserved
A2 address of save area (D2=0) A2 preserved

A3+ all preserved
Error returns:
ICHN channel not open

ORNG block is not in window or save area
IMEM no room to set up save area (D2=0 only)

This routine saves part of the contents of a window into a save area in memory. The size and
position of the block to be saved are passed in a 4-word definition block pointed to by Al (c.f.
IOP.FLIM). The pixel position in the save area to which the block should be saved is passed in
D1. If D2<>0 then a new save area is set up, whose size in pixels is given in D2: otherwise the
area pointed to by A2 is used. The routine allows the use of bit images larger than the 512x256
limit imposed by the QL's hardware.

Trap #3 DO=$6E |IOP.RSPW
Restore part window

Call parameters Return parameters

D1 x,y start of block in area D1 preserved

D2 <>0to keep save area D2 preserved

D3.w timeout D3 preserved

A0 window channel ID A0 preserved
Al size/start of window block Al preserved
A2 address of save area A2 preserved

A3+ all preserved
Error returns:

ICHN channel not open
ORNG block is not in window or save area

I
I
I
I
I
I
I
I
I
I
D4+ all preserved |
I
I
I
I
I
I
I
I
I
I
I

This routine restores part of a save area into a block in a window. Optionally the save area
may be returned to the common heap. This routine complements the IOP.SVPW routine.

QPTR The Pointer Environment 56

Trap#3 DO=$6F IOP.SLNK

Set Bytes in Linkage Block

Call parameters Return parameters
D1.w position in linkage to set D1 preserved
D2.w number of bytes to set D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al pointer to data to set Al address of linkage block
A2 A2 preserved

A3+ all preserved
Error returns:

ICHN channel not open

Trap#3 D0=$70 IOP.PINF
Get Pointer Information

Call parameters Return parameters

D1 D1.l pointer version (n.nn)

D2 D2 preserved

D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al Al window manager vector
A2 A2 preserved

A3+ all preserved
Error returns:

ICHN channel not open
IPAR no pointer interface installed

The version number is a four byte ASCII string e.g. '1.15. The Window Manager vector
contains the entry points for the upper level routines. For example, to call the routine at vector
address $08 the following code may be used:

MOVEQ #$70,D0 find entry point vector
MOVEQ #-1,D3

MOVE.L CHAN_ID(A5),A0 set our own channel ID
TRAP $#3

TST.L DO is there an interface?
BNE O0PS ... DO

MOVE.L Al,DO is there a Window Manager?
BEQ O0PS ... DO

JSR $08 (A1) call vectored routine $0

QPTR The Pointer Environment 57

Trap#3 DO=$71 IOP.RPTR

Read pointer

Call parameters Return parameters

D1.l x,y pointer coordinates D1 x,y pointer coordinates
D2.b termination vector D2 preserved

D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al pointer to pointer record Al preserved
A2 A2 preserved

A3+ all preserved
Error returns:

ICHN channel not open

The coordinates passed (in D1) to the trap are used to check whether the pointer has moved
since the last call. Both the call and return parameters are in screen, not window, coordinates.

The termination vector is used to determine which events will cause a "complete" return from
the call, and it corresponds to the least significant byte of the event vector:

bit 0 key or button stroke in window / window resize
bit 1 key or button pressed (subject to auto repeat)
bit 2 key or button up in window

bit 3 pointer moved from given coordinates in window
bit 4 pointer out of window

bit 5 pointer in window

bit 6 reserved

bit 7 window request

If both bit 4 and bit 5 are set, then the pointer call will always return immediately, even if the
window is locked!

Bits 7 is used to request a pointer "hit" regardless of whether the pointer is inside or outside
the window. This call must be made with infinite timeout. While such a request is pending in the
top window, all windows are locked and only the top window will get the "hit". The pointer sprite
will be set according to the status of bits 0 and 1. If bit 7 is set then all bits other than bits 0 and 1
should be zero. If bit 0 is set then the move window sprite will be used; if bit 1 is set then the
window change size sprite is used; otherwise the empty window sprite will be used.

QPTR The Pointer Environment 58

The pointer record is 24 bytes long:

00 long ID of window enclosing the pointer

04 word sub-window enclosing pointer (or -1)

06 word x pixel coordinate of pointer within (sub-)window
08 word y pixel coordinate of pointer within (sub-)window
Oa byte 0=no keystroke <>0 key or button code

Ob byte 0=no key down <>0 space or button depressed
Oc long event vector all zero except LS Byte

10 4 words (sub-)window definition (size, origin)

To determine the window that a pointer is in, the Pointer Interface scans the pile of primary
windows looking for the first window whose hit area the pointer is in. If that window has a window
definition list and the pointer is outside the main window definition (i.e. it is pointing to the border)
then the pointer is considered to be outside all windows. If the window does not have a definition
list and the pointer is outside the current window area (set by SD.WDEF), then the pointer is also
considered to be outside all windows.

If the pointer is not in a window, the conventional ID -1 is returned instead of an actual ID
(note that as a negative "tag" is possible, the second word of the ID should be checked to find out
if the channel number is negative). In this case, the pointer coordinates will be relative to the
display origin.

If the pointer is within a sub-window of the window (as defined by a IOP.SWDF call) then the
X,y coordinates in the pointer record will be relative to the origin of sub-window. Otherwise, the
sub-window number will be -1 and the X,y coordinates will be relative to the main window. If there
is no window definition list, then the X,y coordinates in the pointer record will be relative to the
origin of the current window definition. In either case, the definition of the window or sub-window
is put into the end of the pointer record.

For a button on a pointer device the code is the button number. For a keypress on the
keyboard, the code is the extended ASCII code of the character.

QPTR The Pointer Environment 59

key bit
31

19
18/17
16

D1.l
D2.|

AO
Al
A2

Trap #3 D0=$72

Read pixel colour

Call parameters

X,y coordinate
scan key | scan colour
D3.w timeout

window channel ID

Error returns:

ICHN channel not open
ORNG x, y is not in window

meaning
set => scan required

IOP.RPXL

Return parameters

D1.l
D2
D3
D4+

AO
Al
A2
A3+

new position | colour
preserved

preserved

all preserved

preserved
preserved
preserved
all preserved

set => scan until same colour: else scan to different
00=scan up, 01=scan down, 10=scan left, 11=scan right
set => compare with given colour, else with start colour

The x,y coordinates are relative to the current window area set by SD.WDEF. If no scan is
required (D2..31=0) then the colour of the specified pixel is returned in D1.w. If a scan is required
then it may proceed from the given start pixel co-ordinates in one of four possible directions,
terminating when a pixel of the same/a different colour to the given colour/colour of the pixel at
the start position is found. If the scan reaches the edge of the window before a pixel of the
required colour is found then the co-ordinate returned in the high word of D1 is set to -1. Since
the scan is in either the x or the y direction, the y or x co-ordinate of the termination pixel is the
same as that of the start pixel.

QPTR The Pointer Environment

60

Trap #3 D0=%$73
Write a blob

Call parameters

D1.l x,y coordinate

D2 O
D3.w timeout

A0 window channel ID
Al pointer to blob definition
A2 pointer to pattern definition

Error returns:

ICHN channel not open
ORNG x, y is not in window
IPAR bad data structure

Trap #3 D0=%$74

Write a line of blobs

Call parameters

D1.l x,y start coordinate
D2.1 x,y end coordinate

D3.w timeout

A0 window channel ID
Al pointer to blob definition
A2 pointer to pattern definition

Error returns:

ICHN channel not open
IPAR bad data structure

Return parameters

D1 preserved
D2 preserved
D3 preserved
D4+ all preserved

A0 preserved
Al preserved
A2 preserved
A3+ all preserved

Return parameters

|IOP.WBLB

|IOP.LBLB

D1.1 x,y end coordinate

D2 preserved
D3 preserved
D4+ all preserved

A0 preserved
Al preserved
A2 preserved
A3+ all preserved

The write blob call writes a blob of the pattern into the window, and the line of blobs a line

from the start to (but not including) the end coordinates, which are relative to the current window
area set by SD.WDEF. A blob which falls wholly or partially out of the window causes an error in

IOP.WBLB, and is ignored in IOP.LBLB.

This version checks the form of the blob and pattern against the current screen mode, and

searches along each chain until it finds a definition with the appropriate form. If it encounters the
end of the chain or an odd pointer before this, a "bad parameter" error will be returned.

QPTR The Pointer Environment

61

Trap#3 DO=$76 IOP.WSPT

Write a sprite

Call parameters Return parameters
D1.l x,y coordinate D1 preserved
D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al pointer to sprite definition Al preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window
IPAR bad data structure

The write sprite call writes a sprite into the window. This version of the Pointer Interface
cannot handle sprites which partially overlap the edge of the window.

The X,y coordinates are relative to the current window area set by SD.WDEF.
This version checks the form of the sprite against the current screen mode, and searches
along the chain until it finds a definition with the appropriate form. If it encounters the end of the

chain or an odd pointer before this, a "bad parameter" error will be returned.

The internal sprites may be used by passing a small number in Al, rather than a pointer:

Name Number Sprite

SP.ARROW $00 arrow

SP.LOCK $01 padlock

SP.NULL $02 empty window
SP.MODE $03 wrong mode (4 or 8)
SP.KEY $04 keyboard entry
SP.BUSY $05 no entry sign
SP.WMOVE $06 window move
SP.WSIZE $07 window change size

QPTR The Pointer Environment 62

Trap #3

D0=$77

Spray pixels in blob

Call parameters

D1.l
D2

X,y coordinate

number of pixels to spray

D3.w timeout

AO
Al
A2

window channel ID

pointer to blob
pointer to pattern

Error returns:

ICHN channel not open
ORNG x, y is not in window

|IOP.SPRY

Return parameters

D1
D2
D3
D4+

AO
Al
A2
A3+

X,y coordinate
preserved
preserved

all preserved

preserved
preserved
preserved
all preserved

This call sprays the number of pixels required into a window: the colour of each is determined

by the pattern, and each falls on a non-transparent part of the blob. If the number of pixels
required exceeds the number of pixels in the blob the call will terminate with no error, and may
duplicate the effect of a call to IOP.WBLB: but there is no guarantee that one or more calls to
IOP.SPRY with the same blob in the same position will eventually fill in the entire blob.

Trap #3

DO=$7A

Set Window Outline

Call parameters

D1.l
D2

X,y shadow widths
1 to keep contents, else 0

D3.w timeout

A0
Al
A2

window channel ID
pointer to window definition block

Error returns:

ICHN channel not open

ORNG window not within screen

QPTR The Pointer Environment

|IOP.OUTL

Return parameters

D1
D2
D3
D4+

A0
Al
A2
A3+

7?7
preserved
preserved

all preserved

preserved
preserved
preserved
all preserved

63

This call defines a window's outline, its hit area and shadow. Al points to a normal window
definition block (4 words: x,y sizes, x,y origin) which defines the window hit area. The shadow
widths area added to this to make the window outline, and the shadows are drawn. It is the use of
this call which indicates to the Pointer Interface that the window concerned is a genuine managed
window. All subsequent SD.WDEF calls to this window will be checked against the window hit
area instead of the total display area.

For secondary windows, IOP.OUTL also saves the area beneath the window, avoiding the
need for explicit IOP.WSAV and IOP.WRST calls.

If the key in D2 is set to 1 then the contents of the window will be preserved, allowing
applications to move a window with one call to IOP.OUTL: note that the size must stay the same
for this to work properly!

Trap#3 DO=$7B IOP.SPTR
Set pointer position

Call parameters Return parameters

D1.l x,y coordinate D1 x,y coordinate

D2.b origin key D2 preserved

D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al Al preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
ORNG x, y is not in window

This call sets the current pointer position. It should be used with discretion as sudden pointer
position changes could prove to be very unpleasant for the user.

The origin key should be zero if the pointer coordinates in D1 are absolute. D1 is always set to

absolute coordinates on return. A key of -1 will set the position relative to the current window defi-
nition. A key of 1 will set it relative to the hit area.

QPTR The Pointer Environment 64

Trap#3 DO=$7C IOP.PICK

Pick window

Call parameters Return parameters

D1.l job ID or key D1 2?77

D2 0 ork.wake D2 preserved

D3.w timeout D3 preserved
D4+ all preserved

A0 window channel ID A0 preserved

Al Al preserved

A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
IJOB invalid job ID

If a job ID is given, the primary window owned by that job will be "picked" to the top of the pile.
If the key is given as -1, then the bottommost job will be picked to the top. If the key is given as
-2, the window is marked "unlockable". If D2 is set to k.wake, a wake event is sent after the pick.
This call will work even if the channel given is locked: it should be used very sparingly, if at all.

QPTR The Pointer Environment 65

Trap#3 DO=$7D IOP.SWDF

Set Sub-Window Definition List

Call parameters Return parameters
D1 D1 preserved
D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al Al preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

This call is used to set the pointer to the sub window definition list. This is a sub-set of the
window working definition. Al points to a long word pointer to a table of pointers to sub-window
definitions. This pointer may be zero. It is followed by a sub-window record for the main part of
the window. The pointers to sub-window definitions are long words, the list is terminated by a
zero long word. Each pointer points to a sub-window record.

A sub-window record specifies the area and, if desired, a pointer to a sprite to be used as
pointer when the pointer is in that sub-window. The structure of a sub-window record is as
follows:

SW_Xsize $00 word (sub-)window x size (width) in pixels

SW_ysize $02 word (sub-)window y size (height) in pixels

SW_xorg $04 word x origin of (sub-)window

sw_yorg $06 word y origin of (sub-)window

sw_wattr $08 (sub-)window attributes in 4 words - spare,
border width, border colour, paper colour

sw_psprt $10 long pointer to pointer sprite for this (sub-)window

QPTR The Pointer Environment 66

Trap#3 DO=$7E IOP.WSAV

Window Area Save

Call parameters Return parameters
D1.l length of save area (or 0) D1 preserved
D2 D2 preserved
D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al address of save area (D1>0) Al preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open
IMEM out of memory

Trap#3 DO=$7F IOP.WRST
Window Area Restore

Call parameters Return parameters

D1 D1 preserved

D2.b <>0 to keep save area D2 preserved

D3.w timeout D3 preserved

D4+ all preserved

A0 window channel ID A0 preserved
Al address of save area (or 0) Al preserved
A2 A2 preserved

A3+ all preserved

Error returns:

ICHN channel not open

These routines save and restore bit images from and to a window's hit area. The memory to
be used may be supplied by the application (D1 or Al non-zero) or allocated internally. The
former option is preferable, as the internal save area pointer may already be in use; it is used to
implement pull-down windows, for instance.

QPTR The Pointer Environment 67

Window Manager

The window management routines are supplied to do all of the most common operations in
handling pull-down movable and resizable windows and menus within these windows. The
actions of the window management routines are controlled by data structures supplied by the
application.

Symbols for the vectors are defined in the WMAN_KEYS file, which may be INCLUDEd in any
program which makes use of these routines.

In many cases, the window data structures will have pointers to application supplied action
routines. This effectively means that the application code calls the window manager routines,
which, in turn, call application routines. To simplify the application code, the window manager
routines treat certain registers in a uniform way:

When the window manager routines call an application routine, A2 is set to point to the
window manager vector, while A5 and A6 are not used or modified by any window manager
routines. Thus A5 and A6 can be used by the application routines as pointers to internal data
structures.

There are four distinct phases involved in setting up and using a managed window. First the
window definition is copied and expanded into the working definition. Next the working definition
is used to open an appropriate window. Then the window contents are filled in. Finally, the
window is accessed via a call to read the pointer.

Before starting to set up a window, the application must have initialised the window status
area. This is a work area which is accessed by both the window management routines and the
application program. It contains such useful information as the current item, the panning and
scrolling state of the application sub-windows and the status of all the items within all the
(sub-)windows.

The start of the status area holds pointers to the window definitions. Often the initial state of
the rest of the status area will be mostly zero. Where pull-down windows are used, the status
area will usually be maintained from one use of the window to the next time the window is set up
to be used.

QPTR The Pointer Environment 68

Setup routines

The routine WM.SETUP may be called to transfer a window definition to the window working
definition. It is possible for an application to set up its own working definition, but it is easier to
use the window manager routine.

The window definition is a fixed skeleton of the appearance of the window, as in practice the
window contents are liable to change. This variability is catered for in two ways. Firstly, the
application must supply its own routine to transfer the definition of each application sub-window:
for standard format menus, the application sub-window setup routine will just be a call to
WM.SMENU. Secondly, after the working definition has been set up, it may be modified by the
application. In particular, if there is a menu within the window which has a variable object list,
then the object lists should be set up by the application code after the main part of the working
definition has been set up by WM.SETUP.

Depending on the size of window required, one of a number of layouts will be selected from
the list provided in the window definition. The WM.FSIZE routine may be used to determine
which will be selected: the result of this might, for instance, be used to allocate the correct
amount of memory for the working definition.

In the next phase the window is initialised. For the primary window, the routine WM.PRPOS
will position and set up a primary window. For secondary windows, the routine WM.PULLD
should be called to pull down a window within the primary window area. These routines will try to
position the window so that the pointer will point to the current item in the window without being
moved. If this is not possible, then the pointer itself will be moved. WM.PRPOS and WM.PULLD
both set the window border and clear the window. After the window has been initialised, fancy
borders or other adornments may be added by the application.

The window should now be filled in. Most of the operations to fill in the window will be
performed by the routine WM.WDRAW. However, the application sub-windows are initialised but
not filled in. This is left to the application code. If the sub-window is a standard format menu, then
the menu drawing routine WM.MDRAW may be called to fill in the sub-window.

In the final phase, the routine WM.RPTR may be called to read the pointer. This routine will
return with the event vector in D2. This will indicate what actions (if any) are required to be done.
Any "hits" on loose menu items or items within a menu sub-window will have been processed
within the window management level by the hit and action routines supplied by the application.

If a "hit" on a loose menu item, or a sub-window menu item, requires the window to be
changed (moved, squashed, stretched, thrown away etc.), then the action routine should set the
appropriate bit in the event vector and return to the application code. This ensures that the
application will always have control over its own windows.

QPTR The Pointer Environment 69

Vector $54
Find size of layout
Call parameters

D1 X,y size (or 0)
D2

A0

Al

A2

A3 pointer to window defn
Ad

A5 not used by any routine
A6 not used by any routine

Error returns:

Not set

WM.FSIZE

Return parameters

D1 actual x,y size
D2.w layout number
D3+ all preserved

A0 preserved
Al preserved
A2 preserved
A3 preserved
A4+ all preserved

If this routine is required it will usually be called before WM.SETUP to determine which of the
possible layouts WM.SETUP will select from the repeated part of the window definition. If the re-
quired size is given as 0 then the default size will be used. The actual size that the window will be
is returned in D1: this will be the same as that passed if the layout selected is scaleable,
otherwise it will be smaller in one or both dimensions. It will be larger if the size requested was

smaller than the smallest possible layout.

