QL- Technical
Guide

by Tony Tebby and David Karlin

Edited by Michele Wright

First published in 1985
Sinclair Research Ltd
25 Willis Road, Cambridge CB1 2AQ, England

ISBN 1 850160368

Documentation and packaging © Sinclair Research Ltd

==ir1—I=3ir— logo, QL and QL Technical Guide are
Registered Trade Marks of Sinclair Research Ltd.

All rights reserved. No part of this program, documentation or packaging
may be reproduced in any form. Unauthorized copying, hiring, lending or
sale and repurchase prohibited.

Made in the UK.

cContents

1.0

2.0

2.1

2.2
2.3
2.4

3.0

3.1
3.2
3.3
3.4

4.0
4.1

5.0
5.1
52
5.3

6.0
6.1
6.2
6.3
6.4

7.0
7.1

7.2
7.3

8.0

About this Guide

Introduction to Qdos

Memory Map

Calling Qdos Routines
Exception Processing
Start-up

Machine Code Programming on the QL

Jobs

SuperBASIC Procedures and Functions

Tasks
Operating System Extensions

Memory Allocation
Heap Mechanism

Input/Output on the QL
Serial I/0
File I/0O
Screen and Console I/O

Qdos Device Drivers
Device Driver Memory Allocation
Device Driver Initialisation
Physical Layer
The Access Layer

Directory Device Drivers
Initialisation of a Directory Driver

Access Layer
Slaving

Built-in Device Drivers

10
14
16

17

17
20
21
21

22
23

24
25
26
27

31
32
32
33
34

38
39

40
44

46

Contents continued

9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11.0
111
11.2
11.3
11.4

12.0
12.1
12.2
12.3
12.4

13.0
14.0

15.0

Interfacing to SuperBASIC
Memory Organisation within the SuperBASIC Area
The Name Table
Name List
Variable Values Area
Storage Formats
Code Restrictions
Linking in New Procedures and Functions
Parameter Passing
Getting the Values of Actual Parameters
The Arithmetic Stack Returned Values
The Channel Table

Hardware-related Programming
Memory Map
Display Control
Display Control Register
Keyboard and Sound Control
Serial I/0
Real-time Clock
Network
Microdrives

Adding Peripheral Cards to the QL
Expansion Connector
CPU Interface
Peripheral Card Addressing
Add-on Card ROMs
Non-English QLS
Video
Non-English-language Keyboards

Character Set
Special Alphabets

Manager Traps
I1/0 Management Traps

I/O Traps

a7
47
48
49
49
50
52
52
52
53
54
55

56
56
57
58
58
59
59
59
60

63
63
64
65
66

67
67
68
69
69
93

98

16.0
17.0

18.0
18.1
18.2
18.3
18.4
18.5
18.6

18.7

18.8
18.9
18.10

18.11
18.12
18.13
18.14

18.15
19.0
19.1
19.2
19.3
19.4

19.5
19.6

20.0

Vectored Routines
Qdos System Standards

Qdos Keys
Error Keys
System Variables
SuperBASIC Variables
Offsets On BASIC Channel Definitions
Job Header And Save Area Definitions
Memory Block Table Definitions
Channel Definitions
File System Definition Blocks
Screen Driver Data Block Definition
Queue Header Definitions

Arithmetic Interpreter Operation Codes

IPC Link Commands
Hardware Keys
Trap Keys

List Of Vectored Routines

Doing Business with Sinclair

How To Offer A Product To Sinclair
Where Software Products

Should Be Sent For Review
How Products Are Reviewed

And What Sinclair Are Looking For
Contractual Options

In Dealing With Sinclair Research
Promotion And Distribution
Summary

Bibliography

134
157

158
158
159
161
164
164
166
166
168
169
170
170
171
171
173

176

178
179

180

181

182
184
185

186

1.0 About this Guide

This guide describes the methods which may be used for machine code
programming on the QL. Its contents are also relevant to compiler

writers who must implement a run-time library for other languages. This
guide describes only those techniques which are specific to the QL. It does
not contain a general description of 68000 or 68008 assembly language
programming: this information can be obtained from a number of different
sources, details of which may be found in the bibliography. It is, therefore,
strongly recommended that a reference book describing 68000
assembly language be consulted before attempting to understand this
guide.

The guide also gives details of how various peripherals such as hard

disk interfaces, add-on memory and ROM cartridges may be added on to the
QL, with many details about how the firmware for such devices should be
written.

Readers may notice that there are no circuit diagrams or detailed
explanations of the QL's internal hardware structure in this manual.
This is because it is not necessary to have such information in order to
write software for the QL. We have tried in the design of Qdos to

provide you with a stable interface to the machine through its operating
system; everything you need is there and so long as you build your
products using the interface provided there is no danger that any future
upgrade of the QL will introduce an incompatibility with existing software
products. We will, in short, continue to support all of the system routines
documented in this guide, but specifically reserve the right to change the
QL's hardware or firmware in any other way we think fit. Provision of
circuit diagrams and the like would, apart from endangering the safety of
our design patterns, be giving you a route to build products that rely on
nonsupported elements in the QL's design.

The commercial section of this guide sets out the various options

offered by Sinclair Research for the distribution of QL Software. Its aim is to
give you an idea of the way in which we work and the likely

channels through which a potential product would pass before it is
accepted for publication and offered for sale to our customers. The

section also gives information on the purchase and duplication of
Microdrive cartridges.

Finally, should you feel that anything essential is missing from this manual
we would be very grateful if you would write and tell us. The address to write
tois:

Software Publishing Department
(Technical Manual)

Sinclair Research Limited
25 Willis Road

Cambridge CB1 2AQ

2.0 Introduction to Qdos

Qdos is the QL operating system. It is a single-user multi-tasking
operating system: that is, it provides the means for several independent
programs to run concurrently in the QL, but does not provide any
mechanisms to prevent those programs from interfering with each other.
Qdos can be thought of as a collection of several things:

1. A set of useful routines for performing functions such as memory
allocation, Input/Output, etc.

2. A mechanism for maintaining lists of things to be done on interrupt,
including the function of allocating slots of CPU time to programs which
require them.

3. A mechanism for starting up the computer, and determining the
configuration of any add-on hardware that is connected to it.

The Qdos mechanisms for start-up are described in section 2.4. Once
start-up has been performed, Qdos does not "run" in the sense that traditional
operating systems run: its pieces of code and data structures simply exist for
programs to use. There is no Qdos "main program" that maintains continuous
control of the machine: the SuperBASIC interpreter, which takes the place of
the command interpreter found in traditional operating systems, is simply a
program which runs on the QL and uses Qdos's facilities, albeit with a number
of special provisions. It is possible, and indeed commonly done, to destroy the
SuperBASIC interpreter completely, and yet still use all the facilities of the
operating system.

Note that in this guide, hex numbers are preceded by a dollar sign ($)
as used in the Motorola assembly language format.

2.1 Memory Map

This section describes how Qdos maintains its RAM area. In the QL, the RAM
starts with the screen RAM at address $20000, and the area available to
Qdos starts at $28000. In an unexpanded QL, the RAM finishes at $3FFFF,
whilst in a QL with expansion memory, the RAM may go up as far as $BFFFF.
The Qdos initialisation routine determines the amount of RAM present and
adjusts the position of its pointers accordingly.

The memory map is as follows:

SV_RAMT Resident procedure area
SV_RESPR

SV_TRNSP Transient program area
SV_BASIC SuperBASIC area
SV_FREE

Free memory area (used up
for slave blocks by the filing
system)

SV_HEAP Common heap area

System management

tables

System variables Base of system
variables

Display RAM Base of RAM

2.1.1 Principles-

There is no memory management hardware in the QL. This means that all
code must execute from fixed addresses in physical memory, and

that a piece of code may not be moved after it has been loaded into

memory. For this reason, memory is usually allocated in fixed size areas which
remain in a fixed location until deleted. The SuperBASIC area is an important
exception to this.

2.1.2 System Variables -

The Qdos system variables are a block of memory containing information
required by the operating system.

This block is normally located at address $28000, but is not fixed at this
address in principle. Applications programs should not rely on that

fixed address, but should get the address of the base of system
variables by calling the MT.INF trap (see section 13.0).

Some of the system variables can usefully be monitored by applications
programs, and some of them can safely be altered. A complete list of the
system variables, each with its size and offset from the base of system
variables, is given in section 18.2.

Included in the system variables area are a set of longword pointers
indicating the locations of the other areas in the memory map.

2.1.3 System Management Tables-

Immediately above the system variables are various tables used by Qdos
to maintain the list of jobs and various other pieces of information. The
supervisor stack also resides in this area.

2.1.4 Common Heap Area-

The common heap area contains the channel definitions which are maintained
by the 1/0O sub-system, together with the working storage) required by the /0
drivers or programs. The allocation of space in this area is carried out either by
device drivers, when invoked, or directly by jobs. There are two traps provided
to allocate and release space in this area: MT.ALCHP and MT.RECHP (see
Section 13.0). The heap allocations of a job are automaticallyreleased when
the job is removed.

The common heap is an example of the use of a general heap mechanism
provided by Qdos, which operates in the way described in the entry for
MT.ALLOC in section 13.0.

The user code needs to retain one pointer to the free space in the heap. This is
a long word and is a relative pointer to the free space in the heap. When the
heap has no free space, either because it does not exist, or because it is full,
this pointer is zero.

2.1.5 Free Memory Area-

The free memory area is used by Qdos as a buffer memory for the
Microdrives, or, if Qdos is suitably extended, for other filing system devices.
The area is structured as a collection of slave blocks, that is,

blocks which are associated with a physical block on a medium. When
memory is allocated in another area which would encroach on the free
memory area, Qdos must remove one or more slave blocks. Before such a
removal takes place, Qdos ensures that a true copy of the information is
present on the medium.

Whilst the common heap grows upwards into the free memory area, the areas
above it grow downwards into it. As there are three areas above it (the
resident procedure area, the transient program area and the SuperBASIC
area), special provisions are made so that all three can grow at the
appropriate times.

2.1.6 SuperBASIC area-

The SuperBASIC interpreter owns a special area located immediately above the
free memory area: this area is used for all the interpreter's storage requirements
such as the SuperBASIC program, its variables, its table of I/O channels and
the interpreter's working storage. This area is noteworthyin that it can be moved
by Qdos without the knowledge of the SuperBASIC interpreter if an area above
it needs to grow, or if the SuperBASIC area itself needs to shrink. Its size may
also be altered. The mechanism which makes such movement or alteration in
size possible operates as follows.

All references to the SuperBASIC area are made relative to the address
register A6, and the value of A6 on entry to the interpreter is adjusted by Qdos
to the current base of the SuperBASIC area (which is held in the system
variable SV_BASIC), offset by the length of the interpreter's job header
(currently $68 bytes).

The SuperBASIC interpreter divides its working area into several portions,
details of which may be found by looking at the BV definitions in section 18.3.
All of the pointers to these various portions are also relative to A6.

2.1.7 Transient Program Area-

The transient program area is the area of memory into which the user's
applications programs are loaded. Each job is allocated a block of

memory in the transient program area, which it keeps until it is deleted:

this area is used for the job's code, data and stack. Programs loaded in this
way are not normally re-entrant, but it is relatively straightforward

to use the mechanisms in the system to set up a single piece of code which
is shared by several different jobs with different data areas.

There is no safe way of determining a priority where a program will be
loaded, therefore programs are normally position independent (see section
3.1 on jobs).

2.1.8 Resident Procedure Area-

Memory allocated in this area is unavailable to the operating system. The
system knows only two things about the resident procedure area: how to
allocate memory in it, and how to release it completely. Both of these
operations can only be carried out when there are no transient programs in the
machine, due to the fact that the transient program area cannot be moved.
Normally, the allocation is done immediately after start-up, and deallocation is
never performed.)

The area is normally used to load in machine code procedures and functions
written to extend the SuperBASIC language (see section 9.7), and occasionally
for loading in the code of device drivers when these are not located in ROM in
an add-on device.