The layout number is returned in D2: this will be zero for the first layout, 1 for the second and
so on. This may be used to allocate the correct amount of memory for the working definition (the

following code assumes you have set the size required and pointer to the window definition):

find out which layout

turn into offset

MOVE.L WWTAB(PC,D2.W),D1 find space in table

JSR WM.FSIZE(A2)

ADD.W D2,D2

ADD.W D2,D2

JSR MEMGET (PC)
WWTAB

DC.L WWA.MENU

DC.L WWB.MENU

QPTR The Pointer Environment

and allocate it

space for layout 0...
..and layout 1

70

Vector $04 WM.SETUP

Setup a managed window

Call parameters Return parameters
D1.l x,y size (or 0, or -1) D1.l1 x,y size

D2+ all preserved
A0 window channel ID A0 preserved
Al pointer to status area Al preserved
A2 A2 preserved
A3 pointer to window defn A3 preserved
A4 pointer to working defn A4+ all preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Always returns OK

The managed window setup routine WM.SETUP is called to transfer information from the
window definition to the window working definition. It is the responsibility of the applications code
to provide an area of memory large enough to accommodate the window working definition. This
may seem unfair, but only the application will be able to determine the maximum space required
in this area.

If the window size is given as 0, then the default window size will be used. If the window size
is given as -1, then the window size and position in the working definition will not be changed.
This is to allow re-use of a window (see WM.UNSET and WM.WRSET).

The window size is used to determine the window layout and scaling factors. If no definition
can be found that is small enough to accommodate the given window size, than the size of the
window in the last definition in the list will be used.

Where possible, WM.SETUP will set up complete structures. If there are empty pointers or
structures in the window definition, these will be transferred to the working definition as empty
pointers or structures. When it comes to transferring the definitions of application sub-windows to
the working data structure, the basic sub-window definition is transferred, and then an application
supplied routine is called to setup the rest of the sub-window working definition.

To simplify calls back into the window manager routines, A2 will be set to point to the window
manager vector, while A5 and A6 remain unused since the call to WM.SETUP.

In the case of a standard menu, the application supplied routine will just be a branch to the

standard menu setup routine

JMP WM.SMENU(A2) setup standard menu

QPTR The Pointer Environment 71

Vector $04 WM.SETUP Set Up Working Definition

set pointer to window status area in working definition
set pointer to window definition in window status area
set no current item in window status area
set window mode in status area
set channel ID in working definition
set pointer to pointer record
find definition to suit size
set X,y scaling factors
set window attributes block
set pointer to pointer sprite
set loose menu item attributes block
set help pointer
set pointer to information sub-window list
for all information sub-windows
set true size and origin
set window attributes
set pointer to information object list
set number of information sub-windows
for all information sub-windows
set end of list
for all information objects
set object size and position
set object type and attributes
set object pointer
set number of information objects
set end of list
set pointer to loose menu item list
for all loose menu items
set object size and position
set object justification rule
set object type and selection keystroke
set pointer to object and item number
set pointer to action routine
set number of loose menu items
set end of loose menu item list
set application sub-window list address
set sub-window sprite list address to same
for all application sub-windows

set application sub-window pointer list (implicit end=0)

set number of application sub-windows
for all application sub-windows

set true size and origin

set window attributes

set pointer to pointer sprite

set pointers to sub-window draw and hit routines

set pointer to sub-window control routine
set selection keystroke
for x and y
set maximum number of sections
if non-zero

set pointers to part-window control blocks

copy all control attributes
else

preset control section of menu definition to 0

call application sub-window setup routine

QPTR The Pointer Environment

72

The call parameters to the application sub-window setup routine are the same as the
parameters to the standard menu setup routine. The registers A3 and A4 are used as running
pointers to the window definition, and the working definition respectively. On calling the appli-
cation sub-window setup routine A3 points after the application sub-window basic definition, or
after the sub-window control definition (if present). A4 points to the next unset location in the
window working definition. On exit from the application sub-menu setup, A4 should be updated to
point to the next unset location in the window working definition. A3 need not be updated or
preserved.

The window scaling parameters D1 and D2 are the amount by which the window size exceeds
the minimum in the x and y directions. These are words.

Application Sub-Window Setup Routine

Call parameters Return parameters
D1.w x scaling D1 preserved
D2.w y-scaling D2 preserved

D3+ all preserved

A0 A0 ???

Al pointer to status area Al 2?7?77

A2 window manager vector A2 2?7

A3 pointer to sub-window defn A3 ??7?

A4 pointer to working defn A4 updated

A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

DO and the status register must be set

Al contains the pointer to the status area which was passed to WM.SETUP. To simplify calls
back into the window manager routines, A2 is set to point to the window manager vector, while
A5 and A6 remain unused since the call to WM.SETUP. All of A0 to A3 may be treated as
volatile.

QPTR The Pointer Environment 73

Vector $08
Setup standard sub-window menu
Call parameters

D1.w x scaling

D2.w y-scaling

A0

Al pointer to status area

A2

A3 pointer to sub-window menu defn
A4 running pointer to working defn
A5 not used by any routine

A6 not used by any routine

Error returns:

Always returns OK

WM.SMENU

Return parameters

D1
D2

preserved
preserved

D3+ all preserved

A0
Al
A2
A3
A4

preserved

preserved

preserved

updated to after menu def
updated to next unset location

Vector $08 WM.SMENU Set Up a Standard Menu Sub-Window

set pointer to menu status block
set item attributes

set number of rows and columns
set pointers to spacing lists

copy spacing lists

set pointers to index object lists

set index object lists

set pointer to row list

set row pointers
set object lists

QPTR The Pointer Environment

74

Window Manager Set Window Routines

The primary window position routine WM.PRPOS is called to position the primary window for
an application. The position of the window is determined by the current pointer position in
conjunction with the "origin" of the window (specified in the working definition) or the position of
the current menu item (specified in the window status area). This ensures that the pointer will
move as little as possible when the window is opened, while keeping the window within the limits
of the display. A window is always positioned such that its X origin is a multiple of four, and its Y
origin is a multiple of two: this ensures that any stipples used in the window are always "in
phase".

The routine WM.PULLD is the equivalent call for a secondary window. This has the same
effect as the primary open call, but the window pulled down is limited to be within the primary
window area.

The routine WM.UNSET is called to unset the sub-window definition pointer in the screen
driver so that a working definition may be removed or replaced.

The routine WM.WRSET is called to reset a primary or pull down window so that the same
window may be used with a new working definition. N.B. see WM.UNSET

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

I I
| Vector $0C Primary Window Positioning WM.PRPOS |
| Vector $10 Pull Down Window Open WM.PULLD |
| Vector $14 Window Unset WM.UNSET |
| Vector $18 Window Reset WM.WRSET |
I I
| Call parameters Return parameters |
I I
| D1 window "origin" or -1.1 D1+ all preserved |
I I
| AO A0 channel ID of window |
| Al1-A3 Al1-A3 preserved |
| A4 pointer to working defn A4+ all preserved [
I I
I I
I I
I I
I I
I I
I I

If an "origin" position is given, this (in absolute screen coordinates) is used, in place of the
current pointer position, to position the window.

Vector $10 WM.PULLD Pull Down a Window

open console and fill in its channel ID
set "pulled down" flag
... then WM.PRPOS

QPTR The Pointer Environment 75

Vector $0C WM.PRPOS Position a primary window

get window channel ID from working definition

find current pointer position and save it

calculate window origin

set window outline and shadow (saves pull down window area)
adjust pointer position

adjust window definition block to exclude border

... then WM.WRSET

Vector $18 WM.WRSET

draw border and clear window
set sub-window definition pointer

Vector $14 WM.UNSET

unset sub-window definition pointer
if window was pulled down
restore area covered up
restore old pointer position

QPTR The Pointer Environment

76

Window Manager Drawing Routines

When the working definition has been set up and the window opened, the general purpose

routine WM.WDRAW is called to draw the entire window contents. The information windows are
set up and the information objects are drawn. Then the loose menu items are drawn. Finally each
application sub-window is set up, bordered and cleared and the application sub-window draw
routine is called to fill in the contents and the index bars.

Vector $1C WM.WDRAW Draw Window Contents

QPTR The Pointer Environment

Vector $1C
Draw window contents

Call parameters

A0

A1-A3

A4 pointer to working defn
A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

for all information sub-windows

set sub-window size, position and border
set sub-window background

clear sub-window
for each object
draw in position

for all menu items
draw in position

for all application sub-windows

set sub-window size, position and border
set sub-window background

clear sub-window

call application sub-window draw routine

WM.WDRAW

Return parameters

D1+ all preserved

A0

channel ID of window

Al1l-A3 preserved

A4

preserved

77

The application sub-window draw routine is called to draw the contents and, if required, the
indices for the sub-window. When it is called, the window definition (SD.WDEF) will have been
set to the sub-window outline. The application routine is passed the pointer to the start of the
working definition in A4, and the pointer to the sub-window definition in A3. The sub-window
definition in the window status area will be set and D7 holds the origin of the window, not the
sub-window. The pointer to the window status area can be found in the working definition
which is pointed to by A4.

Application Sub-Window Draw Routine
Call parameters Return parameters

D1+ all preserved

D7.1 x,y origin of window D7 preserved
A0 window channel ID AO preserved
Al Al ?7??
A2 window manager vector A2 2?77
A3 pointer to sub-window defn A3 ??7?
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

DO and the status register must be set

To simplify calls back into the window manager routines, A2 is set to point to the window
manager vector, while A5 and A6 remain unused since the call to WM.WDRAW.

QPTR The Pointer Environment 78

Part Window Drawing Routines

There are four window management routines to help drawing or redrawing parts of windows.
These routines may be called from the application sub-window drawing routines (called from
WM.WDRAW) or from the action or control routines (called from WM.RPTR and WM.MHIT).

These are the standard menu drawing routine, WM.MDRAW, the index drawing routine,

WM.INDEX, the sub-window definition routine, WM.SWDEF, and the loose menu item drawing
routine, WM.LDRAW.

Vector $20 WM.MDRAW

Standard Menu Drawing
Call parameters Return parameters

D1-D2 all preserved

D3.b 0 all, -1 selective D3+ all preserved

A0 window channel ID AO channel ID of window
Al Al preserved

A2 A2 preserved

A3 pointer to sub-window defn A3 preserved

A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

If D3 is set to -1 for the call to WM.MDRAW, then only those items whose status has the
change bit set (WSI..CHG) will be drawn. Note that the status flags are not modified by this
routine; this is because an item may consist of more than on object, or an object may be visible in
more than one section, so the status flags need to be preserved throughout the routine. The
application will therefore need to clear any change bits that are set after this routine has been
called.

Vector $20 WM.MDRAW Draw Standard Menu in Sub-Window

set sub-window definition
for all row sections
for all rows visible within section
for all column sections
for all columns visible within section
if draw all or WSI..CHG set in status
draw object in colours appropriate to status

QPTR The Pointer Environment 79

Vector $24
Standard Sub-Window Index

Call parameters

A0 window channel ID

Al

A2

A3 pointer to sub-window defn
A4 pointer to working defn

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

Vector $24 WM.INDEX Draw Sub-Window Indices

set main window definition
if column index
for all column sections
for all columns visible in section
draw column index object
if row index
for all row sections
for all rows visible in section
draw row index object

if pannable
for all column sections
draw pan bar
if scrollable
for all row sections
draw scroll bar

set sub-window definition
if pannable
for all column sections
for all row sections
draw pan arrows
if scrollable
for all row sections
for all column sections
draw scroll arrows

QPTR The Pointer Environment

WM.INDEX

Return parameters
D1+ all preserved

AO channel ID of window
Al preserved
A2 preserved
A3 preserved
A4 preserved

80

Vector $70 WM.UPBAR

Update pan/scroll bars
Call parameters Return parameters

DO X,y section to update DO preserved
D1+ all preserved

A0 window channel ID AO channel ID of window
Al Al preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

This routine allows re-drawing of a given section scroll or pan-bar. If you set DO to -1, nothing
is updated. The first call to draw bars and arrows should be WM.INDEX, any further update of the
bar positions should be done with WM.UPBAR. This saves a lot of time as only the part which
(possibly) has been modified is re-drawn. There is also no need to re-draw the arrows (if they
exists) after a scroll or pan operation.

Vector $28 WM.SWDEF
Set Sub-Window Definition
Call parameters Return parameters

D1+ all preserved

A0 window channel ID AO channel ID of window
Al Al preserved
A2 A2 preserved
A3 pointer to sub-window defn A3 preserved
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

This routine may be used to reset the definition of any application or information sub-window.

QPTR The Pointer Environment 81

Vector $28 WM.SWDEF Set Sub-Window Definition

find sub-window definition
make absolute screen coordinates
set window definition with zero border width

Vector $2C WM.LDRAW

Loose Menu Item Drawing
Call parameters Return parameters

D1-D2 all preserved

D3.b 0 all, -1 selective D3+ all preserved

A0 window channel ID A0 channel ID of window
Al Al preserved

A2 A2 preserved

A3 A3 preserved

A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

If D3 is set to -1 for the call to WM.LDRAW, then only those items whose status has the
change bit set (WSI..CHG) will be drawn. This routine is normally used when a change in status
of one loose item affects the status of others, or when a loose item's object has been changed.
Note that the status flags are not modified by this routine; this is because an item may consist of
more than on object, or an object may be visible in more than one section, so the status flags
need to be preserved throughout the routine. The application will therefore need to clear any
change bits that are set after this routine has been called.

Vector $2C WM.LDRAW Draw Loose Menu Items

set main-window definition
for all loose menu items
if draw all or WSI..CHG set in status
draw object in colours appropriate to status

QPTR The Pointer Environment 82

D3

AO
Al
A2
A3
A4
A5
A6

Vector $3C

Draw information sub-windows

Call parameters

bits clear to redraw window

pointer to sub-window defn
pointer to working defn
not used by any routine
not used by any routine

Error returns:

Any 1/O sub system errors

WM.IDRAW

Return parameters

D1-D2 all preserved
D3+ all preserved

A0
Al
A2
A3
A4

channel ID of window
preserved
preserved
preserved
preserved

This routine allows an application to re-draw any of the first 32 information sub-windows: if bit
N of D3 is clear then information sub-window N will be cleared and re-drawn. This routine will nor-
mally only be used when the information objects in a window have been changed.

for information sub-window 0..31

if bit N clear in D3
set sub-window definition
draw sub-window border
clear sub-window
for all objects in sub-window
draw object

QPTR The Pointer Environment

83

There is a set of four vectors used to set the window to an area used by an information
sub-window, loose menu item, application sub-window or section of application sub-window. In
each case D1 specifies the number of the entity (not to be confused with a menu item number)
and D2 specifies the colour(s). If D2 is a negative long word, then only the window area will be
set, otherwise these routines will set the ink, paper and strip colours and the "over" state to 0 as

well as setting the area.

Vector $58
Set window to info window
Call parameters

D1.w info window number
D2.l ink colour / no reset

A0
Al
A2
A3
A4 pointer to working defn
A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors
ORNG Info window number out of range

Vector $5C
Set window to loose item
Call parameters

D1.w loose item number
D2.l item status / no reset

A0
Al
A2
A3
A4 pointer to working defn
A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors
ORNG Item number out of range

QPTR The Pointer Environment

WM.SWINF

Return parameters

D1
D2
D3+

A0
Al
A2
A3
A4

preserved
preserved
all preserved

channel ID of window
pointer to window in work def
preserved

preserved

preserved

WM.SWLIT

Return parameters

D1
D2
D3+

A0
Al
A2
A3
A4

preserved
preserved
all preserved

channel ID of window
pointer to item in work def
preserved

preserved

preserved

84

Vector $60
Set window to application sub-window
Call parameters

D1.w application window number
D2.1 ink colour / no reset

A0
Al
A2
A3
A4 pointer to working defn
A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

Vector $64

Call parameters

D1.1 X,y section numbers
D2.l ink colour / no reset

A0

Al

A2

A3 ptr to sub-window definition
A4 pointer to working defn

A5 not used by any routine

A6 not used by any routine

Error returns:

Any 1/O sub system errors

QPTR The Pointer Environment

WM.SWAPP

Return parameters

D1
D2
D3+

A0
Al
A2
A3
A4

Set window to application sub-window section

preserved
preserved
all preserved

channel ID of window
pointer to window in work def
preserved

preserved

preserved

ORNG Application window number out of range

WM.SWSEC

Return parameters

D1
D2
D3+

A0
Al
A2
A3
A4

preserved
preserved
all preserved

channel ID of window
preserved
preserved
preserved
preserved

ORNG Application window or section number out of range

85

Vector $68 WM.DRBDR

Draw border around current item
Call parameters Return parameters

D1+ all preserved

A0 channel ID of window A0 preserved
Al window status area Al preserved
A2 A2 preserved
A3 A3 preserved
A4 A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

This routine draws a border using the current item information in the window status area.

To clear the current item, set the most significant bit of WS_CITEM and, if WS_CIACT is
clear, call WM.DRBDR, otherwise call the routine pointed to by WS_CIACT and then clear
WS_CIACT.

To set a current item, set WS_CITEM, WS_CIBRW, WS_CIPAP (to the highlight colour) and

the hit area WS_CIHIT. Then call WM.DRBDR. Finally reset WS_CIPAP to the background
colour.

QPTR The Pointer Environment 86

Window Manager Access Routines

Once the window, and all its sub-windows, have been set up, the pointer may be read using
the window read pointer vector. This routine repeatedly reads the pointer, waiting for a move or
keystroke event, and calls any hit or action routines that may be required. If any bits in the
window or sub-window bytes of the event vector become set, then the routine will return. Other
window manager access routines are available to handle menus within sub-windows and to pro-
vide utility support for application sub-windows

Window Manager Read Pointer

The window manager read pointer routine (WM.RPTR) handles all the pointer movement and
keystrokes outside the sub-windows. It also does some occasional operations within
sub-windows, and traps some keystrokes before they reach the application sub-window hit
routines.

The rules governing the operation of WM.RPTR are rather complex, but are designed to make
the interface operate as close to an intuitive model as is reasonable. The operation is complex
because the interface has to be capable of handling not only menu selection by keystroke and
menu selection by pointing device, but also menu selection by cursor key and arbitrary pointer
input.

The three most important keystrokes are SPACE, which corresponds to a click on the left
mouse button, ENTER which corresponds to a click on the right mouse button and ESC. SPACE
or left click is referred to as "hit", ENTER or right click is "do". For some reason, ESC is known as
"cancel".

Current Item

One of the functions of WM.RPTR (and its menu support routine WM.MHIT) is to maintain a
current menu item. This item is outlined on the display. As long as the pointer remains within the
"hit area" of the item, the item will remain outlined. As soon as the pointer moves out of the hit
area, then the outline will be removed. If the current item is "hit", then, if it is available, the status
is toggled, and the appropriate action routine called. "do" is similar to "hit" except that if the item
is available the status is set to selected before the action routine is called.

Alternatively, items can be selected on a single keystroke. This has the effect of moving the
pointer to a new current item, and then causing a "hit". Since the "hit" will cause a call to an
action routine, it is possible for the application to automatically convert the "hit" to a "do" (or a
"cancel" or any other event).

QPTR The Pointer Environment 87

From the point of view of WM.RPTR, the main window is divided into two distinct areas: that
part of the window which falls within an application sub-window, and that part not within any
application sub-window. Every window is considered to have at least some menu operations.
Some of these, e.g. HELP or DO, may be accessible from any application sub-window.

Keystroke Selection

Most keystrokes on the keyboard are treated as shorthand menu selections. The keystroke is
converted to upper case, and it is compared against the selection keystrokes defined for the
loose menu items, the selection keystrokes defined for the application sub-windows or, in
WM.MHIT, the selection keystrokes defined for the sub-window menu items.

The current version of the Window Manager allows you to underscore the character which is
the selection keystroke of a text item. The type of this item is text-position, which means, first
character is -1, second -2 and so on.

There are some keystrokes which are defined to cause window events:

ENTER or a double click will cause a "do" event;
ESC will cause a "cancel" event;

F1 will cause HELP event;

CTRL F4 will cause a MOVE window event;
CTRL F3 will cause a change SIZE event;
CTRL F2 will cause a WAKE event;

CTRL F1 will cause a SLEEP event.

The treatment of these keystrokes will depend on both the organisation of the window, and the
position of the pointer.

The WM.RPTR routine is a loop reading the pointer record. Whenever there is a move or
keystroke to be processed, it checks first of all for the event keystrokes, then other keystrokes,
and if there is no keystroke, it checks whether the current item has changed. When appropriate, it
calls either a loose menu item action routine, or a application sub-window hit routine. If, at the
end of all the processing of a keystroke or move an event has been generated, WM.RPTR will
return. Otherwise it will continue to read the pointer record.

If there is a "do" event and there is a current item, then the corresponding item is selected and
the appropriate action routine is called.

QPTR The Pointer Environment 88

If there is an event keystroke other than "do" or there is a "do" with no current item, then the
loose items are searched for a corresponding selection key. If one is found, the loose menu item
status is toggled and the action routine called. If no corresponding selection key is found, then,
unless it is a "do" or a "cancel" within an application sub-window, the appropriate bit will be set in
the event vector and the routine will return.

If there is a "do" or a "cancel" within an application sub-window and there is no "do" or
"cancel" loose menu item, then the application sub-window hit routine will be called.

If there is not an event keystroke, a check is make to see if the pointer has moved outside the
current item hit area. If it has, the current item is cleared (set negative) and the border redrawn.

Next, if there is a keystroke, the loose menu item list will be searched for a corresponding
selection keystroke. If one is found, the item status will be toggled and then the appropriate
action routine will be called.

If the keystroke is not found in the loose menu item list then all (except the current) application
sub-windows are searched for a corresponding selection keystroke. If one is found, the pointer is
moved to the centre of the application sub-window and the sub-window hit routine is called.

If there is no keystroke, or the keystroke is not the selection keystroke for a loose menu item
or an application sub-window, then, if the pointer is within a sub-window, the hit routine is called,
or else the loose menu item list is searched to find a new current item.

On return from any loose menu item action routines, D4 is checked. If it is non zero, the
corresponding bit of the window event byte is set and WM.RPTR returns after testing DO.

On return from a sub-window hit routine the window byte of the event vector is checked. If any
bits are set, WM.RPTR returns after testing DO.

If a loose menu action routine or application sub-window hit routine returns a non-zero

condition code, WM.RPTR will return after testing DO. This can be used to force a return without
either an event or error.

QPTR The Pointer Environment 89

Vector $30 WM.RPTR

Read Pointer

Call parameters Return parameters

A0 AO channel ID of window
Al Al preserved

A2 A2 preserved

A3 A3 preserved

A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors
Any error returned by action or hit routine

Vector $30 WM.RPTR Read Pointer

repeat until window event or error
read pointer
if event keystroke
process it and call appropriate action/hit routine
next read pointer

clear current item if pointer moved out of it
if keystroke
process it and call appropriate action/hit routine
next read pointer
if in application sub-window
call hit routine
next read pointer

if new current item
set item and border

The window manager requires all application sub-windows to have hit routines. In the case of
a standard format menu in an application sub-window, this may be just a direct jump to the
WM.MHIT routine:

JMP WM.MHIT (a2) do move or hit in standard menu

QPTR The Pointer Environment 90

Application Sub-Window Hit Routine

Call parameters Return parameters
D1 X,y pointer position D1 X,y pointer position
D2 uppercased key, -1 or 0 D2 2?7?72
D3.w timeout for next PT.RPTR
D4 event number of keystroke D4 2?77

D5+ all preserved

A0 window channel ID AO preserved
Al pointer to status area Al 2?7?77
A2 window manager vector A2 2?77
A3 pointer to sub-window defn A3 ??7?
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

DO and the status register must be set

The pointer in D1 is in absolute (not sub-window) coordinates. The uppercased
keystroke in D2 also has SPACE ($20) converted to "hit" ($01) and ENTER ($0a) converted to
"do" ($02). If D2 is -1, then the application sub-window has been "hit" by an external keystroke.

D4 can only be 0, pt..do (16) or pt..cancel (17) when the application sub-window hit routine is
called. All other event keystrokes are handled by the routine WM.RPTR.

If a bit is set in the window byte of the event vector by a hit routine, then WM.RPTR will return
to the application. Note that WM.RPTR does not set the "do" event if the pointer is within an
application sub-window: this is left to the hit routine.

An application sub-window hit routine may, of course, set the "do" event bit at any time.

D3 will normally be returned unchanged. For compatibility, the msw of D3 is ignored by
WM.RPTR. For WM.RPTRT, the msw should be cleared if D3 is modified. If, for example, the
application sub-window requires to monitor the keypress byte continuously, a short or even zero
timeout may be specified. Note that, if a zero timeout is specified, the keystroke (as opposed to
keypress) will always be zero.

QPTR The Pointer Environment 91

Vector $34 WM.MHIT

Standard window hit routine

Call parameters Return parameters

D1.l X,y pointer position D1 preserved

D2 uppercased keystroke or O D2 preserved

D3 -1

D4.b 0 or pt..do D4+ preserved

A0 AO channel ID of window
Al Al preserved

A2 A2 preserved

A3 ptr to sub-window definition A3 preserved

A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

Vector $34 WM.MHIT Standard Menu Hit

if no keystroke and no current item
find new current item
if found: mark current item
else if "hit" or DO
find current item
if found
mark current item
if current item available
if HIT: toggle status
if DO: set status selected
redraw current item and call action routine
if status changed: redraw current item
else
find matching selection keystroke
if found
un-mark current item
set pointer
mark current item
if current item available
toggle status
redraw current item and call action routine
if status changed: redraw current item

QPTR The Pointer Environment

92

This routine is intended to be called from application sub-window hit routines to locate the
appropriate section of a multiple section window and check for "hit" or "do" on the pan or scroll
arrows, or for pan or scroll keystrokes.

Vector $48 WM.MSECT

Find menu section
Call parameters Return parameters

DO.w 0 or pan/scroll item number

D1.l X,y pointer position (absolute) D1 preserved
D2 uppercased keystroke D2 preserved
D3 D3 X,y section number
-1 if in pan/scroll arrows
D4.b event number of keystroke D4.b preserved

or pt..pan or pt..scrl

A0 channel ID of window A0 preserved
Al Al preserved
A2 A2 preserved
A3 ptr to sub-window definition A3 preserved
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

>0 of pan or scroll event generated

The item number returned in DO.w is the pan/scroll item and is set only if D4 is set to pt..pan
($A) or pt..scrl ($B). The less significant byte is the section number to which the operation
applies, the most significant nibble is %0111. Bits 8 to 11 specify the type of event in greater
detail.

Bit 8 set for scroll down or pan right

Bit 9 set for pan left or right

Bit 10 set for extra pan/scroll ("do" on arrows or ALT+SHIFT)
Bit 11 zero

QPTR The Pointer Environment 93

The action routines called from WM.MHIT are optional. As WM.MHIT sets the appropriate byte
in the status block, it is not necessary for the application to do anything about a "hit" until a "do"
causes WM.RPTR to return to the application. On the other hand, the action routine itself can set

the "do" event, or it can act on the "hit" directly.

Note that the action routine is called on a "hit" whether the status is selected or unselected,
but not if it is unavailable. The action routine may change the status of the item, or even the
objects within the item.

D1.l

DA4.|

AO
Al
A2
A3
A4
A5
A6

Standard Menu Action Routine
Call parameters

virtual column/row for item
D2.w item number

0 or pt..do

window channel ID

pointer to menu status block

window manager vector

pointer to sub-window defn

pointer to working defn
not used by any routine
not used by any routine

Error returns:

DO and the status register must be set

Return parameters

D1
D2
D3
D4.b
D5+

A0
Al
A2
A3
A4
A5
A6

??7?

?7?7?

??7?

0 or window event to set
all preserved

preserved

?7?7?

27?7

?7?7?

preserved

used as required
used as required

(Al1,D2.w) points to the current item's status byte. D4 may be set to force a "do" or any other
window event.

If there is no action routine for a particular item, then a "do" keystroke will cause a "do" event.

QPTR The Pointer Environment

94

The application window control routine is called either from the routine WM.RPTR for a "hit" on
the pan or scroll bars associated with a window, or from WM.MHIT when there has been a "hit"
on the pan or scroll arrows. The item number is the special item number for pan and scroll
operations. The least significant byte gives the part menu number to be panned or scrolled. The
routine may adjust the window itself or merely adjust the control tables and call the sub-window
draw routine. In either case, the event flag should be set to zero. Alternatively the event flag may
be left set, and then WM.RPTR will return to the calling routine with the appropriate event set.

If the routine is called as the result of a "hit" on a pan or scroll bar, the most significant word of
D3 will hold the position of the hit, while the least significant word of D3 will hold the length of the
bar. Otherwise the routine will have been called as a result of a "hit" on the arrow bars, in which
case D3 will have the value -1.

Application Window Control Routine

Call parameters Return parameters
D1 ?7??
D2.w item number D2 7?7
D3.l position of "hit" or -1 D3 2?77
D4.b pan or scroll event D4.b 0 or window event to set

D5+ all preserved

A0 window channel ID A0 preserved

Al pointer to status area Al 2?7?77

A2 window manager vector A2 2?77

A3 pointer to sub-window defn A3 ??7?

A4 pointer to working defn A4 preserved

A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

DO and the status register must be set

The simplest form of control routine is just a call to the window
manager panning and scrolling routine WM.PANSC

JMP WM.PANSC(A2) do standard pan scroll

QPTR The Pointer Environment 95

The loose menu item action routines are similar to the standard menu action routines (after all,
a loose menu item is really part of a standard menu). One difference is that the menu manager
requires there to be an action routine for a loose item corresponding to an event.

Loose Menu Item Action Routine

Call parameters Return parameters
D1.l X,y pointer position D1 2?77
D2.w uppercased keystroke D2 2?7?72
D3 ?7??
D4.b event number of keystroke D4.b 0 or window event to set

D5+ all preserved

A0 window channel ID A0 preserved

Al pointer to status area Al 2?7?77

A2 window manager vector A2 2?77

A3 pointer to loose menu item A3 ??7?

A4 pointer to working defn A4 preserved

A5 not used by any routine A5 used as required
A6 not used by any routine A6 used as required

Error returns:

DO and the status register must be set

The pointer in D1 is in absolute (not window) coordinates. The uppercased keystroke in D2
also has SPACE ($20) converted to "hit" ($01) and ENTER ($0a) converted to "do" ($02) and all
other event keystrokes converted to the event number less 14.

If the loose menu item was "hit" by a window event keystroke, then the event number (16 to
23) will be in D4. Otherwise D4 will be zero. The action routines may set the appropriate bit in the
event vector as required or may return an event number in D4. However, WM.RPTR will only
return to the calling routine if D4 is non-zero or the condition codes are non-zero - the event
vector is not checked directly.

In the case of a loose menu item which causes an event, the action routine may derive the
event number from the selection keystroke. All such loose menu items may be handled by the
same code:

MOVEQ #14,D4 set event number - event code
ADD.B WWL_SKEY(A3),D4 add event code

MOVEQ #0,D0 done

RTS

QPTR The Pointer Environment 96

Pannable and Scrollable Sub-Windows

The window management routines have two views of pannable and scrollable windows. The
first is the automatic pan and scroll operations within the routine WM.RPTR. These operations
are caused by events occurring outside the application window. The second view is from the
routine WM.MHIT which will cause pan or scroll operations from within a standard menu
sub-window.

For either of these views, panning or scrolling will only be available if the appropriate part of
the window working definition has been set up.

Any application may, of course, do its own panning or scrolling operations on a sub-window. It
would be preferable if these operations were done in the same way as the window manager.

The values WWA_ NXSC and WWA_NYSC define the pannablility and scrollability of a
sub-window. If WWA_NYSC is 0, then the window is not scrollable, If it is 1, then the window is
scrollable, but may not be split. If it is greater than 1, the window may be split into independently
scrollable sections.

External Pan and Scroll

If a sub-window is set up to be scrollable, then the right hand border of the window is widened
by 8 pixels to accommodate a "scroll bar". This scroll bar is 6 pixels wide and in two colours. The
background bar represents the full "height" of the information being shown, superimposed on this
is a shorter bar representing that part of the information which is actually visible.

A different section of the information may be viewed by "hitting" the scroll bar. "Hitting" the top
of the scroll bar will scroll to the top of the information. "Hitting" the bottom of the scroll bar will
scroll to the bottom, while "hitting" the middle will scroll to the middle.

As this bar is in the extended border of the sub-window, it is outside the sub-window and any
"hit" in this area will not call the application sub-window hit routine. It will, instead, call the appli-
cation sub-window control routine.

If the working definition has been set up so that there may be more than one vertical section,
then the sub-window may be "split" by a "do" on the scroll bar. The scroll bar will also be split.
Each section of the scroll bar represents the position of the visible information in the appropriate
section of the sub-window. Conversely, a "do" on the break between two scroll bars will re-join
the sections.

If a sub-window is set up to be pannable, then the bottom border is deepened by 5 pixels to
accommodate a 4 pixel deep "pan bar". This functions in the same way as the scroll bar.

QPTR The Pointer Environment 97

Internal Pan and Scroll

The standard menu hit routine WM.MHIT traps certain cursor movements as causing pan or
scroll operations: these are ALT arrow to pan or scroll by one column or row at a time, and ALT
SHIFT arrow to pan or scroll by the width or height of a section.

When a scrollable standard menu is drawn by WM.MDRAW, 4 pixel rows (plus the width of a
current item border) are left vacant at the top and bottom of the sub-window. If there any rows
above the topmost visible row, a row of up arrows is inserted at the top. If there are any rows
below the bottommost visible row, then a row of down arrows is inserted at the bottom.

If a scrollable standard menu is split, then space is left at the split for two rows of arrows
(separated by the width of a current item border).

If a row of up arrows is "hit", then the menu will scroll up by one item. If there is a "do" on a
row of up arrows, then the menu will scroll up by the height of the section. The down arrows
behave in a similar way.

When a pannable standard menu is drawn by WM.MDRAW, 8 pixel columns (plus twice the

width of the current border) are left vacant at the left and right of the sub-window. These spaces
are used for left and right arrows which have a similar function to the up and down arrows.

QPTR The Pointer Environment 98

Sub-Window Indices

Standard menu sub-windows may have either a column or a row index (or both). These
indices are outside the application sub-window and have no function except to convey
information to the user. When a sub-window is panned or scrolled, the index will be updated at
the same time.

To assist with panning and scrolling standard menu sub-windows, a single routine is provided
to pan, scroll, split or join a standard menu.

A0
Al
A2
A3
A4
A5
A6

Vector $38

Pan / Scroll standard menu

Call parameters

D2.w item number
D3.l
D4.b pan or scroll event

position of "hit" or -1

window channel ID

ptr to sub-window definition
pointer to working defn
not used by any routine
not used by any routine

Error returns:

DO and the status register must be set

QPTR The Pointer Environment

Return parameters

D2
D3
DA4.l

AO
Al
A2
A3
A4

preserved
preserved
0

preserved
preserved
preserved
preserved
preserved

WM.PANSC

99

Window Move and Change Size

The size dependent layout features of the Window Manager mean that the interpretation of a
window change size operation is largely the responsibility of the application. If the Window
Manager returns from WM.RPTR with a window move or change size event, then the routine
WM.CHWIN may be called directly.

This routine determines the event and the initial pointer position from the window status area
and calls the appropriate window query trap. The event bit is cleared at this stage. In the case of
a window move, the operation will be completed by WM.CHWIN and 0 is returned in D4.

In the case of a change size operation, WM.CHWIN will determine the distance moved by the
pointer and return this as the change of size. If the convention that the window change size icon

is in the top left hand corner of the window is being followed, then the move distance should be
subtracted from the current window size. The window size event number is returned in D4.

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors

I I
| Vector $40 WM.CHWIN |
I I
| Change Window Event Handling |
I I
| Call parameters Return parameters |
I I
| D1 D1 x,y pointer move |
| D2-D3 preserved |
| D4 D4.1 0 or pt..wsiz |
I I
| A0 A0 channel ID of window |
| Al Al preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4 pointer to working defn A4 preserved |
I I
I I
I I
I I
I I
I I
I I

QPTR The Pointer Environment 100

Utility routines

The following routines are provided to modify the working definition in various useful ways; in
particular, they may be used to show status information or get user input that is more complex
than can be shown by item statuses or "point and hit" input.

If an information object or loose menu item object requires to be redrawn, then the vectored
routines WM.IDRAW and WM.LDRAW can be used. Before redrawing, the objects themselves
can be changed using one of the two following routines.

Vector $4C WM.STLOB
Set Loose Item Object

Call parameters Return parameters

D1 item number D1 preserved

D2+ all preserved

A0 A0 preserved
Al pointer to object Al preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

ORNG Item number out of range

BEWARE: the item number is NOT the loose menu item number as defined in the loose menu
item record, but is the position in the list (starting at zero).

QPTR The Pointer Environment 101

Vector $50 WM.STIOB

Set Information Object
Call parameters Return parameters

D1 window number / object number D1 preserved
D2+ all preserved

A0 A0 preserved
Al pointer to object Al preserved
A2 A2 preserved
A3 A3 preserved
A4 pointer to working defn A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

ORNG Window or object number out of range

The window number (MSW D1) is the position in the list of information sub-windows. The
object number (LSW D1) is the position in the list of information objects for that window. Both
start from zero.

The object pointed to by Al in the above routines is not copied to a "safe place"by the
routines. It is up to the programmer to ensure that it does not move or get overwritten while it is in
use as part of a working definition. In particular, pointing to a string value on the SuperBASIC RI
stack or in the variable values area will cause problems.