2.2 Calling Qdos Routines

There are two categories of Qdos routines available to the user: traps and
vectored routines. The mechanism for calling a routine is different for each of
these two categories.

2.2.1 Traps-

Traps are called using the 68008 TRAP #n instruction: on the QL, this has the
effect of a subroutine call to a defined location which has the side effect of
saving the status register and entering supervisor mode.

10

Of the sixteen trap numbers available on the 68008, numbers 0 to 4 inclusive are
defined for use by Qdos, the remainder being free for the user to redirect to his own
routines. Roughly speaking, the traps are utilised as follows:

TRAP #0 Special trap for entering supervisor mode

TRAP #1 Manager traps - routines which perform overall control
of the QL hardware and of the operating system's
resources

TRAP #2 Input/Output management traps (I/O traps which
allocate resources)

TRAP #3 Input/Output traps which do not allocate resources
TRAP #4 Special trap for the SuperBASIC interpreter.

Traps are called by setting up any required parameters in registers A0-A3 and
D1-D3, setting up the code for the required trap in DO (usually with a MOVEQ
instruction), then executing the TRAP instruction. Trap routines do not affect D4
to D7 or A4 to A6. There are, however, a few defined cases which are
exceptions to this.

When the TRAP operation is complete, control is returned to the program at the
location following the TRAP instruction, with an error key in all 32 bits of DO. This
key is set to zero if the operation has been completed successfully, and is set to a
negative number for any of the system-defined errors (see section 17.1 for a list of
the meanings of the possible error codes). The key may also be set to a positive
number, in which case that number is a pointer to an error string, relative to address
$8000. The string is in the usual Qdos form of a word giving the length of the string,
followed by the characters.

Note that all traps can return the error code ERR.BP (for bad parameter).
Note also that the condition codes may not be set according to the error code
on return from a trap, thus a program wishing to detect an error should
execute a TST.L DO instruction immediately after the TRAP instruction.

Details of all the Qdos traps are given in sections 13.0-15.0.

11

2.2.2 Vectored Routines-

In addition to the routines accessed by traps, there are several utility
routines which are available to the applications program: their
addresses are held in a vector table which is located in the ROM
starting at address $CO. A vectored routine can be accessed by the
following code:

MOVE . W VECTOR ADDRESS, An
JSR (An)

where VECTOR ADDRESS is the address of the vector table entry, and An
is a suitable address register which is not required by the particular
routine on entry.

There are some exceptions to this technique: for some vectored
routines, the code is:

MOVE . W VECTOR ADDRESS, An
JSR $4000 (An)

The entries in section 16.0 for vectored routines which require this
treatment are suitably marked.

There are no general rules covering the handling of errors in vectored
routines. Some routines return an error code in DO in the same way as traps,
but others use the technique of returning to one of a set of alternative return
addresses. An example is the vectored routine

MD.SECTR, which returns to the location after the call if there is a "bad
medium" error detected, to the address 2 bytes later if there is a "bad sector
header" error detected, and to the address 4 bytes later for a correct
completion. Thus the correct code to trap these errors would be:

MOVE . W VECTOR_ADDRESS, An
JSR $4000 (An)

BRA.S BAD MEDIUM ERROR
BRA.S BAD SECTOR ERROR

* Code for processing a correct return starts here

12

BAD_MEDIUM ERROR
* Code for processing a bad medium error starts here

BAD_SECTOR_ERROR
* Code for processing a bad sector error starts here

Obviously, a similar mechanism can be used with any number of error returns
(including zero or one).

Complete details of the vectored routines are given in section 16.0,
including information about the behaviour of each routine when an error
occurs.

2.2.3 Atomic Actions-

In general, system calls are treated as atomic: while one job is in

supervisor mode, no other job in the system can take over the

processor. This provides for resource table protection without the need for
complex procedures using semaphores. If ajob needs to execute some action
other than a single system call into which no other job must be allowed to
intervene, it should enter supervisor mode before entering the code which
performs this action. Supervisor mode is entered using TRAP #0. The stack
pointer only is changed by this trap.

A job should only use 64 bytes on the supervisor stack, and all of the space
used on this stack must be released before exiting supervisor mode. In
general, there should be nothing on the supervisor stack when a manager
trap is made.

Some system calls are only partially atomic, that is, when they have
completed their primary function, some other job may gain a share of CPU
time before control returns to the calling job. These partially atomic system
calls must not be made from a job in supervisor mode. All of the scheduler
calls (ie, TRAP #1 with D0=4, 5, 8, 9, $A, $8) fall into this category, as do all
the I/O calls (TRAP #3), unless immediate return (timeout<>0) is specified.

13

A piece of code in supervisor mode can be interrupted by the frame (50/60
Hz) or external interrupts, so care must be taken, when writing interrupt
servers, that the system's internal data structure is not modified, directly or
indirectly, by system calls. In practice, since interrupt servers tend only to be
moving data into or out of queues, this is not a serious limitation.

2.3 Exception Processing

There are three categories of exception traps on the 68008: user traps, traps
for software error conditions, and traps for hardware interrupts. There is also
one special hardware trap called "bus error', which can be used to trap bad

conditions on the address bus: this trap is not supported by the QL hardware.

User traps 0 to 4 inclusive are treated as defined in sections 13.0
through 15.0.

User traps 5 to 15 inclusive, together with the software error traps for "address
error”, "illegal instruction”, "divide by zero", "check array", "trap on overflow",
"privilege violation" and "trace" are redirectable by the user on a per-job basis:

see the entry for MT.TRAPV in section 13.0.

Traps and exception vectors which are not used by Qdos may be redirected
through a table which is set up by a particular job.

If a job has set up a table of trap vectors for itself, then that table will
automatically be used when that particular job is being executed. The
vector tables used by other jobs will not be affected. A job set up by, even if
not owned by, a job which has set up a table of trap vectors, will use the
same table as that job, until it is redefined.

If the job ID is a negative word, then the table will be set up for the calling
job.