Vector $68 Read name WM.RNAME
Vector $6C Edit name WM.ENAME
Call parameters Return parameters

D1 D1.w terminating character

D2+ all preserved

A0 channel ID of window A0 preserved
Al pointer to name buffer Al preserved
A2 A2 preserved
A3 A3 preserved
A4 A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

Any 1/O sub system errors
>0 if terminating character not <NL>

QPTR The Pointer Environment 102

These two routines are used to read or edit strings (notionally file or device names). The name
buffer is in the form of a standard string: a word with the string length, followed by the characters
themselves. The difference between the two vectors is that WM.RNAME puts the cursor at the
start of the name, and if the first character is printable, throws the old name away, while
WM.ENAME leaves the cursor at the end of the name so that it has to be edited. Additionally, if
the first character typed is a space, WM.RNAME will treat this as an ENTER.

The length of the name is limited to the width of the window and the name buffer must be
large enough to accommodate this plus one character.

The routines return on reading ENTER, ESC, UP arrow or DOWN arrow. The condition codes
will be set to -ve for an 10 error, zero for ENTER or positive for other terminator.

This routine converts a small negative error code in DO into the corresponding string; for
instance, D0=-2 converts to "invalid Job". This code works for AH, JM, JS/JSU and all MG
versions of the QL ROM - if other versions are used then the catch-all string "unknown error" is
returned.

Vector $74 WM.ERSTR
Get string corresponding to error code

Call parameters Return parameters

DO error code DO error code

D1+ all preserved

A0 A0 preserved
Al Al pointer to error string
A2 A2 preserved
A3 A3 preserved
A4 A4 preserved

A5 not used by any routine
A6 not used by any routine

Error returns:

According to value of DO

QPTR The Pointer Environment 103

Index of TRAPS and vectors

The Pointer Interface TRAPs and Window Manager vectors are listed alphabetically, along

with a summary of what each does. Pointer Interface TRAPs start with the prefix I0P.

Window Manager vectors with WM .

Routine

IOP.FLIM
IOP.LBLB
IOP.OUTL
IOP.PICK
IOP.PINF
IOP.RPTR
IOP.RPXL
IOP.RSPW
IOP.SLNK
IOP.SPRY
IOP.SPTR
IOP.SVPW
IOP.SWDF
IOP.WBLB
IOP.WRST
IOP.WSAV
IOP.WSPT
WM.CHWIN
WM.DRBDR
WM.ENAME
WM.ERSTR
WM.FSIZE
WM.IDRAW
WM.INDEX
WM.LDRAW
WM.MDRAW
WM.MHIT
WM.MSECT
WM.PANSC
WM.PRPOS
WM.PULLD
WM.RNAME
WM.RPTR
WM.SETUP
WM.SMENU
WM.STIOB
WM.STLOB
WM.SWAPP
WM.SWINF
WM.SWLIT
WM.SWDEF
WM.SWSEC
WM.UNSET
WM.UPBAR
WM.WDRAW
WM.WRSET

Page

55
61
63
65
57
58
60
56
57
63
64
56
66
61
67
67
62
100
86
102
103
70
83
80
82
79
92
93
99
75
75
102
90
71
74
101
101
85
84
84
81
85
75
81
77
75

find window limits

draw a line of blobs

set window outline and shadow
pick/unlock job

get pointer information

read pointer position

read/scan pixel colour

restore part window

set bytes in linkage block

spray pixels

set pointer position

save part window

set sub-window definition pointer
write blob

restore window contents

save window contents

write sprite

change window position or size

draw current item border

edit name

get error string

find layout size

re-draw information window(s)

draw index items

draw loose items

draw menu sub-window contents
standard menu sub-window hit routine
find menu section

standard menu sub-window control routine
primary window position and clear
pull-down window position and clear
read name

read pointer

set up from standard window definition
set up from standard menu definition
(re)set information object

(re)set loose object

set window to application sub-window
set window to information sub-window
set window to loose item

set window to application sub-window
set window to section of sub-window
unset working definition

update pan/scroll bars

draw window contents

reset working definition

QPTR The Pointer Environment

and

104

Data Structures

Pointer Interface

Channel Definition block

The Pointer Interface forms the base level of the Pointer Environment and provides all those
facilities which are accessed through the 10 sub-system (IOSS). These include channel open,
close and normal screen 10 as well as the pointer 10 extensions. The Pointer Environment uses
this display driver which coexists with the standard CON and SCR drivers, and extends the CON
and SCR drivers to handle overlapping windows. The extended driver requires an extended chan-
nel definition block, whose format is discussed here.

The PTR_KEYS file contains definitions of the symbols used when manipulating the extended
channel definition block. Ordinary applications should not need to use these.

The facility to handle overlapping windows introduces the concept of piles of windows.
Windows overlap each other in piles. Any window which is partly obscured by another window is
locked and may not be altered. Windows may be moved to the top of the pile by the user, and
applications may bury their own windows. Burying a window is actually performed by exhuming
the bottom window in the pile. This will not actually bury the window unless the bottom window
overlaps the top window. The internal structure used to maintain these piles is a bi-directional
linked list of all primary windows. In addition, each primary window has a pointer to an area of
memory in which to save its contents when it becomes locked, and a flag to signal whether the
window is locked. For the sake of speed, the flag is duplicated in all its secondaries.

One of the major differences between the standard screen handling and Pointer Environment
screen handling is the redirection of the keyboard input. Normally the "CTRL C" keystroke is used
to redirect the keyboard input. With the Pointer Interface installed, the "CTRL C" keystroke is
used to move windows to the top of the pile, redirecting the keyboard input as a side effect. This
is achieved by modifying the normal circularly linked list of keyboard queues into a form that
allows the detection of the "CTRL C" keystroke by the Pointer Interface. If the keyboard queue is
moved to a job which is waiting for character input, then the pointer will be disabled, otherwise
the pointer will be enabled. When the pointer is enabled, the cursor keys will move the pointer
unless SHIFT, CTRL or ALT is pressed.

An alternative method of moving the window to the top of the pile may be used when the
pointer is enabled. This is to move the pointer to part of a new window and "hit" it. If that window
is buried, then the window will be picked to the top of the pile and the hit will be ignored. If the
window is waiting for character input, then the pointer will be disabled and the hit will be ignored.
The keyboard input will then be directed to that window.

QPTR The Pointer Environment 105

To enable programs which have been written for use on a standard QL to function sensibly in
the pointer environment, windows are divided into two types: primary and secondary. A primary
window represents the total working area for an application. An application may have several
secondary windows open, but all of these must be contained within the outline of the primary
window. This introduces a new size concept. The standard screen driver in the QL has a window
size and position: this is the window working area. The extended screen driver has two other
sizes: the outline and the hit area. The outline is the limit enclosing all of an application's
windows; Creating any window outside the application's primary window outline will cause the
outline to be extended. The outline includes any window borders and shadows. The hit area is
the area that the pointer routines will recognise for the purposes of hitting windows and selecting
appropriate sprites. The hit area is the outline less any shadow area. The first window used for 10
by an application is considered to be the primary window, any other windows owned by the same
job are secondary windows. The outline and hit area are maintained in the extended channel
definition block, along with a system of pointers linking primary windows to their secondaries, and
all secondaries back to their primary.

The pointer routines may also make use of information in window definitions, so there is also a
link to a window working definition.

Extended Channel Block

The pointer routines use an extended channel definition block. In order to make this
compatible with the internal ROM code, the block is extended below the start of the standard
block, but above the 18 byte channel block header.

sd.extnl $30 screen definition extension length
sd_xhits -$18 word x hit size

sd_yhits -$16 word Yy hit size

sd_xhito -$14 word x hit origin (screen coordinates)
sd_yhito -$12 word vy hit origin (screen coordinates)
sd_xouts -$10 word x outline size

sd_youts -$0e word vy outline size

sd_xouto -$0c word x outline origin (screen coordinates)
sd_youto -$0a word y outline origin (screen coordinates)

sd_prwlb -$08 long primary link list bottom up (primary window)
sd_pprwn -$08 long pointer to primary window (secondary window)
sd_prwit -$04 long primary link list top down (primary window)
sd_sewll $00 long secondary window link list pointer
sd_wsave $04 long window save area base
sd_wssiz $08 long size of window save area
sd_wwdef $0c long pointer to window working definition
sd_wilstt $10 byte window lock status -1 locked, O unlocked, 1 no lock
sd_prwin $11 byte bit 7 set for primary window,

bit 0 set if managed (IOP.OUTL called)
sd_wmode $12 byte mode of this window
sd_mysav $13 byte true if save area is mine
sd_wmove $14 byte window move / query flag (D2 from IOP.RPTR)

QPTR The Pointer Environment 106

Graphics objects

These base level data structures are used to pass information to the base level pointer 10
calls. All these structures represent visual information. These structures have various forms, there
is a canonical form and a screen mode dependent form. To simplify application programs,
variations on the objects for various display modes can be linked into lists which future versions
of the pointer traps will scan for the most suitable form. In current versions the pointer traps requi-
re the objects to be specified in the actual display mode for the window.

The file gDOS_PT contains symbol definitions suitable for use in programs that manipulate
graphics objects.

All the structures are made from a limited set of basic elements.

Form

The form is a word which describes the screen dependent mode of the following patterns,
followed by two bytes describing the mode adaption rules. The first of these is relevant only when
the object is a sprite used as a pointer, and defines how it changes with time: the second defines
how the object may be adapted to fit the display aspect ratio.

Dynamic pointers, that change shape with time, are used by setting the time byte to a
non-zero value: by linking several sprite definitions together with increasing time values (Tn), the
sprite will appear in the lowest numbered form for T1 "ticks", then change to the second form for
T2-T1 ticks, then the third for T3-T2, and so on. When no sprite can be found with a Tn greater
than the elapsed time, the counter is reset to zero and the first form appears again. The
maximum value of Tn being 255, and the count being incremented (roughly) every 20ms, the
sprite may have a period of up to 5 seconds or so.

Form
00fc canonical, aspect ratio 1:.50
00fd canonical, aspect ratio 1:.60
00fe canonical, aspect ratio 1:.71
0Off canonical, aspect ratio 1:.83
0000 canonical, aspect ratio 1:1.0
0001 canonical, aspect ratio 1:1.2
0002 canonical, aspect ratio 1:1.4
0003 canonical, aspect ratio 1:1.7
0004 canonical, aspect ratio 1:2.0
0100 QL 4 colour
0101 QL 8 colour

Time
00 static
1..FF used for time<n

Adaption
00 translate pixel to pixel
+01 expand x if required
+02 contract x if required
+04 expand y if required
+08 contract y if required

QPTR The Pointer Environment 107

Size

The size of an object is defined by two words, the number of pixels in the x direction, and the
number of pixels in the y direction. The only limit on the size is that it must be positive non zero in
both directions.

Repeat

Some types of information have a repeat attribute. This is two words, the repeat distance (in
pixels) in the x direction, and the repeat distance (in pixels) in the y direction. The y repeat must
be positive non zero, the x repeat must be a positive non zero multiple of the number of pixels in
a 16 bit word.

Origin
The base level structures assume a pixel coordinate system with the origin at the top LHS with
X increasing to the right, y increasing downwards. Objects may have their own origin which is

defined as two words, x origin and y origin. A negative origin is outside the object to the left (x) or
above (y). A zero origin is the top left pixel of the object.

Colour

For the canonical forms (and possibly some other forms) it is assumed that colours are
represented by a maximum of 15 bits (32768 colours). Notionally these are regarded as 5 bit
resolution for each of the 3 primary colours. The 16th bit is used to indicate the opacity of the
object. The order of bits is (MSB) green, red, blue, green/2, red/2, red/16, blue/16, opaque
(LSB). For monochrome, the 15 most significant bits represent the display brightness.

Pattern

Canonical patterns are defined as colour planes. A canonical pattern starts with a word which
defines the number of planes that will follow. The block defining each plane is preceded by a
colour word defining the contribution of the following block to the complete colour. In every block
of a canonical pattern each bit represents a pixel, the most significant bit in the first word is the
top left pixel. Unused parts of words should be filled with zeros.

E.g. canonical form of yellow block (5x4) enclosing a black block (3x2)

dc.w 2 two blocks required
dc.w %21100000000000000 define yellow
dc.w %1111100000000000

dc.w %1000100000000000

dc.w %1000100000000000

dc.w %1111100000000000

dc.w %0000000000000001 define opaque
dc.w %1111100000000000

dc.w %1111100000000000

dc.w %1111100000000000

dc.w %1111100000000000

Specific form patterns are stored using the standard screen representation of the pattern. For
this reason, there are two types of specific form pattern, the colour pattern, which is the colour
representation, and the pattern mask which is white for opaque, and black for transparent. The
base level routines require specific form patterns.

QPTR The Pointer Environment 108

Sprite Definition

A sprite definition has form, size, origin, colour pattern and pattern mask.

form 2 words
size 2 words
origin 2 words
colour pattern long word relative pointer
pattern mask long word relative pointer
next definition long word relative pointer

Blob Definition

A blob is used to provide a mask through which a pattern is dropped into the screen. The
critical distinction is that while the pattern formed by a sprite moves with the sprite, the pattern
used with a blob is stationary. The effect is akin to removing a bit of the screen to reveal the
pattern underneath.

A blob definition, therefore, has only form, size, origin and pattern mask.

form 2 words

size 2 words

origin 2 words

colour pattern long word zero

pattern mask long word relative pointer
next definition long word relative pointer

Pattern Definition

A pattern definition allows the specification of any pixel in the pattern to be any colour or
transparent. The pattern repeats both horizontally and vertically. The pointer to the pattern mask
may be given as zero, in which case the pattern is solid.

A pattern definition has form, repeat, colour pattern and pattern mask.

form 2 words

repeat 2 words

origin 2 words zero

colour pattern long word relative pointer
pattern mask long word relative pointer (or 0)
next definition long word relative pointer

QPTR The Pointer Environment 109

Area Mask

An area mask defines the limits of an area operation. The form is a table of x (horizontal) limits
for each y coordinate. There may be more than one table. The total storage required is:

2 + 6*x_size + 4*(sum of y_sizes) bytes

The form of the definition is

X_size number of tables

y_size length of this table

x_origin origin of sub-area within window

y_origin

table 2*y size words lower limit, upper limit pairs

(relative to x_origin)

The format of a partial save area is as follows:

spare long may be used by the application

flag word $4afc if this is a save area

X_size word width of save area in pixels

y_size word height of save area in pixels
increment word distance in bytes from one row to next
mode byte mode of saved image

spare byte Zero

image increment*y_size bytes bit image

QPTR The Pointer Environment 110

Window Definition

Structure

The window definition is split into several levels: at the top there is the window definition.
Below this, there are the definitions of any loose menu items or sub-windows. Below these, there
are the definitions of the object lists.

This section gives the standard meanings of the window definition structures. However, as it is
the responsibility of the application's code to interpret the structures, the meanings may vary.

The file WMAN_WDEF contains definitions of the symbols used in this section: it may be
INCLUDECA in any assembler files that manipulate window definitions.

Within these definitions all pointers are word length relative pointers. Where reference is to be
made to an address which is more than a word offset away, the least significant bit is set. This
(after clearing the bit) is then a pointer to a long word containing a relative address. All addresses
are even. A zero pointer implies that the structure pointed to is absent.

In the following definitions, coordinates and sizes are specified as a pixel position or number
of pixels. To allow for continuously variable window sizes, some coordinates and sizes can
include terms to indicate the scaling of the coordinate or size with the variation in the appropriate
dimension of the window. This is masked into the top nibble of the coordinate or size:

0000 invariant

0001 1:4 scaling wrt dimension
0010 1:2 scaling wrt dimension
0011 3:4 scaling wrt dimension
0100 directly coupled to dimension.

The rest of the word has the coordinate or size corresponding to the minimum allowable
window dimension.

To allow for a variety of different layouts within the window as the size of the window varies,
part of the window definition may be repeated several times. The definitions should be made in
order of decreasing window size. The last definition, which defines the smallest allowable
window, should be followed by a word containing -1. If the top nibble of a layout size word is zero,
then the layout may not be scaled: if it is 0100 then it may.

Fixed part of window definition

wd_xsize $00 word default window x size (width) in pixels
wd_ysize $02 word default window y size (height) in pixels
wd_xorg $04 word pointer x origin in window
wd_yorg $06 word pointer y origin in window

wd_wattr $08 window attributes

wd_psprt $10 word pointer to pointer sprite for this window
wd_lattr $12 loose menu item attributes

wd_help $2e word pointer to help window

wd_rbase $30 base of repeated part of window definition

QPTR The Pointer Environment 111

Repeated part of window definition

wd_xmin $00 word x (minimum) size for this layout + scaling flag
wd_ymin $02 word y (minimum) size for this layout + scaling flag
wd_pinfo $04 word ptr to information sub-window definition list
wd_plitm $06 word pointer to loose menu item list

wd_pappl $08 word ptrto application sub-window definition list
wd.elen $0a repeated entry length

The origin of the window is the initial pointer position within the window. This will usually also
determine the position of the window itself as the window management level will try to avoid
moving the pointer. If the origin is given as zero, then the origin will be calculated from the
position of the current item.

The window width and height exclude the border and shadow, i.e. they refer to the inside of
the window.

The XMIN and YMIN sizes are actual sizes of the window, unless the most significant bit is set
in which case they are the minimum sizes.

Window Attributes

The window attributes for the window definition are four words defining a window clear flag,
the shadow depth, the border and paper. For sub-windows, the shadow depth should be zero.
For the main window the typical shadow depth will be 2, the actual x and y shadows will be
derived from this. The top bit of the clear flag is used to define whether or not the (sub-)window
should be cleared when it is (re-)drawn: if it is set then the window is not cleared.

wda_clfg $00 byte MShit clear to clear window
wda_shdd $01 byte shadow depth
wda_borw $02 word border width
wda_borc $04 word border colour
wda_papr $06 word paper colour

Menu Item Attributes

To bring some semblance of order to the window organisation, all menu items within any one
window or sub-window are constrained to have the same attributes. There is one set of attributes
for each of the each of the three possible states of the item, and there is a border attribute to
indicate the item currently pointed to.

wda_curw $00 word current item border width
wda_curc $02 word current item border colour

wda_unav $04 item unavailable

wda_aval $0c item available

wda_selc $14 item selected

wda.elen $lc menu item attribute entry length

attribute record
wda_back $00 word item background colour
wda_ink $02 word text object ink colour
wda_blob $04 word pointer to blob for pattern
wda_patt $06 word pointer to pattern for blob

QPTR The Pointer Environment 112

Lower Level Definitions

Loose Menu Items List

Loose menu items can be positioned anywhere within the window. The loose menu item list is
just a list of object types, positions, actions and pointers. The list is terminated by a word

containing -1.

wdl_xsiz
wdl_ysiz
wdl_xorg
wdl_yorg
wdl_xjst
wdl_yjst
wdl_type
wdl_skey
wdl_pobj
wdl_item
wdl_pact
wdl.elen

$00
$02
$04
$06
$08
$09
$0a
$0b
$0c
$0e
$10
$12

word
word
word
word
byte
byte
byte
byte
word
word
word

hit area x size (width) + scaling
hit area y size (height) + scaling
hit area x origin + scaling

hit area y origin + scaling

object x justification rule

object y justification rule

object type (O=text, 2=sprite, 4=blob, 6=pattern)
selection keystroke (upper case)
pointer to object

item number

pointer to action routine

loose menu item list entry length

The selection keystroke should be the 'upper case' value for letters and the event code (not
the event number) for the event keystrokes. The event code is the event number less 14. It may
also be convenient for the item number to be the same as the selection keystroke/event code for
these items. If the selection keystroke should be underscored (which is for text items possible),
then the type is text-position. Thus, if you wish to underscore the third character, type is 0-3,

giving -3.