14

The table is in the form of a long word address for each trap or
exception. They are in the following order:

$00 address error
$04 illegal instruction
$08 zero divide

$0C CHK

$10 TRAPV

$14 privilege violation
$18 trace

$1C interrupt level 7
$20 trap #5

$24 trap #6
$28 trap #7
$2C trap #8
$30 trap #9

$34 trap #10
$38 trap #11
$3C trap #12
$40 trap #13
$44 trap #14
$48 trap #15
$4C end of table

All interrupts on the QL are auto-vectored, therefore there is no treatment of
the 68008 vectored interrupt traps. Interrupts generated by the QL internally
are level 2 auto-vectors: the interrupt handling mechanism includes the
facility for detecting an interrupt on the EXTINTL (external interrupt, active
low) line in the QL's expansion port. (See section 11.1 for details of the
interface to the relevant hardware.)

It is also possible to generate a level 7 (hon-maskable) interrupt: the treatment
of this can also be redirected on a per-job basis. Pressing CTRL-ALT-7 on the
keyboard generates a level 7 interrupt and also resets all communications with
the IPC: a suitable interrupt handler could be written to perform a warm start
on the system to allow partial recovery from a crash.

15

2.4 Start-up

The first thing that Qdos does when the system is reset is to execute a

RAM test. This test determines the amount of contiguous RAM present, and if there is
any RAM failure, hangs up the machine.

Qdos then initialises the system variables, the system management tables, and the
SuperBASIC area.

The address $COO0O is then checked by Qdos for the characteristic longword
$4AFBO0001: if this is found, Qdos links in the SuperBASIC procedures contained in
the ROM, prints out the name of the ROM, and performs a JSR to its initialisation
point (details of the correct format of the ROM are found in section 8.0 on ROM
device drivers). It is perfectly in order for the code in this ROM to take over the
machine completely and never return to the system, for example if another
operating system were being booted.

Qdos then does the same for the other ROMs in the expansion slots.

If all of these ROMSs return control to Qdos, the next action is to try to open a
device driver "BOOT": if this is found, its contents are loaded as a SuperBASIC
program and executed. If no device driver "BOOT" has been linked in, Qdos
attempts to find a file "MDV1_BOOT" and load and execute its contents as a
SuperBASIC program. If both of these attempts fail, Qdos starts up the
SuperBASIC interpreter with an empty program memory.

16

3.0 Machine Code Programming
on the QL

Four types of machine code are available to program the QL, each being
used to perform quite different operations: jobs, SuperBASIC procedures and
functions, tasks, and the operating system or extensions to it. Thus there are
several differences in both the form in which they are written, and the way in
which they are treated by Qdos.

3.1 Jobs

Most application programs written in machine code or compiled code will be
in the form of jobs. A job is an entity which has a share of machine resources:
it has a priority which allows it to claim time-slots of CPU activity, and it has a
fixed-size area of memory where data and code can be stored: code normally
starts at the bottom of the area, and data at the top. This area is located
somewhere in the transient program area.

Note that the command interpreter is itself a job but with the exceptional
characteristic that its data area is expandable.

A job also has the ability to own 1/O channels or other jobs. There is no
protection between jobs under Qdos, so that channels are available for use by
all jobs. Ownership simply implies that when the owner of a channel or job is
deleted, the owned channel or job is deleted also (this process continues
recursively).

Jobs have three well-defined states: they are active, sharing CPU resources
with other jobs; suspended, for example, waiting for I/O or another job; or
inactive, occupying memory but not capable of using CPU resources.

The priority of a job can be zero, in which case it is suspended, and does not
consume CPU time. It can in fact be suspended for its entire lifetime and
never execute at all, which would be the case if it was simply used as a
means of obtaining some memory into which data could be loaded. A job at
any other priority level is active.

17

When a job is started, two parts of its area of memory have defined
meanings: the bottom of the code area, and the stack, which is at the top of
the data area. It is the programmer's responsibility to set up the

bottom of the code area, which should be in the following form for use

by Qdos utilities:

JMP.L JOB START

DC.IN $4AFB

DC.IN JOB_NAME LENGTH
DC.IN 'Nameofjob'
JOB_START

* Code begins execution here (assuming that the start address
defined when the job was created was zero)

On the first occasion that a job is activated, (A6) points to the base of the job
area, (A6,A4) points to the bottom of the data space, and (A6,A5) points to
the top of the job area. There may be some information on the stack, which
will be in the following form: (A7) points to the number of channels which
have been opened for the jobbefore it was activated; above this is a
sequence of longwords holding the channel IDs, and above these are a
command string which may have been passed to the job. It is the
programmer's responsibility when starting a job to set up this information: the
SuperBASIC EXEC, EXEC_W commands and any utilities produced by
Sinclair are compatible with this form.

(AB,A5) Command string

Channel ID
Channel ID

Channel ID
(A7) Number of Channel IDs

(A6,A4) Data area

Code area

Job name
$4AFB
(AB) JMP.L JOB_START

18

Note that the normal sequence in Qdos is as follows:

1. reserve space for a job;
2. load its code in;

3. open its channels;

4. activate it.

Execution begins at an address specified when the job was created.
This is normally specified as zero, which is why the first thing in a job is
normally a JMP.L instruction to the entrypoint of the code.

Since Qdos cannot give guarantees as to where a job will be loaded, it is
usual to write jobs as position-independent code, although it is possible to
avoid this constraint if a special relocating loader is used after the space for
the job has been allocated.

The system job table holds information about the jobs within the system. The
system variable SV_JBBAS points to the base of the job table, and SV_JBTOP
points to the top. The table is a series of longwords each of which points to a
job control block: the contents of this are described in section 18.5. The job is
identified to the system by its Job ID: this is a longword consisting of a word
giving its position in the job table (in the least significant word), and a word of
tag allocated by the operating system when the job is created (in the most
significant word).

The traps that may be called relating to jobs are as follows:

MT.INF returns the current job ID, plus miscellaneous
information

MT.JINF returns the status of a job

MT.CJOB creates a job

MT.JOB returns information on a job

MT.RJOB removes an inactive job

MT.FRJOB forces removal of a job (whether inactive or not)

MT.FREE finds the largest space available for a job MT.TRAPV
sets the trap-vector table for a job

MT.SUSJB suspends a job

MT.REUB releases a job

MT.ACTIV activates a job

MT.PRIOR changes the priority of a job

A job terminates itself by calling MT.FRJOB with its own job ID (or -1,
which always refers to the current job).

19

3.2 SuperBASIC Procedures and Functions

The SuperBASIC command interpreter is job number zero. It behaves
like all other jobs in most respects, with the important exception that it
owns a special data area which is expandable, and may be moved
without the knowledge of the interpreter. This area is located
immediately below the transient program area.

Machine code procedures and functions which are added to SuperBASIC
appear to the user to be identical to those which are built into the ROM. From
the user's point of view they are routines which are executed from within job
number zero, but which have certain constraints on the way they are coded.

The most important constraint is that A6 is used to point to the (moveable)
base of the SuperBASIC data area. The system may move the area and
change the value of A6 between instructions without the knowledge of the
interpreter, therefore A6 must not be modified within the procedure or
function, and its value must not be stored or used in calculation. This
constraint may be side-stepped by entering supervisor mode, but A6 must
then be restored on exit back to user mode (the processor is in user mode
when a procedure or function is entered). The stackpointer A7 must of course
be restored to its original value before exiting from the procedure.

On exit from the procedure, an error key is passed to the interpreter in DO.L:
this must be setto zero if there was no error. The procedure or function can
then be exited using an RTS statement.

If machine code procedures or functions are to be used either recursively or in
recursive SuperBASIC procedures, they must obey the usual constraints of
having no local variables and no self-modifying code.

Machine code procedures and functions are normally loaded into the
resident procedure area above the transient program area. This area can only
be expanded or deleted when the transient program area is

empty, which is normally immediately after the machine is booted.

20

Trap #4 is the one special trap which relates to SuperBASIC procedures and
functions. This trap is used to make the addresses passed to an I/O trap
relative to A6, which is necessary when working with the SuperBASIC
variables area. It only affects the following trap, and must therefore be called
before each trap whose addresses are to be modified.

Details of parameter passing, function returns and other useful information
about the SuperBASIC interface are given in section 9.0.

3.3 Tasks

Tasks are special pieces of code invoked under interrupt, usually as part of the
physical layer of a device driver. They obey special rules according to the
precise conditions under which they are called: these rules are described in the
sections on device drivers (sections 6.0-8.0). The important restriction on tasks
is that they must not allocate or release machine resources: this should only be
done from within a job, or within the access layer of a device driver.

3.4 Operating System Extensions

Some parts of user-defined device drivers do not fit into any of the above
categories: they are special routines called from within a job via the Qdos
Input/Output sub-system (see section 6.0). These routines have their own
rules, and these are described in the sections on device drivers (sections 6.0-
8.0).

21

4.0 Memory Allocation

Memory is allocated differently in each area of the Qdos memory map.

* Memory in the resident procedure area is allocated using the traps
MT.ALRES and MT.RERES.

* Memory in the transient program area is allocated by the mechanisms
described in section 13.0 for creation and deletion of jobs. The vectored
routines MM.ALLOC and MM.LNKFR may be used within a job to perform
primitive heap allocation inside that job's own data area.

* Memory in the SuperBASIC area is allocated by various mechanisms. The
traps MT.ALBAS and MT.REBAS are used by the interpreter to change the
size of the entire area, but are not normally used by anything else. The
vectored routine BV.CHRIX is used to allocate space on the arithmetic
stack: the interpreter itself cleans up this space on return from a procedure
or function. Space in the remaining parts of the SuperBASIC area is usually
allocated by the vectored routines being used to perform the operations that
require the space, so that this allocation is invisible to the user, except that it

usually results in a modification of the value of A6.

* Memory in the free memory area is not allocated or deallocated by the user,
except by the slave block mechanisms defined in section 7.0 on directory
device drivers.

* Memory in the common heap is allocated and released by the traps
MT.ALCHP and MT.RECHP. The area allocated in this way by a job is
released when that job is deleted. The same mechanisms can be accessed
from within device drivers via the vectored routines MM.ALCHP and

MM.RECHP.

22

4.1 Heap Mechanism

The mechanisms for allocating and releasing heap space are common to
various routines. They are as follows:

A heap is an area of memory which contains a linked list of used heap items,
and a linked list of free heap items. Each heap item is an area of memory
(which is a multiple of 8 bytes long), together with a pair of longwords: the first is
the length of the heap item, while the second is a pointer (relative to itself) to the
next heap item in the list. The use of relative pointers ensures that heaps may
be moved.

A heap is set up by linking an area of ram->memory into a non- existent
heap (free space pointer=0). A heap is expanded by linking an area of ram-
e rnernory, preferably but not necessarily, contiguous with the current top
of the heap, into the heap.

Provided the user code can remember the length of a heap item, all of the
memory in it may be used by the code. On allocation of the heap item, the first
long word holds its length, and so, if desired, this may be retained by the user
code.

The user code requires to keep one pointer to the first free space item in the
heap. This is a long word, and is relative. When the heap has no free space,
either because it does not exist, or because it is full, this pointer is zero.

Releasing a heap item adds it to the list of free space items within the heap,
and consolidates it with adjacent free spaces where appropriate.

23

5.0 Input/Qutput on the QL

A QL program uses I/O by accessing the Qdos. The 10SS in turn accesses the
device driver for the appropriate device. The device driver is a piece of code
which can perform low-level I/O routines for a particular device: that device may
correspond to a piece of hardware, such as a serial port, or it may be some
notional device occupying a piece of memory, such as a pipe, which is a
communication channel between jobs.

QL 1/O is performed through the 10SS using an I/O channel. The applications
program opens a channel by passing a device name to the 10SS, which
returns a channel/D. The IOSS and the built-in device drivers have the ability
to recognize qualifiers appended to the actual name of the device which can
direct the open operation in particular ways, such as identifying a file name, or
selecting some hardware option. The program then uses the channellD to
identify to the IOSS which channel it wishes to access when performing read
or write operations on it. It can also close the channel, passing the channel ID
to the 10SS. There may be several channels open which use the same device
driver, such as multiple screen windows, or Microdrive files. For this reason, all
the built-in drivers are re-entrant, as must be the user-defined drivers if they
are to have the same capability.