Information Sub-Window

An information sub-window is set up when the menu is set up, but has no further significance.
The definition of information sub-windows is in the form of a list terminated by a word containing

-1.

wdi_xsiz
wdi_ysiz
wdi_xorg
wdi_yorg
wdi_watt
wdi_pobl
wdi.elen

$00
$02
$04
$06
$08
$10
$12

word
word
word
word

word

sub-window x size (width) in pixels + scaling
sub-window y size (height) in pixels + scaling
sub-window x origin + scaling

sub-window y origin + scaling

sub-window attributes

pointer to information object list

information list entry length

The information sub-window origin is the pixel position of the top left hand corner of the inside
of the sub-window with respect to the top left hand corner of the window.

QPTR The Pointer Environment 113

Information Object List

Each object in an information object list has only a limited set of attributes, and these may be
different for each object. The list for each information sub-window is terminated by a word
containing -1.

wdo_xsiz $00 word object x size (width) in pixels + scaling
wdo_ysiz $02 word objecty size (height) in pixels + scaling
wdo_xorg $04 word object x origin + scaling

wdo_yorg $06 word objecty origin + scaling

wdo_type $08 byte object type (O=text, 2=sprite, 4=blob, 6=pattern)
wdo_spar $09 byte spare=0

(wdo_ink $0a word text ink colour type=0

(wdo_csiz $0c word text character size (two bytes)

or

(wdo_comb $0a word pattern or blob to combine type=4,6

wdo_pobj $0e word pointer to object
wdo.elen $10 information object list entry length

Application Sub-window List

Because the size of an application sub-window definition is dependent on the usage of the
definition, the application sub-window list is just a list of pointers to individual application
sub-window definitions. The list is terminated with a zero word.

Menu Obiject Lists

Because menus are of indefinite size, the descriptions of the objects in a menu are put into
lists so that these may be set up at execution time.

It is assumed, by the menu interface, that the objects are arranged in a rectangular grid. Each
column of the grid has a fixed width, each row a fixed height. The interface also allows for an
index to the columns and an index to the rows to be placed above and to the left of the grid.

There are two dimensions, the first is the actual number of columns, the second is the number
of rows. All of the lists have either one dimension or the other.

Each of the object spacing lists consists of pairs of numbers. The first word is the hit area
width or height. the second number is the distance from the start of this hit area to the start of the
next. Both spacings are in pixels. There must be sufficient gap between the objects to allow the
current item border to be drawn.

Each of the object index lists has the same form as the object list described below. The item
numbers within these lists should be set to -1 and the action routine pointers to zero.

The object item lists consist of a set of list entries, one for each column in a row. Each object
list entry contains the item number for the object, the object type (text, sprite etc.), the justification
(left, right or centre, top, bottom or centre), a pointer to the actual object and a pointer to an
action routine to be called when the object is hit. Note that it is possible to have just one large
object list, which is 'cut up' into rows by making each row list start pointer equal to the previous
row list end pointer.

QPTR The Pointer Environment 114

The justification rule bytes are zero for a centered object, positive for left or top justified and
negative for right or bottom justified. The value indicates the distance of the object, in pixels, from

the edge of the hit area.

The row list consists of pairs of pointers to the start and end of each object list.

Application sub-window definition

wda_xsiz
wda_ysiz
wda_xorg
wda_yorg
wda_watt
wda_pspr
wda_setr
wda_draw
wda_hit
wda_ctrl
wda_nxsc
wda_nysc
wda_skey
wda_ext
wda.blen

$00
$02
$04
$06
$08
$10
$12
$14
$16
$18
$la
$1c
$le
$1f

$20

word
word
word
word

word
word
word
word
word
word
word
byte
byte

sub-window x size (width) in pixels + scaling
sub-window y size (height) in pixels + scaling
sub-window x origin + scaling

sub-window y origin + scaling

sub-window attributes

pointer to pointer sprite for this sub-window
ptr to application sub-window setup routine
ptr to application sub-window draw routine
pointer to application sub-window hit routine
ptr to application sub-window control routine
maximum number of x control sections
maximum number of y control sections
application sub-window selection keystroke
zero

application sub-window basic definition length

pannable and scrollable sub-windows only (wda_nxsc or wda_nysc <>0)

wda_part

wda_insz
wda_insp
wda_icur
wda_iiat
wda_psac
wda_pshc
wda_pssc
wda.clen

$00

$02
$04
$06
$0a
$12
$14
$16
$18

word

word
word
long

word
word
word

ptr to the part window control block (or 0)

for pan, scroll and split definitions
index hit size + scaling
index spacing left or above sub-wind.+scaling
index current item attr. (border width, colour)
index item attribute record
pan or scroll arrow colour
pan or scroll bar background colour
pan or scroll bar section colour
applic. sub-window control definition length

menu sub-windows only (processed by WM.SMENU called from application setup)

wda_mstt
wda_iatt

wda_ncol
wda_nrow
wda_ xoff
wda_yoff
wda_xspc
wda_yspc
wda_xind
wda_yind
wda_rowl
wda.mlen

$00
$02
$le
$20
$22
$24
$26
$28
$2a
$2¢c
$2e
$30

word

word
word
word
word
word
word
word
word
word

pointer to menu status block
item attributes

number of actual columns
number of actual rows

x offset to start of menu (section)
y offset to start of menu (section)
pointer to x (column) spacing list
pointer to y (row) spacing list
pointer to x (column) index list
pointer to y (row) index list
pointer to menu row list
sub-window menu definition length

The application sub-window origin is the pixel position of the top left hand corner of the inside
of the sub-window with respect to the top left hand corner of the window.

The pointers to the sub-window pan and scroll control blocks and the menu status block are
relative to the start of the window status area.

QPTR The Pointer Environment 115

If a window is both pannable and scrollable, then there should be two complete sub-window
control definitions.

If a spacing list consist of items of the same size, then the pointer to the spacing list may be
replaced by the negative spacing values.

menu object spacing list

wdm_size $00 word object hit size + scaling
wdm_spce $02 word object spacing + scaling
wdm.slen $04 object spacing list element length

menu row list
wdm_rows $00 word pointer to object row list start
wdm_rowe $02 word pointer to object row list end
wdm.rlen $04 menu row list element length

menu object / index list entry
wdm_xjst $00 byte object x justification rule
wdm_yjst $01 byte object y justification rule
wdm_type $02 byte object type (O=text, 2=sprite, 4=blob, 6=pattern)
wdm_skey $03 byte selection keystroke (upper case)
wdm_pobj $04 word pointer to object
wdm_item $06 word item number (-1 for index)
wdm_pact $08 word pointer to action routine (zero for index)
wdm.olen $0a menu object / index list entry length

QPTR The Pointer Environment 116

Menu Macros

This section documents the action of the utility macros supplied in the file
WMAN_MENU_MAC. These macros assist in the generation of standard format Window
Definitions by automatically generating the XDEF and XREF directives required to use the
definition: they also relieve the programmer of the burden of remembering the size of each data
item.

Most symbols generated by these macros have a four character prefix showing their type. This
means that in the user-supplied symbol, usually referred to as the name, only the first four
characters will be significant.

There is, of course, no need to use these macros to generate Window Definitions: in
particular, any constraint of size and label name is imposed only by these macros, and not by the
data structures themselves. Modification of the macros, or direct generation of the definition, is
definitely recommended if you can't get the effect you want.

Structure

The major data structure produced by the macros is the Window Definition. This is of the form
documented in the previous section of this manual, and is thus appropriate for conversion to its
Working Definition by the wM. SETUP routine of the Window Manager. Each of an application's
Window Definitions has a unique name, and may be referred to by using the label MEN_name
which is XDEFfed by the WwINDOW macro, and may be XREFfed where required.

A Window Definition consists of one or more layouts, each appropriate for a different size of
window. One of these is selected by the wM.SETUP routine for copying into the Working
Definition, depending on the size requested. Each layout is given a unique letter when introduced
by the SIZE_OPT macro: when the SETWRK macro is invoked at the end of the menu
assembly, symbols of the form wiWwletter.name are XDEFfed, defining the space required for
the Working Definition for each layout. These may be referred to in other modules by declaring
the symbol with an XREF . S directive. Different layouts for a window may be put in different files:
the main definition is introduced with the WINDOW macro, and has the various layouts introduced
with the SIZE_OPT macro: the external layout definition(s) start with the XLAYOUT macro, and
define the layouts specified by calls to the LAYOUT macro.

In addition to creating the Window Definition, the macros also keep track of the size of Status
Area required. In principle, the statuses of the items in a window may be static, so that when the
window is pulled down again previously selected options are still selected. To cater for this, the
status blocks for a given window are defined as COMMON blocks of the required size: each layout
defines its own blocks, but with the same name, so that when linked the largest version of each
COMMON block is used. One COMMON block is defined for the base area and loose item status
block, one for each menu status block and control block, and one for each item allocated space
with a call to the ALCSTAT macro. By using the COMMON DUMMY option in the linker command
file, no space is allocated in the application for the status areas, resulting in ROMable code. The
global status area for all windows may then be put in the application's data space, if this is big
enough, or in a suitably-sized piece of heap allocated when the application starts. If this area is
always pointed to by Ax, then the status area for a given window will be found at
WST name (Ax), this label having been defined by an XREF . S directive. Note that this limits
you to a maximum global status area size of 32k. Often A5 or A6 will be used to point to the
global status area, as they are not used by the Window Manager.

QPTR The Pointer Environment 117

Rules and reserved symbols

Within the body of a description, the macro substitution syntax of [name] is used where the
value of the variable or macro parameter name is meant: in general, macro parameters are in
Courier and global variables in UPPER_CASE. New variables and labels may be created
from global and local variables: for instance, the ACTION macro is of the form:

ACTION MACRO name
XREF MEA [name]
ENDM

An invocation of this macro might be:
ACTION QUIT
producing the expansion:

XREF MEA QUIT

At the start of a definition, the square brackets take their usual meaning of defining an optional
parameter.

The variables CLAYOUT, CURRA, CURRW, MAXITEM and WSIZES are used by the macros,
and should not be used for other purposes.

The prefixes shown overleaf are used by the macros, for the purposes specified. In general,
you should avoid using any symbol with these prefixes in your own code. Those marked external
are XDEFfed or XREFfed by the macros. Those marked var(iable) are used as assembler
variables to keep track of which layout(s) the corresponding object is used in.

QPTR The Pointer Environment 118

Prefix External Var Use

MAD_ Label for application sub-window definition
Y Layouts using this sub-window

MAW _ Y Label for application sub-window list
Y Layouts using this application sub-window list

MEK. Y Value of item select key

MEA _ Y Label of externally defined code:

MEC_ this may be an Action/Hit, Control,

MED_ Drawing or Menu-setup routine.

MEM_

MEB_ Y Label of externally defined objects:

MEP_ these may be a Blob, Pattern,

MES _ Sprite or Text.

MET_

MIO_ Label for an info. object list

Y Layouts using this list

MIW _ Label for an info. sub-window list
Y Layouts using this list

MLI_ Label for a loose item list
Y Layouts using this list

MOB _ Label for menu sub-window or (first) index object
Y Layouts using this object
MPS_ Y Label for externally-accessible co-ordinates
MRW_ Label for menu sub-window row list
Y Layouts using this row list
MST_Y Offset of menu sub-window status block from

start of global status area

MSX_ Label for X or Y spacing list
MSY_ Y Layouts using this spacing list
MV_ Y Label for space in global status area allocated

by ALCSTAT macro

NCX. Y Number of control sections in the

NCY. X or'Y direction for a menu sub-window

WAL _ Y Start of ALCSTAT area in global status area
Variable holds running total of space needed

WCX_ Y Offset of X or Y section control block

WCY_ from start of global status area

WST_ Y Offset of window status area from start of global status area

WWX. Y Size of Working Definition needed for layout x

QPTR The Pointer Environment 119

The macros defined in the WMAN_MENU_MAC file are listed below.

ACTION name
Generates a relative pointer to an action routine. This is external to the menu definition,
and should have the label MEA_ [name].

ALCSTAT name, space

This reserves some extra space in the global status area, which can be accessed at the offset
MV_[name] from the base of this global status area: this offset will always be even. The
amount of space reserved is given by the value of the space parameter. The offset should be
referred to in the code by using the XREF.S directive.

APPN name

Generates a relative pointer to the application sub-window list for this layout. This should have
the label MAW_[name] and will have an XREF generated for it if CLAYOUT has the value "*",
which implies an externally-defined layout.

If CLAYOUT does not have the value "*", then a variable with the name MAW [name] is
updated: if it already exists, then this application sub-window list is used by several layouts, and
the value of CLAYOUT is appended to it. If the variable is undefined, then it is initialised to the
current value of CLAYOUT.

ARROW colour
Define the colour of the arrows in the pan or scroll arrow rows.

A CTRL name,dirn

Introduces an application sub-window control definition, defining a pointer, relative to the start
of the window status area, where the section control block starts, and generating an externally
accessible offset WC[dirn] [name] which may be used by coding a suitable XREF.S
directive in the code wishing to use it. The size of section control block is given by the maximum
number of sections, which will have been previously defined by a call to the CTRLMAX macro,
and kept in the variable NC[dirn] [name].

A END
This generates the termination for an application sub-window list: it is not interchangeable with
I_END etc., as the terminators are different.

A_OBJE name

This marks the end of a menu sub-window object list, defining the label MOB_[name] SO
that the row list can point to the end of the list. It also defines a COMMON block for the menu item
statuses, which may be found at the offset MST [CURRA] from the base of the global status
area: [CURRA] is the name of the application sub-window currently being defined.

A MENU
Introduces the menu definition section of an application sub-window, and generates a relative
pointer to the menu status block.

A_RLST name
This introduces a menu sub-window row list, and labels it MRW_[name]. It also sets the
value of CLAYOUT to the value of the variable MRW_[name].

QPTR The Pointer Environment 120

A SLST name,dirn

This introduces a menu sub-window spacing list, and labels it MS[dirn]_ [name]. It also
sets the value of CLAYOUT to the value of the variable MS[dirn]_ [name].

The parameter d i rn may take the values "X" or "Y".

A _WDEF name

This introduces an application sub-window definition, and labels it MAD_ [name]. It also
sets the value of CLAYOUT to the value of the variable MAD [name], and CURRA to
[name].

A _WINDW name

This generates a relative pointer to an application sub-window definition, which must be
internal to this layout. The label used is MAD_[name], this being generated by the A_ WDEF
macro. A variable MAD _[name] is also set to the current value of CLAYOUT.

A _WLST name

This macro introduces an application sub-window list. It generates a label MAW_[name] and
reads a new value for the variable CLAYOUT from the variable MAW_ [name], which will have
been defined by a call to APPN or LAYOUT.

The effect of this is to ensure that the list can be pointed to from elsewhere in the definition,
and that the space required for the application sub-windows can be added up in the appropriate
layout variable.

BAR background,block

Define the colours of the "thermometer" bar to the right or bottom of an application
sub-window. The visible part of the window is represented as a bar of the block colour, on a
bar representing the whole height or width of the menu, of the background colour.

BLOB name
Generates a relative pointer to a blob definition. This is external to the menu definition, and
should have the label MEB_ [name].

BORDER size,colour
Generates the definition of a border to be put around an item when the pointer is pointing to it.
Usually followed by one or three IATTR definitions defining the attributes of the item itself.

CSIZE xsize,ysize
This defines the character size for an information item: the usual range of xsize from 0 to 3
and ysize from 0 to 1 applies.

CTRL name
Generates a relative pointer to an application sub-window control routine. This is external to
the menu definition, and should have the label MEC_ [name].

QPTR The Pointer Environment 121

CTRLMAX xsects,ysects

This defines the maximum number of sections into which an application sub-window may be
split. It also keeps a record of these numbers in the variables NCX.[CURRA] and
NCY.[CURRA], so that when the control definition is encountered the correct amount of space
can be allocated in the status area.

DRAW name
Generates a relative pointer to an application sub-window drawing routine. This is external to
the menu definition, and should have the label MED_[name].

HELP label

Generates a relative pointer to the help definition. Since the meaning of this pointer is
dependent on the application, the label is used directly, without adding a prefix: the label is
assumed to be external, so an XREF is generated.

IATTR paper,ink,blob,pattern

Generates part of a definition of the attributes to be used when drawing loose menu items,
index items or menu sub-window items. The blob and pattern are external, with labels
MEB_ [blob] and MEP_[pattern] respectively. Loose and sub-window items should have
three sets of attributes, one for each of the three possible statuses unavailable, available and
selected. Index items do not have variable status, so only need one set of attributes. The object
to be drawn is combined with one or more of the attributes, depending in its type:

Object type Attribute

paper ink blob pattern
TEXT Y Y
SPRITE Y
BLOB Y Y
PATTERN Y Y

IBAR size,spacing[,szscale,spscale]
Define the size and spacing of an index bar. Optionally these may be scaled. The spacing is
measured above or to the left of the application sub-window.

ILST name
Generates a pointer to an index object list, which is internal to the definition and must be
labelled MOB_ [name]. The variable of the same name is given the value of CLAYOUT.

INFO name

Generates a relative pointer to the information sub-window list for this layout. This should have
the label MIW_[name] and will have an XREF generated for it if CLAYOUT has the value "*".

If CLAYOUT does not have the value "*", then a variable with the name MIW_[name] is
updated in the same way as in the APPN macro.

INK colour
This macro defines the ink colour for an information item.

QPTR The Pointer Environment 122

ITEM number

Defines the item number for a loose or menu object: more than one object may share an item
number, in which case they will share a status byte and therefore all be drawn with the same
status.

If the value of the variable CURRA is not ™", then it is assumed that the object being defined is
in a menu sub-window, and the maximum item number for that sub-window is updated if
required, this being kept in the variable MST [CURRA]: otherwise the variable MAXITEM is
updated. In this way it is possible to have "holes" in the tiem numbers, but still get the correct size
of status area allocated.

I END
Generates an end-of-list marker for information sub-window and object lists.