The QL ROM contains drivers for several devices such as screen windows,

serial ports, pipes, microdrives, and so on. The user can add his own device
drivers for pieces of add-on hardware, or simply for additional functions with
the existing hardware.

Note that a channel ID is not the same thing as a SuperBASIC channel number
(denoted by #expression): the latter is the index of an entry in the SuperBASIC

channel table which includes a channel ID. See sections 18.4 and 18.7 for
details of the channel table.

24

5.1 Serial I/0

All device drivers have, at the very least, the capability to perform serial I/O:
that is, the operations of reading bytes, writing bytes, and testing for pending
input. Serial I/O is completely byte-oriented - unlike many operating systems
there is no inbuilt record structure, which means that the user is free to
superpose his own record maintenance in whatever form he wishes. 1/0 which
is purely serial is completely redirectable: when different devices are being
used, the device name passed to the channel open trap is the only thing that
changes.

The 10SS supports one control character only, this being the newline
character, which is ASCII 10 ($0A). Whilst this has the disadvantage

that one cannot directly store files of graphics commands which can be
retrieved by a simple copy, it does have the advantage that files containing
arbitrary sequences of bytes cannot do irretrievable damage to the system by
being copied to a device for which they were not intended. The serial driver has
the option of supporting ASCIl 13 as a newline, and ASCII 26 (CTRL -Z) as an
end of file marker.

All serial 1/0O calls support a time-out feature, which may be zero (return
immediately), indefinite (wait until the operation is complete), or finite (wait
until the operation is complete, or for a set time, whichever is the sooner).
This last feature makes it very easy to write code which, for example, puts
up a menu only if the user hesitates.

The I0SS supports the following calls for serial I/O:

I0.OPEN opens a channel

I0.CLOSE closes a channel

I0.PEND tests for pending input

IO.FBYTE fetches a single byte

IO.FLINE fetches a line of bytes terminated by newline (ASCII 10)
I0.FSTRG fetches a string of bytes

I0.SBYTE sends a single byte

I0.SSTRG sends a string of bytes

The fetch and send traps have several special meanings when used in
conjunction with screen or console channels: for a more detailed
description of these, see section 15.0 on I/O Traps.

For the fetch byte and fetch string traps, characters read from the

keyboard are not echoed in the associated window, and cursor
handling is left to the applications program.

25

5.2 File 1O

Qdos files appear to the applications program as arrays of bytes on a physical
device, with an associated file pointer which gives the "current position" in a
file. A file also has a header, which is normally 64 bytes long containing
information about the file such as its name, length, etc. Further details
concerning the format of the file header are given in section 7.0 on Directory
Device Drivers.

The open call to a file system device supports several modes: old (exclusive),
old (shared), or new (exclusive). New (overwrite) mode has a slot allocated in
the open keys, but is not currently supported for Microdrives. In addition, a
special open key indicates that it is desired to open the directory of the medium
for reading rather than a particular file; the directory cannot be explicitly written,
but is maintained by the device driver when open calls and deletions are made.

Qdos supports a system of slaving, whereby 512-byte blocks of data are
buffered in the free memory area (see section 4.0): all unused memory being
taken for this area. The filing system may return from a write operation when
that operation has only been performed on the slave block concerned; Qdos
will later force the system to convert that slave block into a true copy of the
data on the physical device. As a result of this mechanism, add-on filing
devices normally support 512- byte logical blocks: however this blocking
system is transparent to the applications program. A single slave block table is
shared by all the directory drivers which want to use it to improve their
performance.

In addition to the serial I/0O operations described above, Qdos supports the
following operations for file-system devices:

I0.FORMT formats a sectored medium
IO.DELET deletes a file

FS.CHECK checks all pending operations on a file
FS.FLUSH flushes buffers for a file

FS.POSAB positions the file pointer absolutely
FS.POSRE positions the file pointer relatively
FS.MDINF gets information about the mounted medium
FS.HEADS sets the file header

FS.HEADR reads the file header

FS.LOAD loads a file into memory

FS.SAVE saves a file from memory

26

The FS.FLUSH and FS.CHECK command are subtly different:
FS.FLUSH ensures that all write operations are complete, whereas
FS.CHECK ensures that all write and read operations (including
prefetches) are complete.

5.3 Screen and Console I/O

The keyboard and screen devices are treated in a special way by Qdos, and
have a large number of functions in addition to those available for purely serial
1/0 devices. Two types of device are supported: scr (for screen), which is a
screen window, and con (for console), which is a screen window with an
associated keyboard channel. The three channels #0, #1 and #2 which are
opened by SuperBASIC are all console channels.

5.3.1 Display Modes -

The QL has two display modes (see the Concepts manual for details). The
display mode can be set or read using the MT.DMODE trap, but

as this trap clears all screen windows, it should be used with great care. A
program can also find out whether the user selected TV or monitor

at switch-on by inspecting the value of the system variable

SV_TVMOD.

There are two main coordinate systems used for screen I/O: these are the
graphics coordinate system and the pixel coordinate system (see the Concepts
manual for details). Note that in 256-pixel mode and for several commands in
512-pixel mode, the least significant bit of a dimension in the x-direction is
ignored, so that a given pixel address refers to the same location in both
modes. Some traps refer to character coordinates: these are based on the
pixel coordinate system but are scaled by the current character spacing for the
window.

5.3.2 Window Properties and Operations -

A window is an area of screen which may be in any position on the screen,
subject to the restriction that its x-position must be an even number. A window
may be of any size that does not run off the edge or bottom of the screen,
subject to the same restriction. Windows may overlap, but the system does not
store or retrieve the area of overlap, it being the user's responsibility to ensure
that any information is not lost or garbled.

27

Each window will have its own particular set of characteristics: a border width,

a border colour, a paper colour, a strip colour, an ink colour, a cursor position,

a cursor increment, a flag which says whether the cursor is suppressed, a pair
of font pointers, information about newline treatment, and graphics information.
Details of the window definition block are given in the section 15.0.

The special traps for dealing with windows are as follows:

SD.PXENQ returns window information in pixel coordinates
SD.CHENQ returns window information in character coordinates
SD.BORDR sets the border width and colour

SD.WDEF redefines a window

SD.CURE enables the cursor

SD.CURS suppresses the cursor

SD.SCROL scrolls a whole window

SD.SCRTP scrolls the top part of a window

SD.SCRBT scrolls the bottom part of a window

SD.PAN pans a whole window

SD.PANLN pans the line the cursor is on

SD.PANRT pans the right-hand end of the line the cursor is on
SD.CLEAR clears a whole window

SD.CLRTP clears the top part of a window

SD.CLRBT clears the bottom part of a window

SD.CLRLN clears the line the cursor is on

SD.CLRRT clears the right-hand end of the line the cursor is on
SD.RECOL recolours a window

SD.SETPA sets the paper colour

SD.SETST sets the strip colour

SD.SETIN sets the ink colour

SD.FILL fills a rectangular block in a window

SD.SETMD sets the character writing or plotting mode

5.3.3 Screen Character Output Operations-

Newline characters receive slightly different treatment when bytes are being
sent to a screen or console channel rather than to any other

device. In addition to being caused by a newline character, a newline is
automatically inserted when the cursor reaches the right-hand side of

the window; when this happens during an 10.SBYTE trap, the error code
ERR.OR (for out of range) is also returned.

28

If the cursor is suppressed, the newline is held pending. It can be cleared
by any call to position the cursor, or activated by any of the following
events:

sending another byte or string;

changing the character size;
activating the cursor; requesting
the cursor position.

This feature allows the right-hand character squares to be used
without generating stray blank lines.

The following additional operations apply to screen character output:

SD.FOUNT sets or resets the character fount

SD.SETFL sets or resets hardware flash (256-pixel mode only)
SD.SETUL sets or resets underlining

SD.SETSZ

sets the character size and spacing

5.3.4 Graphics Operations-

The QL can perform line, arc or ellipse drawing on a window basis in
scaled coordinates. It also provides a primitive area flood routine. The traps
are as follows:

SD.POINT draws a point

SD.LINE draws a line

SD.ARC draws an arc

SD.ELIPS draws an ellipse
SD.SCALE sets the scale

SD.GCUR moves the graphics cursor
SD.FLOOD set or reset area filling

5.3.5 Special Properties of Console Channels-

For the console device, the IO.FLINE trap behaves in a particular fashion:
the characters typed are echoed in the console window, and the left and right
cursor keys (with or without CTRL) are used to edit the line in the standard
way. In addition, the cursor is automatically enabled.

An additional trap, 10.EDLIN, is provided for console channels, which invokes

the line editor on a pre-defined string. The line-editor may be exited by typing
ENTER, or by typing either the cursor-up or the cursor-down character.

29

The user can temporarily suspend screen output to a console channel by
typing the freeze screen character (CTRL-F5). Output is resumed when any
character is typed, but the character is ignored for all other purposes. If a
non-indefinite time-out has been set for the suspended operation, it may
return non-complete if the screen is frozen past the time-out period.

5.3.6 Special Keyboard Functions-

Several console channels may be open at the same time. If they are used by
different jobs, it may be that more than one console channel is expecting input
at a given time. When this occurs, the user may cycle round the list of console
channels currently expecting input by typing the change queue character on
the keyboard. The cursor in the console window to which keyboard input is
currently directed will flash if it is enabled. Any enabled cursors in other
windows will be steady.

The change queue character is normally CTRL-C (ASCII 3). It can be
changed by modifying the system variable SV_CQCH.

The keyboard maintains a type-ahead queue of seven characters in the
8049 processor which controls it. In addition to this, there may be
more type-ahead in the queue for each console channel.

The keyboard auto-repeats on all keys except the keyboard change queue
character, CTRL-Space (the SuperBASIC break) or CTRL-F5 (the freeze
screen character). However, auto-repeat will not occur unless the type-ahead
gueue for the console channel to which input is currently directed is empty. The
delay before auto-repetition begins is held in the system variable SV_ARDEL,
and the interval between repetitions is held in SV_ARFRQ (both in multiples of
1/50th or 1/60th of a second). These can be altered by a program.

When CAPSLOCK is pressed, the system will jump to a user-supplied
routine whose absolute address is held in the system variable SV_CSUB if
the value of this is non-zero. This routine should restore all registers to their
initial state before returning.

5.3.7 Extended Operations-

A special trap SD.EXTOP is provided to allow a program to invoke a user-
supplied routine using the same environment that is passed to the routines in
the screen driver. See the description in section 15.0 (I/O Traps) for a more
detailed discussion of this trap.

30

6.0 QDOS Device Drivers

A user-supplied Qdos device driver is a collection of routines which allow an
applications program to perform 10SS functions on a user- supplied device in
the same way as such functions are performed on the devices built into the
system. As these routines are linked into the system's lists in front of the
corresponding system routines, they may be used to replace the system
routines. At the very least, the device driver contains a set of routines for
opening a channel, closing a channel, and performing serial I/O on that
channel: these routines are called via the 0SS as part of the job that is
performing the 1/0. The driver may also include one or more tasks, that is,
routines performed asynchronously with the calling job, usually under
interrupt.

Such tasks, which are known as the physical layer of the device driver,
normally communicate with the rest of the device driver, which is known as
the access layer, using asynchronous queues. These queues are usually
polled by the task at regular intervals, either on every occasion the scheduler
is entered, or on every 50/60 Hz polling interrupt.

Drivers for file system devices use a slightly different, and more general,
mechanism: this is described in section 7.0.

Both drivers and tasks are linked in to lists provided by the operating
system. The following traps are used to add and remove items from
those lists:

MT.LXINT links in an external interrupt service task
MT.LPOLL links in a 50/60 Hz polling service task links
MT.LSCHD in a scheduler loop task

MT.LIOD links in a device driver to the 110 system
MT.LDD links in a directory device driver to the file system

MT.RXINT, MT.RPOLL, MT.RSCHD, MT.RIOD and MT.RDD remove these
links.