I ITEM
This introduces an information item: it is this macro that adds to the space requirements for
the current layout(s), given by the value of the variable cLAYOUT.

I_OLST name
This introduces an information object list, generating a label MIO_[name]. The variable
CLAYOUT is set to the value of the variable MIO [name].

I WINDW
This introduces an information sub-window: it is this macro that adds to the space
requirements for the current layout(s), given by the value of the variable CLAYOUT.

I_WLST name

This macro introduces an information sub-window list. It generates a label MIW_[name] and
reads a new value for the variable CLAYOUT from the variable MIW_[name].

The effect of this is to ensure that the list can be pointed to from elsewhere in the definition,
and that the space required for the information sub-windows can be added up in the appropriate
layout variable.

JUSTIFY xjst,yjst

Define the justification required for an item: an item may be centred in the area available or be
positioned a fixed distance from either margin. A parameter value of zero requests a centred
object, a positive non-zero value is an offset from the left or top, and a negative value an offset
from the right or bottom.

LAYOUT letter,[info],[loos],[appn]

This specifies one of the layouts that is to be defined in this file, in a similar way to the
SIZE_OPT macro, but is used in a separate layout file, after the XLAYOUT. It should not be
used in a main definition file.

The names of the information sub-window list, loose item list and application sub-window list
may be omitted if the layout does not contain such a list, but the commas must be coded so that
the correct internal labels are generated.

QPTR The Pointer Environment 123

LOOS name

Generates a relative pointer to the loose item list for this layout. This should have the label
MLI_ [name] and will have an XREF generated for it if CLAYOUT has the value "*".

If CLAYOUT does not have the value ", then a variable with the name MLI [name] is
updated in the same way as in the APPN macro.

L END
Terminates a loose item list, and generates a COMMON block definition for a window status
area big enough for the maximum loose item number, given in the MAXITEM variable.

L _ILST name

This macro introduces a loose item list. It generates a label MLI _[name] and reads a new
value for the variable CLAYOUT from the variable MLI_ [name]. In addition, the variable
MAXITEM is initialised to zero, and CURRA to "*".

The effect of this is to ensure that the list can be pointed to from elsewhere in the definition,
and that the space required for the loose items will be added up in the appropriate variable.

L ITEM [name,number]

This introduces a loose item: it is this macro that adds to the space requirements for the
current layout, given by the value of the variable CLAYOUT. If name and number are
supplied, a label MLI.[name] is defined and set to the value of number, also a label
MLO.[name] which is the position of the item in the list, counting from 0.

MENSIZ ncols,nrows
This defines the size of a menu sub-window in terms of rows and columns, and therefore the
sizes of the spacing lists, index item lists (if present), and row list.

OBJEL [name]
Introduces a menu sub-window object definition: if the name is supplied then the object is
given the label MOB_ [name] and CLAYOUT is given the value of the MOB_ [name] variable.

OLST name

Generate a relative pointer to an information object list. This must be internal to the definition,
and have the label MIO_ [name]. A variable of the same name is defined to have the same
value as the variable CLAYOUT, so that the space occupied for the object list can be attributed to
the appropriate layout.

ORIGIN xpos,ypos[,xscale,yscale]

Generates a two word origin definition for a window, sub-window or object. A window's origin
specifies the point within it where the pointer should be placed when the window is drawn - this
will be combined with the current pointer position to decide the absolute origin of the window.

The origin of a sub-window or object is always specified relative to the window containing it.

Optionally a scale factor may be provided to specify how the origin should be changed if the
window is bigger than expected. See the Window Definition section of the Data Structures for
details on how scale factors work.

QPTR The Pointer Environment 124

PATTERN name
Generates a relative pointer to a pattern definition. This is external to the menu definition, and
should have the label MEP_[name].

POSN name,xsize,ysize[,xscale,yscale]

Generates a scaled co-ordinate pair in the same way as the ORIGIN macro, and labels the
data MPS_[name]. This label is XDEFfed so that the co-ordinates can be used from other parts
of the program.

ROWEL start,end

Generate one element of a row list, consisting of a pair of relative pointers to the start and end
menu sub-window objects: the start pointer points to the first object, the end points just after
the last. The labels used must be internal to the definition, and have the symbols
MOB_[start] and MOB_[end]. Two variables of the same names are given the current
value of the CLAYOUT variable.

RLST name
Generates a relative pointer to a rowlist, which is internal to the definition and must be labelled
MRW_[name]. A variable of the same name is given the current value of CLAYOUT.

SELKEY [name]

Generate a select key for a loose or menu item. The value of the select key is an external
symbol MEK. [name]: this allows the programmer to have one file containing all select keys
(and text), which is then the only file that needs to be changed to make foreign language versions
of the program.

If name is not supplied, a select key of 0 is defined, which can never occur (it is trapped out
by the Window Manager).

SETR name
Generates a relative pointer to an application sub-window setup routine. This is external to the
menu definition, and should have the label MEM_[name].

SETWRK

This macro must always be coded at the very end of a window or layout definition: it defines
the external symbols giving the space required for the working definitions of the various possible
size-dependent layouts. In addition it generates a COMMON section declaration and external
definition for any extra space required in the global status area as a result of calls to ALCSTAT.

SIZE xsize,ysize[,xscale,yscale]

Generates a two-word size definition for a window, sub-window or object. The size of a
window is the actual area that can be used, any border defined is added to the outside.

Optionally a scale factor may be provided to specify how the size should be changed if the
window is bigger than expected. See the Window Definition section of the Data Structures for
details on how scale factors work.

QPTR The Pointer Environment 125

SIZE_OPT letter | *

This introduces an entry in the repeated part of the window definition: each entry gives a
possible size that the window can have, and pointers to the various parts of the layout for this
size.

The value of the parameter is kept in the variable cLAYOUT for future use.

If the * option is coded, the layout is assumed to be external, and XREFs will be generated
for the pointers to the loose item list, information sub-window list, and application sub-window list.

Ifa letter is coded, then the layouts are assumed to be in the current file. In this case the
variables WW[letter].[CURRW] and WS[letter].[CURRW] are initialised to suitable
values: these are used during the later stages of the menu definition to calculate the sizes
required for the working definition and status area for this layout. The [letter] is also
appended to the WSIZES variable.

SOFFSET xoff,yoff
This defines the offset of the top left object from the top left of a menu sub-window, so you
don't have to squash everything up into the top left corner.

SPARE
Generates a null byte to fill up spare space. Only required after the definition of an application
sub-window's select key.

SPCEL gap,size
This generates one element of a row or column spacing list, defining the horizontal or vertical
hit size of a column or row, and the gap between the column or row and the next.

SLST xnam,ynam

This generates two relative pointers to the X and Y spacing lists, which should be labelled
MSX [xnam] and MSY [ynam]. Two variables of the same names are set to the current
value of CLAYOUT.

SPRITE name
Generates a relative pointer to a sprite definition. This is external to the menu definition, and
should have the label MES _[name].

S END
Terminates the list of layouts in the repeated part of a window definition.

TEXT name

Generates a relative pointer to a string. This must be external to the menu definition, and
should have the label MET [name]. This allows the programmer to have one file containing all
text (and select keys), which is then the only file that needs to be changed to make foreign
language versions of the program.

TYPE code
Specifies the type of a loose, information or menu object. The value of code may be 0 for a
text item, 2 for a sprite and so on: suitable symbols are defined in the WMAN _KEYS file.

QPTR The Pointer Environment 126

WATTR shadow,border_size,border_colour,paper
Generates data describing the overall colour of a window or sub-window. The shadow is
ignored in the case of sub-windows. The border size is added to the specified window size.

WINDOW name

Generates an externally accessible label MEN_ [name] which points to the Window
Definition.

The variable CURRW is set to [name] S0 that various unique symbols may be defined and
XDEFfed at a later stage.

The variable WSIZES is set to the null string: this is added to by SIZE_OPT, and used in
SETWRK to generate XDEFs for each possible size.

XLAYOUT name

This introduces a set of layout definitions in a similar way to WINDOW introducing the main
part of a window definition. It is associated with the appropriate main definition by having the
same [name], which is assigned to the CURRW variable as in WINDOW.

QPTR The Pointer Environment 127

Text Macros

The file WMAN_TEXT_MAC contains a set of macros which are used for defining text strings,
often for use in menus. Several different flavours are provided, depending on the use to which the
text is going to be put. The merit of this approach is that all text used in an application may be put
into one file, and different versions of this file with the text in different languages linked with the
rest of the application (all of which should be language-independent) to produce foreign language
versions.

All the macros take one or more string parameters. Each of these should consist of of the
characters you wish to appear in the text, enclosed in braces {}. This is a convention used by the
GST Macro Assembler to allow the use of strings with spaces in them as macro parameters. All
the macros use this parameter to generate a QDOS format string at an even address with a
1-word character count at the beginning.

Note that you cannot use the open square bracket character "[" either within a string or as a
select key when you are using the GST Macro Assembler, as this character is always
interpreted as the beginning of a macro substitution. If you do need to use the open square
bracket, you will need to code the ASCII value (91 or $5B) in a DC.x directive of your own
making.

The MKTEXT macro uses the variables MKT.PRM and MKT.PRMX, so you should avoid
using these variables when using the text generating macros.

Label and variable prefixes used by these macros are as follows:

Prefix External Var Use

MEK. Y Item select key definition
MET _ Y Text string label

MET. Y Text string length/2 in pixels

In the following macro definitions, square brackets in the heading line enclose an optional
parameter, braces enclose a parameter that may be repeated more than once. Within the body of
a definition, the square brackets signify the value of a supplied parameter: see the beginning of
the previous section for an example.

MKSELK label,selkey

Generates an external symbol MEK.[label] whose value is that given by the one
character string passed in selkey. If the character was in the range "a" to "z" then the upper
case equivalent is used, as select keys are required to be defined in upper case. This macro is of
use when defining a select key for a graphics object such as a sprite.

MKSTR string
This is the simplest of the macros. It generates a QDOS string but no extra information.

MKTEXT label{,string}

This macro is used to generate a large block of text which has to be defined over many lines
of source code. The resulting single string is labelled MET [label]. All parameters after the
label name should be strings enclosed in braces, and these are concatenated to produce the
result. If you wish to force a newline at any point then you may code a backslash character "\" as
the last character of any string - this will then be translated into a newline character (ASCII value
10 or $0A). A backslash within a string is not translated.

QPTR The Pointer Environment 128

MKTITL label,string

Generates a string for use as a large title. Two external symbols are defined, MET [label]
labels the string itself and MET . [Label] gives half the length of the string, in pixels, if written
out with CSIZE 2,n. This symbol may be referred to by an XREF.S directive and used to centre
the title in an information sub-window. Another macro is used for strings written with a smaller
character size, as the GST Macro Assembler does not allow multiplication or division of external-
ly-defined symbols.

MKTITS label,string

Generates a string for use as a small title. Two external symbols are defined, MET [label]
labels the string itself and MET . [Label] gives half the length of the string, in pixels, if written
out with CSIZE 0,n. This symbol may be referred to by an XREF.S directive and used to centre
the title in an information sub-window. Another macro is used for strings written with a larger
character size, as the GST Macro Assembler does not allow multiplication or division of exter-
nally-defined symbols.

MKXSTR label,[selkey],string

Generates a string for use as a loose menu item or menu object. The string itself is defined as
usual, with the symbol MET [label] being used to refer to it. Optionally a select key may be
defined by specifying a non-null value for the selkey parameter. This should be a one
character string, preferably enclosed in braces for consistency. If supplied, the symbol
MEK.[label] is defined to have the value of this character: if the character is in the range "a"

to "z" then the upper case equivalent will be used.

QPTR The Pointer Environment 129

Index of macros

The macros are summarised in alphabetical order, together with which file they are defined in
and a short description of the structure each generates. Those marked MENU are in the file

WMAN_MENU_MAC, those marked TEXT are in the file WMAN_TEXT_MAC.

ACTION
ALCSTAT
APPN
ARROW
A_CTRL
A_END
A_MENU
A_OBJE
A_RLST
A_SLST
A_WDEF
A_WINDW
A_WLST
BAR
BLOB
BORDER
CSIZE
CTRL
CTRLMAX
DRAW
HELP
IATTR
IBAR
ILST
INFO
INK
ITEM
|_END
|_ITEM
| OLST
|_WINDW
|_WLST
JUSTIFY
LAYOUT
LOOS
L_END
L_ILST
L_ITEM
MENSIZ
MKSELK
MKSTR
MKTEXT
MKTITL
MKTITS
MKXSTR
OBJEL
OLST
ORIGIN
PATTERN
POSN
ROWEL
RLST
SELKEY

MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU

pointer to action routine

space in global status area

pointer to application sub-window list
arrow colour for pan/scroll bars

start of control definition

end of application sub-window list
start of menu definition

end of menu object list

start of menu row list

start of menu spacing list

start of application sub-window
pointer to application sub-window
start of application sub-window list
pan/scroll "thermometer” colours
pointer to blob

border size and colour for current item
character size for information text
pointer to control routine

maximum number of control sections
pointer to sub-window drawing routine
pointer to help definition

item status attributes

size and spacing of index items
pointer to index item list

pointer to information sub-window list
ink colour for information text

item number for loose or menu item
end of information window or object list
start of information object

start of information object list

start of information sub-window

start of information sub-window list
justification rules for loose or menu item
start of external layout definition
pointer to loose item list

end of loose item list

start of loose item list

start of loose item

size of menu in columns/rows

item select keystrokes

QDOS string, no label

multi-line text

large title string

small title string

external string with select keystroke
start of menu object definition

pointer to information object list
origin of window or object

pointer to pattern
externally-accessible ORIGIN

row list element

pointer to row list

select keystroke for loose or menu item

QPTR The Pointer Environment

130

SETR
SETWRK
SIZE
SIZE_OPT
SOFFSET
SPARE
SPCEL
SLST
SPRITE
S_END
TEXT
TYPE
WATTR
WINDOW
XLAYOUT

MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU
MENU

pointer to setup routine

end of entire window definition
size of window or object

start of internal layout definition
offset from top left of menu sub-window
spare padding byte

spacing list element

pointers to spacing lists

pointer to sprite

end of layout list

pointer to text

object type

overall window attributes

start of entire window definition
start of external layout definitions

QPTR The Pointer Environment

131

Working Definition

To allow a very large degree of flexibility in the handling of windows and menus, the actual
definition of a window used by the window management routines is set up during execution.
Because this definition will usually be set up before pulling down a window, and discarded after
throwing the window away, this is referred to as the working definition.

The window definition is principally a definition of a pull-down window. It may, however,
include definitions of menus within the window. The window working definition is a copy of the
window definition, with the addition of the definitions of menus whose contents are defined at
execution time. The form of the working definition is chosen to simplify menu handling.

Within a window, it is likely that sub-windows will exist which are either menus in a
non-standard form, or not menus at all. In either of these cases the corresponding part of the
window working definition may be absent or of non-standard form.

Within the working definition all pointers are long word absolute pointers. All addresses are
even. A zero pointer implies that the structure pointed to is absent.

The file WMAN_ WWORK contains definitions of the symbols used in this section: it may be
INCLUDECA in any assembler files that manipulate working definitions.

The working definition starts with a header block. This has three functions: the first is to save
the window channel ID, the original window definition address and the window status area
address; the second is to point to the pointer record, to save the pointer position as it was before
the window was opened, and to flag whether the window is a primary or a pull-down (secondary);
the third is to provide the sprite list for the base level of the pointer interface.

ww_wstat $00 long pointer to window status area
ww_wdef $04 long pointer to window definition
ww_chid $08 long channel ID for window

ww_pprec $0c long pointer to pointer record (24 bytes)
ww_psave $10 long saved pointer position (absolute coordinates)

ww_sparl $14 long window spare 1

ww_spar2 $18 word window spare 2

ww_spar3 $la byte window spare 3

ww_pulld $1b byte flag, <>0 if pulled down
ww_splst $1c long pointer to sub-window sprite list

The channel ID is set when the window is opened by the window open routine.

The pointer position is saved when the window is opened, and restored when the window is
thrown away.

QPTR The Pointer Environment 132

The header block is immediately followed by the window definition block:

WW_Xsize
Ww_ysize
WW_Xorg
ww_yorg
ww_wattr
wWw_psprt
ww_lattr
ww_help
ww_head

ww_ninfo

ww_ninob
ww_pinfo

ww_nlitm

ww_plitm

ww_nappl
ww_pappl
ww_lists

$20
$22
$24
$26
$28
$30
$34
$5¢
$60

$60
$62
$64
$68
$6a
$6e
$70
$74

word
word
word
word

long

long

word
word
long
word
long
word
long

window x size (width) in pixels

window y size (height) in pixels

pointer x origin in window

pointer y origin in window

window attributes

pointer to pointer sprite for this window
loose menu item attributes

pointer to help definition

end of header

number of information sub-windows
number of information sub-window objects
ptr to information sub-window definition list
number of loose menu items

pointer to loose menu item list

number of application sub-windows

ptr to application sub-window definition list
start of definition lists

The window width and height exclude the border and shadow, i.e. they refer to the inside of

the window.

The origin of the window is the position of the top left hand corner of the inside of the window
is display coordinates.

Window Attributes

The window attributes for the working definition are identical to those for the window definition.

wwa_clfg
wwa_kflg
wwa_shdd
wwa_borw
wwa_borc
wwa_papr

$00
$00
$01
$02
$04
$06

byte
byte
byte
word
word
word

MShit set to clear window

Bit O set disables keys moving the mouse
shadow depth

border width

border colour

paper colour

QPTR The Pointer Environment 133

Menu Item Attributes

The menu item attributes for the working definition are similar to those for the window
definition. They occupy rather more space as they use long word pointers.

wwa_curw
wwa_curc
wwa_attr
wwa_unav
wwa_aval
wwa_selc
wwa.elen

attribute record

$00
$02
$04
$04
$10
$1c
$28

wwa_back $00
wwa_ink $02
wwa_blob $04
wwa_patt $08
wwa.alen $0c
Loose Menu

wwl_xsiz
wwl_ysiz
wwl_xorg
wwl_yorg
wwl_xjst
wwl_yjst
wwl_type
wwl_skey
wwl_pobj
wwl_item
wwl_pact
wwl.elen

$00
$02
$04
$06
$08
$09
$0a
$0b
$0c
$10
$12
$16

word
word

word
word
long
long

current item border width
current item border colour
attribute records

item unavailable

item available

item selected

menu item attribute entry length

item background colour
text object ink colour
pointer to blob for pattern
pointer to pattern for blob
attribute record length

ltems List

Loose menu items can be positioned anywhere within the window. The loose menu item list is
just a list of object types, positions, actions and pointers. The list is terminated by a word
containing -1. Apart from the use of long word pointers, the loose menu item list is the same as in
the window definition.

word
word
word
word
byte
byte
byte
byte
long
word
long

hit area x size (width)

hit area y size (height)

hit area x origin

hit area y origin

object x justification rule

object y justification rule

object type (O=text, 2=sprite, 4=blob, 6=pattern)
selection keystroke (upper case)
pointer to object

item number

pointer to action routine

loose menu item list entry length

The selection keystroke should be the 'upper case' value for letters and the event code (not
the event number) for the event keystrokes. The event code is the event number less 14.

QPTR The Pointer Environment 134

Information Sub-Window

An information sub-window is set up when the menu is set up, but has no further significance.
The definition of information sub-windows is in the form of a list terminated by a word containing
-1. Apart from the use of long word pointers, the information sub-window list is the same as in the
window definition.

WWi_Xsiz $00 word sub-window x size (width) in pixels
wwi_ysiz $02 word sub-window y size (height) in pixels
wwi_xorg $04 word sub-window x origin
wwi_yorg $06 word sub-window y origin

wwi_watt $08 sub-window attributes
wwi_pobl $10 long pointer to information object list
wwi.elen $14 information list entry length

The information sub-window origin is the pixel position of the top left hand corner of the inside
of the sub-window with respect to the top left hand corner of the window.

Information Object List

Each object in an information object list has only a limited set of attributes, which may be
different for each object. The list for each information sub-window is terminated by a word
containing -1.

wwo_xsiz $00 word object x size (width) in pixels

wwo_ysiz $02 word object y size (height) in pixels

wwo_xorg $04 word object x origin

wwo_yorg $06 word objecty origin

wwo_type $08 byte object type (O=text, 2=sprite, 4=blob, 6=pattern)
wwo_spar $09 byte spare

(wwo_ink $0a word text ink colour type=0

(wwo_csiz $0c word text character size (two bytes)

or

(wwo_comb $0a long pattern or blob to combine type=4 or 6

wwo_pobj $0e long pointer to object
wwo.elen $12 information object list entry length

QPTR The Pointer Environment 135

Application Sub-window List

Because the size of an application sub-window definition is dependent on the usage of the
definition, the application sub-window list is just a list of long word pointers to individual
application sub-window definitions. The list is terminated with a zero long word.

Application sub-window definition

wwa_xsiz $00 word sub-window x size (width) in pixels
wwa_ysiz $02 word sub-window y size (height) in pixels
wwa_xorg $04 word sub-window x origin

wwa_yorg $06 word sub-window y origin

wwa_watt $08 sub-window attributes

wwa_pspr $10 long pointer to pointer sprite for this sub window
wwa_draw $14 long ptrto application sub-window draw routine
wwa_hit $18 long pointer to application sub-window hit routine
wwa_ctrl $1c long pointer to sub-window control routine (or 0)
wwa_nxsc $20 word maximum number of x control sections
wwa_nysc $22 word maximum number of y control sections
wwa_skey $24 byte application sub-window selection keystroke
wwa.blen $28 application sub-window basic definition length

Two control definitions, of the following structure, will always be present. The first will only be
set up (non-zero) for pannable sub-windows, the second only for scrollable sub-windows.

wwa_part $28 long ptrto the part window control block (or 0)
for pan, scroll and split definitions

wwa_insz $2c word index hit size + scaling

wwa_insp $2e word index spacing left or above

sub-window+scaling

wwa_icur $30 long index current item attr. (border width, colour)

wwa_iiat $34 index item attribute record

wwa_psac $40 word pan or scroll arrow colour

wwa_psbc $42 word pan or scroll bar colour

wwa_pssc $44 word pan or scroll bar section colour

wwa.clen $le applic. sub-window control definition length

menu sub-windows only

wwa_mstt $64 long pointer to the menu status block
wwa_iatt $68 item attributes

wwa_ncol $90 word number of actual columns
wwa_nrow $92 word number of actual rows

wwa_xoff $94 word x offset to start of menu (section)
wwa_yoff $96 word vy offset to start of menu (section)
wwa_xspc $98 long pointer to x (column) spacing list
wwa_yspc $9c long pointer to y (row) spacing list
wwa_xind $a0 long pointer to x (column) index list
wwa_yind $a4 long pointertoy (row) index list
wwa_rowl $a8 long pointer to menu row list
wwa.mlen $48 length of menu working definition

QPTR The Pointer Environment 136

The application sub-window origin is the pixel position of the top left hand corner of the inside
of the sub-window with respect to the top left hand corner of the window.

If you supply a negative spacing value instead of a pointer to the spacing list, then all rows or
columns are treaded as being of the same size.

The two control definitions must be present for all application sub-windows, but need only be
set up if the sub-window is pannable (wwa_nxsc<>0) or scrollable (wwa_nysc<>0).

Menu Obiject Lists

It is assumed, by the menu interface, that the objects are arranged in a rectangular grid. Each
column of the grid has a fixed width, each row a fixed height. The interface also allows for an
index to the columns and an index to the rows to be placed above and to the left of the grid.

There are two dimensions, the first is the actual number of columns, the second is the number
of rows. All of the lists have either one dimension or the other.

Each of the object spacing lists consists of pairs of numbers. The first is the hit area width or
height, the second is the distance from the start of this hit area to the start of the next. Both
spacings are in pixels. There must be sufficient gap between the objects to allow the current item
border to be drawn.

Each of the object index lists has the same form as the object item list described below. The
item numbers within these lists should be negative, and the action routine pointers zero.

The object item lists consist of a set of list entries, one for each column in a row. Each object
list entry contains the item number for the object, the object type (test, sprite etc.), the justification
(left, right or centre, top, bottom or centre), a pointer to the actual object and a pointer to an
action routine to be called when the object is hit. Note that it is possible to have just one large
object list, which is 'cut up' into rows by making each row list start pointer equal to the previous
row list end pointer.

The justification rule bytes are zero for a centered object, positive for left or top justified and
negative for right or bottom justified. The value indicates the distance of the object, in pixels, from
the edge of the hit area.

The row list consists of pairs of pointers to the start and end of each object list.

menu object spacing list

wwm_size $00 word object hit size

wwm_spce $02 word object spacing

wwm.slen $04 object spacing list element length
menu row list

wwm_rows $00 long pointer to object row list start

wwm_rowe $04 long pointer to object row list end
wwm.rlen $08 menu row list element length

QPTR The Pointer Environment 137

menu object / index list entry

wwm_xjst
wwm_yjst
wwm_type
wwm_skey
wwm_pob)j
wwm_item
wwm_pact
wwm.olen

$00
$01
$02
$03
$04
$08
$0a
$0e

byte
byte
byte
byte
long
word
long

object x justification rule

object y justification rule

object type (O=text, 2=sprite, 4=blob, 6=pattern)
selection keystroke (upper case)

pointer to object

item number (-ve for index)

pointer to action routine (zero for index)

menu object / index list entry length

QPTR The Pointer Environment

138

Working Definition Organisation

As the working definition is held together with pointers, it is not necessary for the data to be
contiguous, or even in related parts of the memory. The window management setup routine,
however, does transfer the data from the window definition to the working definition in an orderly

manner.

ww_lists (116)

wwi.elen (20) x ww_ninfo + 2

wwo.elen (18) x ww_ninob + 2 x ww_ninfo

wwl.elen (22) x ww_nlitm + 2

4 x ww_nappl + 4

header

information window list
information object lists
loose menu item list
application window list

application window definitions

The application sub-window definition set up by the window management routine WM.SETUP
is $64 bytes long. This definition may be extended by either an application setup routine or the

menu management setup routine.

An application sub-window definition set up by the menu management setup routine

WM.SMENU has the following structure:

wwa.blen + 2 x wwa.clen + wwa.mlen (172)

wwm.slen (4) x wwa_ncol
wwm.slen (4) X wwa_nrow
(wwm.olen (14) x wwa_ncol)
(wwm.olen (14) x wwa_nrow)
wwm.rlen (8) x wwa_nrow

wwm.olen x nr of objects

QPTR The Pointer Environment

application window definition
column spacing list

row spacing list

column index index (optional)
row index list (optional)
menu row list

menu object lists

139

Window Status Area

The window status area is used for communication between the application and the window
and menu management routines. The window status area contains the pointer record, the tables
giving the current sub-window and menu item, the control blocks for the pan, scroll and split
status of a sub-window and the tables giving the status of all menu items.

The file WMAN_WSTATUS contains definitions of the symbols used in this section: it may be
INCLUDECA in any assembler files that manipulate window status areas.

There is a fixed size base area which is pointed to from the window working definition header:

window linkage area

ws_work
ws_wdef

$00
$04

window working area

ws_point
wsp_chid
wsp_swnr
WSP_XpOos
WSp_Yypos
wsp_Kkstr
wsp_kprs

wsp_evnt

wsp_weve
wsp_seve
wsp_peve

ws_subdf
WSp_Xsiz
Wsp_ysiz
wsp_xorg
wsp_yorg

WS_ptpos
ws_wmode

ws_ciact
ws_citem
ws_cibrw
ws_cipap
Ws_cispr
ws_cihit

ws_cihxs
ws_cihys
ws_cihxo
ws_cihyo

$08
$08
$0c
$0e
$10
$12
$13

$14
$15
$16
$17

$18
$18
$la
$ic
$le

$20
$24

$2c
$30
$32
$34
$36
$38
$38
$3a
$3c
$3e

long
long

long
word
word
word
byte
byte

long
byte
byte
byte

word
word
word
word

long
word

long
word
word
word
word

word
word
word
word

pointer to window working definition
pointer to window definition

pointer record (24 bytes)

channel ID of window enclosing the pointer
sub-window number enclosing pointer (or -1)
pointer x pixel position (sub-window)

pointer y pixel position (sub-window)

key stroke (or 0)

key press (or 0)

event vector

window byte of event vector
sub-window byte of event vector
pointer byte of event vector

sub-window area definition (4 words)
sub-window x size (width)
sub-window y size (height)
sub-window X origin

sub-window y origin

pointer position (absolute)
display mode for this window

pointer to current item action routine
current item in sub-window

current item border width

paper colour behind current item

spare

current item hit area (absolute coordinates)
hit area x size

hit area y size

hit area x origin in sub-window

hit area y origin in sub-window

QPTR The Pointer Environment 140

The current item action routine is called whenever the the pointer is moved, or may be moved,
while the current item is zero or positive. If this pointer is zero the internal current item routines
are called: these require all the rest of the current item status area to be correctly set. If an action
routine is supplied, then the $10 bytes after the action routine may be redefined as required.

The fixed size area is followed immediately by the loose menu item status block which gives
the status of all the loose menu items. The block is indexed by the loose menu item number. The
status block should be preset by the application: thereafter it is maintained by the window
management routines.

loose menu item status block

ws_litem $40 one byte per loose item ($10 is unavailable,
$00 is available, $80 is selected)

The rest of the status area is in a free format. It may contain status blocks for the application
sub-window menus (if any) and pan and scroll control blocks. Since there is a pointer from the
window working definition to each of these blocks, they need not be contiguous and may be in
completely unrelated parts of the memory.

For each standard format sub-window, there is a status block giving the status of each item in
the sub-window menu.

sub-window menu item status block
wss_item $00 one byte per menu item ($10 is unavailable,
$00 is available, $80 is selected)

The status bytes in the item status blocks are used for communication between the application
and the menu handling routines. Initially, the status of each item is set by the application. The
window and menu drawing routines will draw each item using the appropriate colours patterns
and blobs. The byte is divided into two nibbles: the upper nibble contains the required (or actual
status), the lower nibble is zero except when an action routine requires an item to be redrawn.

If an item is "hit", or selected by keystroke, then, if the item is available, the status is changed.
If an item is hit by a "do" then, if the item is available, the status is set to selected. If an action
routine requires the status of any items to be redrawn, then the new status should be set in the
upper nibble, and the least significant bit set.

Status Normal Redraw

unavailable $10 $11
available $00 $01
selected $80 $81

QPTR The Pointer Environment 141

For each sub-window, there may be an optional pan or scroll and split control block for
horizontal and vertical control of a window.

This block starts with the number of pannable or scrollable sections, followed by a list of the
start and end row or column number of each section. As usual, the start row or column is
included in the section, the end row or column is excluded.

sub-window section control block header

wss_nsec $00 word number of sections

sub-window section control block record

wss_spos $00
Wss_sstt $02
WSS_SSiz $04
wss.ssln $06

word
word
word

section start pixel position

section start column or row

section size (number of columns or rows)
section status list entry length

If there is not a minimum size of ww.scarr for scroll arrows or ww.pnarr for pan arrows, they

are not drawn at all.

QPTR The Pointer Environment 142

Pointer Environment Changes

You are supplied with two versions of both the Pointer Interface and the Window Manager,
of different vintages. Those loaded by the BOOT file are the more recent versions, and have
more features than the old versions. The older versions are as shipped with QRAM v1.07, and
are thus typical ofthe versions used by the majority of owners of QRAM. Should you wish to
software for sale, you can either write for these older versions, accepting their restrictions, or for
the newer versions, in which case some existing users of the Pointer Environment will be unable
to use your software. A third option is to enter into a licensing agreement with QJUMP which
would allow you to include the upgraded version of the Pointer Environment with your software in
return for a suitable fee: as we intend the Pointer Environment to set a new standard for QL
software, such a fee is unlikely to be excessive (end of sordid commercial!).

The following lists summarise the changes in the Pointer Toolkit, the Pointer Interface and
the Window Manager.

Pointer Toolkit Changes

v0.01 Original released version.

v0.02 RD_PTR of window with no loose or menu items in allowed.
MK_LIL with exactly one sprite/blob/pattern type item now works.

v0.03 CH_WIN now returns size change correctly.
RD_PTR of window with more than one menu sub-window works
(used to return as if an error had occurred, with D0=0).

v0.04 MS_SPD doesn't smash memory.

v0.05 Timeout set in MS_SPD, MS_HOT.
CH_ITEM works for menu sub-windows.

v0.06 SWDEF doesn't reference address -4.
WREST added.

v0.07 Correct number of procs.

QPTR The Pointer Environment 143

Pointer Interface Changes

v1.06

v1.07

v1.08

v1.09

v1.10

v1.12
v1.13
v1.14
v1.15
v1.16
v1.17

v1.18

v1.19

v1.20
v1.21
v1.22
v1.23

v1.24
v1.25

Key debounce improved.

First internal mouse version.
Closing last window in particular mode now restores all windows in other mode.

Avoids problems with closing unused consoles (It used to be able to lose the keyboard queue.)
Improvements to screen restoration on window close.

Prevents channel 0 from being closed.

Mouse movement stuffs cursor keystrokes into keyboard queue.
SD.WDEF (WINDOW from SuperBASIC) now resets cursor position.
Multicolour patterns for blobs made usable.

"Top" secondary is now the most recent one, not the first one.

New TRAP IOP.FLIM, DO=$6C to find permissible limits for window.

New TRAPs IOP.SVPW/RSPW D0=$6D/6E to save/restore part windows.
IOP.RPXL now implemented: new spec. includes scanning.

FWIND now only detects managed secondaries of managed primaries.
IOP.OUTL can now move a secondary.

IOP.OUTL now deals with secondaries that fall outside a re-defined primary (now set to primary's hit area).

Odd shadow widths evened up.

IOP.SPTR now only sets new position, so it works properly.

Unmanaged secondaries now limited to managed primary outline, not whole screen.

IOP.PICK ignores lock. IOP.PICK allows keyboard queue to be grabbed, so cursor appears OK.
Hitting DO mouse button in keyboard window stuffs an ENTER.

Both buttons on mouse stuffs one or two character string.

Dropping blobs under sprite in MODE 8 fixed.

Dynamic sprites implemented.

Pattern outside sprite mask is now XORed into screen, not ORed.

Extending an unmanaged locked primary's outline by opening a larger secondary now works.

First PTR_GEN.

Move window on odd pixel boundary/odd width now permitted (MODE 4).
ESC while doing special RPTR now gets through (got lost in vw1.xx-1.13).
FWIND gets X size of sub-window correct, it was one too big

RPTR signals SCHED to make pointer visible.

First Atari ST Pointer Interface.

Patched to enable dropping of sprites and blobs which are larger than the pointer sprite.
Save areas now owned by the same job as the channel, with null driver.
Dummy CON is ROM CON, not current CON.

CTRL F5 during MODE now works (1)

RPIXL can now scan left/right for a given colour correctly.

Mode change between window open and use is now OK.

Other dummy channels diverted via our linkage block, so MODE doesn't spot them.
Cursor status cleared before MODE window redraws.

RPTR does not signal SCHED so much - see V1.16.

All PICKs now move pointer to primary centre, not just CTRL C.

Window and border changes clear scheduler flag.

Pick windowless JOB now OK on ATARI.

CKEYON and CKEYOFF added to control action of cursor keys.
WWA.KFLG added to window attributes for the same reason.

Type ahead enabled within a window.

Third attempt at Thor 1 version.

Keypress suppressed on window change.

Thor 1 version allows Thor patch to be used before loading Lightning.

Thor 1 version supports all three buttons on the Thor mouse.
Failure of DEL_DEFB introduced in Thor mods to v1.23 fixed.

v1.26 (internal)

Wake event generated when 'picking' with DO button or if required in IOP.PICK trap (D2=K.WAKE).

v1.27 (internal)

v1.28
v1.29

Wake events improved.
Keyboard queue of locked, busy or no window stripped.

Escape from window identify restored (problem in 1.27 only)
CTRL C spurious wake removed.

Problem with rapid "CTRL C"s removed (introduced in version 1.23).
HIT while moving restored (missing since V1.23)

QPTR The Pointer Environment

144

v1.30

v1.31

v1.32

V1.33

V1.34
V1.35

V1.36

V1.37
V1.38
V1.39
V1.40
V141
V1.42
V1.43
V1.44
V1.45
V1.46
V1.47

V1.48

V1.49
V1.50
V1.51
V1.52
V1.53
V1.54
V1.55
V1.56
V1.57

V1.58

PICK to center of top secondary.
Pointer movement slowed while disk etc busy.

Bad driver for save area corrected.
No wake-up on cursor key strokes.

Allocates enough room for a 64x48 pointer sprite.
Improvements to out of window keystrokes.

Improved dragging. Pointer movement restored from v1.30.
Checks for cursor overlap on RHS.

Pointer movement slowed again.
Cursor suppression algorithm improved.

Corrected a fault in the V1.35 cursor suppression algorithm.
Pointer limiting introduced for dragging.

Option to Freeze jobs on locking window.

Close removes Fill buffer. Both ENTER keys on ST cause DO.
IOP.RPXL removes pointer sprite.

Higher RES mode supported

Higher RES corrections

Sprite / Blob dropping problems introduced in V1.40 fixed.

Window area for non-well behaved windows can exceed 512x256.

Some changes to sprite suppression / appearance

More changes to sprite suppression / appearance
IOW.SSIZ accepts -1,-1 for no change in size (size enquiry)
Window Move $84 has invisible sprite

Partial save / restore corrected for non-QL screen sizes.
Dragging restored (V1.45) even when pointer is being reset

Sprite remove checks updated for wider screens.

Partial save/restore updated for monochrome mode.
Sprite suppression / appearance restored to old style.
Open CON (copyc) "out of memory" error recovery fixed.
Initialisation works even if no RTC.

Modification of Atari polling routine.

IOP.RPXL corrected for non QL screens.

IOP.SVPW memory allocation modified - should have no effect.

Corrections to V1.56 for QDOS. MODE improvements.

Corrections to V1.55.

QPTR The Pointer Environment

145

Window Manager Changes

V1.04
V1.05

V1.06

V1.07

V1.08

V1.09

V1.10

V111
V1.12

V1.13

V1.14

V1.15

V1.16

V1.17

V1.18

V1.19

V1.20

V1.21

V1.22

V1.23

V1.24

V1.25
V1.26

Vv1.27

V1.28
V1.29
V1.30

(int)

(int)

(int)

(int)

(int)

(int)

(int)

WM.DRBDR added.

Zero text pointers allowed, information blobs corrected.
CHWIN returns size change.

Initial pointer set rel hit area.

Fixed window sizes accepted by SETUP.

BREAK detected.

Pending newline problems in information windows removed.
Menu sub-window paper set before scrolling.

Lots of new routines.
SSCLR and ARROW made regular fmt.

CHWIN fixed for secondaries/cursor keys.

Non-cleared info windows allowed.
Vectors $48 to $74 added.

Setup correct number of columns > 3.
Set pointer position correctly in odd position application sub-window.

Returns user defined message if no PTR.
Fractional scaling bug fixed.

WM.MSECT extended to accept cursor keys, SPACE and ENTER in arrow rows.

DO/ENTER in arrow row of single item menu section made equivalent to HIT/SPACE.

Cosmetic improvements to menu and current item handling.
WM.DROBJ updated to draw sprites 1 to 7 in the right place.

Sleep and wake event keystrokes added to WM.RPTR.
Characters in the range $09 to $1f recognised in WM.RPTR.

Improved wake. Control codes less than 9 accepted.
WM.RNAME, WM.ENAME return terminator in D1 as it should.
Pan/scroll bars at last.

Pan/scroll arrows made optional, bars tidied up.

WM.SWAPP corrected for application windows >0.
Improvements to out of window keystrokes.

WM.CHWIN now allows cursor keys for pull down window moves - regardless of circumstances.

Out of window wake accepted again (went in 1.19).

DO anywhere in window accepted.

Constant Spacing in menus.

Repeated selection key handled.

Dragging on pan/scroll bars implemented.

Improvements to FSIZE for windows variable in two dims.

Further improvements to pan/scroll bars.

WM.STLOB status set OK.
WM.UPBAR added.

WM.SWLIT now sets cursor position using justification.
WM.RNAME WN.ENAME start from cursor position.

Pan/scroll bars with no sections cleared (V1.26, V1.27)
Sub-window select keystroke (-1 in D2) re-introduced.

Sub-window control routine called only on move or hit.
Window origin scaleable.

DRBAR can draw full length bar (V1.26-V1.29).
Event with no loose item accepted anywhere in window.

QPTR The Pointer Environment

146

V1.31

V1.32

V1.33

V1.34

V1.35

V1.36

V1.37

V1.38

V1.39

V1.40

V141

V1.42

V1.43

V1.44

V1.45

V1.46

V1.47

Underline nth character of text type -n.
WM.MHIT returns D4=0 if action or control routine called.

DO item action routine called on DO in window

Text position set before character size set (prevents spurious scroll.

Split cannot generate empty sections.

Character size only set if non-standard.
Requires 1.46 Pointer.

WDRAW corrected so as not to smash d5/d6 (error in 1.35).

Scaling of menu spacing.
Fixed menu spacing (first spacing negative) allowed in definition.

Minimum limit for window rounded up to 4 pixel boundary.
CHWIN does not smash D4 and D7 on move.

Underline permitted for text starting with spaces.

WM.RNAME WM.ENAME does not edit text longer than window.
Extended WM.RNAME WM.ENAME.

Set window resets character size to 0,0.

Pan and scroll bars corrected for border >1.

V1.44 corrected.

CSIZE reset when no info text item.

Corrects V1.46.

QPTR The Pointer Environment

147

Utilities

Two utility programs are provided: they are ordinary EXECutable programs which may be
started from SuperBASIC or Qram's FILES menu.

CVSCR

This utility converts a screen image file into a format suitable for loading into the PAINT
demonstration program. It requests an input filename, and checks that it is exactly 32k long, and
of an appropriate type (not executable). If the input file passes these tests, an output filename is
requested, into which the processed file will be written: if this already exists then you are asked
whether it is OK to overwrite it. Finally the program asks which screen mode the screen image
was in, there being no way to determine this from the file, and writes out the converted file.

The conversion process adds a 10-byte header onto the start of the screen image data,
consisting of a flag, X and Y sizes (in pixels), line length in bytes, and the mode flag.

STKINC

This utility is used to process SuperBASIC programs which use the Window Manager facilities
of the Pointer Toolkit, and have been compiled using v3.12 or earlier of the Q_Liberator compiler.
It is not required with v3.21 onwards - if you have this or a later version then you can compile and
run a program using the Window Manager in exactly the same way as any other. STKINC fixes
the problem caused by the Window Manager using more stack than Q_Liberator provides, by
increasing the provision. This modification needs to be done in the file header, the compiled code
and the run-time system, so the run-time system must have been included in the object file. One
filename is requested, and the file is converted in place as no size change is involved. The
program will usually notice if the file is not a Q_Liberated object file including the run-time
system, and complain.

QPTR The Pointer Environment 148

FIXPF

This utility takes the form of a SuperBASIC procedure, and may be used to restore the ROM
version of any built-in procedure or function. If required, it should be loaded into the resident
procedure area by your BOOT file, as described on page 5.

FIXPF should never be needed! Unfortunately some packages "fix bugs in" or "improve on"
the way SuperBASIC works by re-defining existing ROM routines, and in the process cause more
problems than they cure. An example is the way the RESPR function can be re-defined to
allocate space in the common heap, which "avoids the problem" of not being allowed to reserve
more space in the resident procedure area once jobs are running. It is also very dangerous, as
the heap space could be returned and re-used, resulting in a crash when procedures which were
in that space are called. We have also seen examples of RESPR being re-defined within a
program: when that program goes away, taking the new RESPR with it, you get problems.

You can even use FIXPF on SuperToolkit commands if you like! If you find that the "improved"
versions of SAVE and LOAD keep using the defaults to save or load from the wrong device, you
could FIXPF them so they need an exact filename, as before. This would also get rid of the "File
already exists - OK to overwrite?" message.

The syntax of the procedure is:

FIXPF 'name'

The quotation marks are required, as you can't use procedures as parameters. The procedure
or function name should be an original QL ROM routine. You can FIXPF a routine as often as
you like without causing problems.

Known candidates for being FIXPFed are any re-defined versions of RESPR, and the
SPEEDSCREEN version of MODE when the Pointer Interface is installed. The Pointer Interface
takes care of all MODE calls, not just SuperBASIC ones as SPEEDSCREEN does, so the new
version of MODE is unnecessary: in fact it can be dangerous - we have seen "total lockups"
resulting from trying to pop up QRAM after the SPEEDSCREEN MODE has been used. This
problem may be cured in future versions.

QPTR The Pointer Environment 149

Troubleshooting

You may encounter problems with the Pointer Toolkit: the following list is by no means
exhaustive, but covers some of the most likely causes of error.

My program (or one of the demos) worked OK yesterday, but it doesn't work today. This is
usually caused by changing your BOOT file, or some other aspect of your system not directly
connected with the program itself. In particular, you must set SuperBASIC's outline with an
OUTLN #0... call to use all but the simplest parts of the Toolkit: if you don't, then the Pointer
Interface will assume that SuperBASIC is "unmanaged", and not bother to check for
sub-windows, user-defined pointers and so on.

My program never returns from a "read pointer" call. You can only use a "managed" window
for pointer input: if you use an unmanaged window then the pointer always seems to be outside
it. A window can be made managed by a call to OUTLN or DR_PPOS from SuperBASIC, or to
the IOP.OUTL TRAP or WM.PRPQOS vector in machine code.

| don't get my special sprite, just the arrow. User-defined sprites appear in sub-windows as a
result of a call to SWDEF or IOP.SWDF to set up the appropriate data structure. Sub-windows
will be ignored if their "parent" window or its primary (or both) are "unmanaged". They will also be
ignored if there is a gap in the sub-window list, as the list is terminated by a zero pointer so a
zero in the middle of the list is interpreted as an end of list marker.

My program works when interpreted, but not when it's compiled. SuperBASIC programs using
the Pointer Toolkit can't be compiled with the Super/Turbocharge compilers, as they can't cope
with array parameters or results returned in the parameter list. If compiled with Q_Liberator then
you will have problems if you have used Window Manager routines but have not used the
STKINC utility on the resulting program. The program will not work if its outline has not been set:
see above.

My compiled program starts off OK but then it crashes. This is usually caused by not using the
STKINC utility where appropriate: it can also happen if you haven't specified enough heap, stack
or buffer space for the program.

My machine code program crashes in the Window Manager. This is very often caused by an
incorrect window definition, which causes the setup routine WM.SETUP to use more space, when
creating the working definition, than was anticipated. If this space is in the common heap then the
following heap header will be corrupted, resulting in a system crash instantly or half an hour later,
depending.

One or more of the items doesnt get selected on its keystroke.
When specifying a keystroke to select a menu item, remember that the character must be
specified in upper case, although it doesn't matter if the key pressed is upper or lower case.
Remember also that event keys such as HELP, CANCEL and so on are translated to have very
low key values such as 4, 3 and so on.

| get an "out of range" error on a WINDOW command that worked before. Managed secondary
windows, which are needed for most of the examples, may not be positioned, by a call to either
OUTLN or WINDOW, outside the outline of their primary window. The examples provided in
QPTR assume the use of the BOOT file provided, which sets the SuperBASIC's outline to the
whole screen - if you use a different BOOT file setting another outline then they may stop
working.

QPTR The Pointer Environment 150

CONFIG

Configuration Information Specification

Many programs have the facility to configure themselves to set default working parameters.
More usually the configuration is done by a separate program which modifies the working
program file. Each program will have a different configuration program, and often different
versions of the same program will have different configuration programs too. All this makes things
very difficult for users.

It is proposed that a standard configuration system is used on all new programs and all new
releases of existing programs. If this is done, a single configuration program can be used on any
application software file even even when several application files are concatenated.

The advantages of this approach are obvious. There are two disadvantages. The first is that
each program has to carry with it all the configuration information: this will make it larger. The
second is that there is no simple means for doing this with compiled BASIC programs. The first
will not usually be a problem as it seems unlikely that a 32k program would have more than about
20 configurable items and their associated descriptions, this would add at most 3% to the pro-
gram size. The second can be overcome with a little will.

There are two parts to this system: the first is a standard for the format of a configurable file,
the second is a program to process files. There can be any number of programs to process files,
from any number of suppliers. If the standards for the configurable file are adhered to, then any
supplier's configuration program can be used on any (other) supplier's software.

The configuration consists of the following information:

Configuration 1D
Configuration level
Software name
Software version
List of
Type of item (string, integer etc.) (byte)
Item Selection keystroke (byte)
Pointer to item
Pointer to item pre-processing routine
Pointer to item post-processing routine
Pointer to description of item
Pointer to attributes of item (item type dependent)
End word (value -1)

As time goes by, additional types of item are likely to be added. This will mean that new
versions of the configuration program will be required. These new versions will, of course, be able
to configure all lower level configurable files. But, if a old configuration program is used, and the
level specified in the configuration block is greater than the level supported by the configuration
program, it will have to give up gracefully.

The configuration ID is word aligned and is the eight characters "<<QCFX>>", this is followed
by two ASCII characters giving the configuration level (minimum "01"). The software name is a
standard string and is followed by a word aligned version identification in a standard string (e.g.
"1.13a"). The word aligned list of items follows.

Types of item

QPTR The Pointer Environment 151

Level 01 supports 7 types of item. These are: string, character, code selection, code, byte,
word and long word. Application specific types of item can be processed by treating them as
strings which are handled entirely by an application supplied routine.

String (type=0)

The form of a configurable string is a word giving the maximum string length, followed by a
standard string. There should be enough room within the application program for the maximum
length string plus one character for a terminator. There is a single word of attributes with bits set
to determine special characteristics.

bit 0 do not strip spaces

Character (type=2)

A character is a single byte, if it is a control character, it will be written out as a two character
string (e.g. “A = $01). There is a single word of attributes with bits set to determine the possible
characters allowed.

bit 0 non printable characters

bit 1 digits

bit 2 lower case letters

bit 3 upper case letters

bit 4 other printable characters

bit 6 cursor characters

bit 8 control chars + $40, translated to control chars

Bit 8 is, of course, mutually exclusive with bits 0 to 7, although this is not checked. The
configuration block in an application program must be correct.

Code (type=4)

A code is a single byte which may take a small number of values. The attributes is a list of
codes giving a byte with the value, a byte with the selection keystroke and a standard string. The
list is terminated with an end word (value -1). There are two forms. In the first, the selection
keystrokes are set to zero. In this case, when a code is selected, the value will step through all
possible values. This is best suited to items which can only have two or three possible codes.
Otherwise the user may select any one of the possible codes, either from a list (interactive
configuration programs) or from a pull down menu (menu driven configuration programs).

Selection (type=6)

A selection is in the same form as a code, but instead of a byte being set to the selected
value, the value is treated as an index to a list of status bytes. When one is selected, it is set to
wsi.slct ($80), the previous selection (if different) is set to wsi..avbl (zero). If any status bytes are
unavailable (set to wsi.unav=$10), then they will be ignored. The first status byte in the list must

not be unavailable.

Values (types 8,10,12)

QPTR The Pointer Environment 152

Largely self explanatory. The attributes are the minimum and maximum values. All values are
treated as unsigned.

Item Selection Keystroke

The item selection keystroke is an uppercased keystroke which will select the item in the main
menu. The action of selecting the item will depend on the item type. For a code or select item a
pull-down window may be opened to enable the user to select the appropriate code. For
character item, a single keystroke will be expected. for all other types of item, the item will be
made available for editing. For interactive configuration programs, the selection keystroke has no
meaning.

Pointer to Item

The pointer to item, and all the other pointers in the definition, are relative addresses stored in
a word (e.g. dc.w item-*).

QPTR The Pointer Environment 153

Pointer to Item Pre-Processing Routine

It is possible to provide a pre-processing routine within the main program which will be called
before an item is presented for changing. This will be when the item is selected in a menu confi-
guration program, or before the prompt is written in an interactive configuration program. If there
is no pre-processing routine, the pointer should be zero. The amount of pre-processing that
application program can do is not limited. It could just set ranges, or it could do the complete
configuration operation itself, including pulling down windows.

Pre-processing Routine

Call parameters

D7 0/ Window Manager vector

A0 pointer to item

Al pointer to description
A2 pointer to attributes

A3 pointer to 4 kbyte space

Error returns: set as DO
>0 item set, do not prompt or change
=0 ok
<0 error

Return parameters

DO item set/ error
D1+ scratch
D7 scratch

A0 scratch

Al (new) ptr to description
A2 (new) ptr to attributes
A3 scratch

A4+ scratch

The space pointed to by A3 is not used by the configuration program and can be used by the

application code. Initially it is clear. The application code may use up to 512 bytes of stack.

If DO (and the status) is returned <0, then the Configuration program will write out an error

message and stop.

QPTR The Pointer Environment

154

Pointer to Item Post-Processing Routine
It is possible to provide a post-processing routine within the main program which will be called

for each item before configuration starts, and for each item after any item is changed. It can be
used to set limits or other dependencies.

Post-processing Routine
Call parameters Return parameters

DO item set/ error

D1.b set this item jsut changed D1.b item status (avbl/unav)
D2+ scratch

D7 0/ Window Manager vector D7 scratch

A0 pointer to item A0 scratch

Al pointer to description Al (new) ptr to description

A2 pointer to attributes A2 (new) ptr to attributes

A3 pointer to 4 kbyte space A3 scratch

A4+ scratch

Error returns: set as DO
>0 bit O item reset
bit 1 description reset
bit 2 attributes reset
=0 ok
<0 error

The space pointed to by A3 is not used by the configuration program and can be used by the
application code. Initially it is clear. The application code may use up to 512 bytes of stack. If an
item description is changed, it should occupy the same number of lines as the original.

The returned values for D1 are WSI.AVBL ($00) if the item can be changed or WSI.UNAV
($10) if the item is not available for changing.

If DO and the status are <0, Al and A2 and the item status will not be updated, the error
messsage will be written out, no further postprocessing routines will be called, and (for an
interactive Configuration program) the item just set will be re-presented.

A post-processing routine can also be used to set up initial descriptions and attributes.

Description of Item

The description of an item is in the form of a string. Each description can have several lines,
separated by newline characters. Each line should be no longer than 64 characters, except the
last line must allow space for the longest item. Interactive programs may append a list of states
or selections to the description.

Pointer to attributes

The attributes are item dependent. See item types for descriptions.

QPTR The Pointer Environment 155

Latest improvements

Additional information on WM.ERSTR
This manual did not mention that there is a limit on the length of own error messages. An own
error messages is easy to create:

LEA own_msg,A0 ; get address
MOVE.LAO0,DO ; into our "error" register
BSET #31,D0 ; an error is negative

Now the limit: the length of the string is limited to 40 ($28) characters. If it is longer, "unknown
error" is returned instead!

Additional information on WM.LDRAW
WM.LDRAW clears the change bit in the status are of every item which is selectively redrawn.

Additions to the CONFIG standard

The attributes for strings have been extended, to allow menu-driven CONFIG programs better
options for a selection, depending on the type. There are two additional bits used in the string
attributes: 8 and 9. These define the type of string, so that the CONFIG program can treat these
strings in a special way. The possible combinations are:

cfs.sspc equ %0000000000000001 string strip spaces

cfs.file equ %0000000100000000 string is filename
cfs.dir equ %0000001000000000 string is directory
cfs.ext equ %0000001100000000 string is extension

At present, these features are supported by the new MenuConfig, and ignored by the standard
config.

Undocumented SuperBASIC Procedure
SPTR has never been documented. Easy to guess, it does the same as IOP.SPTR, i.e. moves
the pointer to a given position. The syntax is:

SPTR [#channel], xpos, ypos [,key]

Option Default Meaning
Xpos, ypos none new pointer position
key -1 origin key

The origin key should be zero if the pointer coordinates are absolute. A key of -1 will set the
position relative to the current window definition. A key of 1 will set it relative to the hit area.

Undocumented selection keystroke for SuperBASIC

It is possible to put an underscore under a selection key for text loose menu items and text
info items. To do this, specify the type to be text minus twice the underscore position. This
means, to underscore the first character, give 0-2 (=-2), to underscore the fifth position give -10
etc.

QPTR The Pointer Environment 156