The QL provides several utility routines which are useful for various
actions commonly performed in device drivers, such as decoding a
device name, performing queue operations, etc.

31

6.1 Device Driver Memory Allocation

Device drivers allocate memory in two areas: the device driver definition block
and the channel definition block. The device driver definition block belongs to the
driver itself, and is allocated by the code which sets up the driver when it is
initialised and linked into the various lists. The channel definition block belongs to
each I/O channel, and is allocated by the driver itself when a channel is opened.
Various parts of the channel definition block are thereafter used by the IOSS for
its own purposes.

In theory, the access layer can allocate space on the heap at other times: in
practice this is not usually required. The whole system can be made re-entrant
to allow several channels to be open with the same device driver and the
same device driver definition block, but with different channel definition blocks.

Note that the system will certainly crash if the area of a channel definition
block is deallocated and used for something else before the channel is
closed, or if the area of a device driver definition block is deallocated and
used for something else before the device driver is removed from the
system's lists, for example if the device driver definition block is in a transient
program which is force-removed. This possibility can be obviated by
allocating the block in the common heap with a job number of zero, or by
allocating it in the resident procedure area.

Tasks must not allocate or release memory: this must be done for
them by the access layer, or by the device driver initialisation code.

6.2 Device Driver Initialisation

The code to initialise a device driver must first allocate the space for the device
driver definition block, usually by allocating some space in the resident
procedure area, although any of the normal allocation mechanisms may be
used.

The device driver definition block will normally have the following
structure, assuming that A3 has been made to point to it:

32

$00(A3) Link to next external interrupt routine

$04(A3) Address of external interrupt routine

$08(A3) Link to next poll interrupt routine

$0C(A3) Address of poll interrupt routine

$10(A3) Link to next scheduler loop routine

$14(A3) Address of scheduler loop routine

$18(A3) Link to access layer of next device driver

$1C(A3) Address of input/output routine

$20(A3) Address of channel open routine

$24(A3) Address of channel close routine

$28(A3) Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and I/0
routines, together with those of any of the routines for tasks that it will be

employing. It should also fill in any preset data required in the remainder of the

workspace.

Finally, the link routines described above should be called to include the
driver in the operating system'’s lists.

Note that the structure of the first 24 bytes of the device driver definition
block is not mandatory; however, it is desirable from the point of view of
consistency that it be kept the same. The comments in later sections
about the base of the device driver definition block being passed to the
driver are only valid if the above structure has been used.

6.3 Physical Layer

The physical layer tasks are normally the ones which perform actual /O
under interrupt or polled control. They usually take data out of queues or
put data into queues, the other end of such queues being maintained by the
access layer.

When the operating system calls one of the tasks in the physical layer, it
passes the task a standard set of values in some of the registers. These
values are as follows:

D3 Number of 50/60Hz interrupts since last scheduler call
(scheduler loop only)

A3 Pointer to base of device driver definition block

A6 Pointer to system variables

A7 Supervisor stack - routines may use up to 64 bytes

33

6.3.1 External Interrupt Tasks-

An external interrupt task must check its own hardware to determine whether
the interrupt was for itself or for some other driver. It may also need to clear the
source of the interrupt at that point. If the interrupt was not for itself, it should
return.

6.3.2 Polling Interrupt Tasks-

Polling interrupt tasks should only be used when critical timing operations are
required. In common with the external interrupt tasks, they can interrupt
atomic operations in the rest of the system, such as access layer calls to the
same driver, so they should be used with great care.

6.3.3 Scheduler Loop Tasks-

Calls from the scheduler loop do not interrupt atomic tasks. This means that
operations such as allocating or releasing memory can be performed safely.
Note that it is quite common for the same routine to be included both in the
scheduler loop and in the external interrupt list.

Scheduler loop tasks are called at around 50/60Hz when the machine is
busy, and more frequently if the machine is idle.

All physical layer calls return with RTS. DO to D7 and AO to A6 inclusive may
be smashed.

6.4 The Access Layer

The access layer consists of three routines: the channel open, the channel
close, and the Input/Output routine. These routines are called for the
appropriate driver by the IOSS in response to a user's trap instruction. In the
case of the channel open, the routine is called in turn for each device driver in
the machine until a driver's open routine returns correctly to indicate that it has
recognised the device name. Due to this mechanism, an incorrect open routine
may crash the whole system when an open to any device is attempted,
whereas the other routines are only invoked in response to the particular
device being used.

For all access layer calls, the values of A3, A6 and A7 are the same as) for
the physical layer. The other registers have different meanings, as described
below in the sections for the individual types of call.

All access layer calls return using RTS.

34

6.4.1 The Channel Open Routine-

When the channel open routine is called via the IOSS, the following
registers are set in addition to A3, A6 and A7 which are as described
above:

AO address of the device name
D3 access code as defined in the 10.0OPEN trap

The open routine should perform the following operations:

First, decode the name; the utility IO.NAME, which is described in section
16.0, will normally be used for this purpose. Return with ERR.NF in DO if
the name was not recognised by this driver, or with ERR.BN if the name
was recognised, but some of the additional information was incorrect in
value or format.

Then, if the device cannot be shared, check whether the device is in

use and prevent another channel from being opened to it. If the device is in
use, return ERR.IU.

Finally, allocate some space for the channel definition block. Any buffers or
working area required for each channel are normally allocated in the
common heap. Return with ERR.OM if there was not enough memory to do
this.

On return from the open routine, the following should be set:

A0 address of channel definition block
A7 stackpointer returned to its value at entry
DO error return code (zero for a successful open)

The remaining registers may be smashed.

6.4.2 The Channel Close Routine-

When this routine is entered, in addition to the usual values of A3, A6 and A7,
AO points to the base of the channel definition block.

The function of the close routine is simply to release the memory taken up by
the channel definition block and to ensure that everything in the device driver
definition block is tidy.

35

Under some circumstances, it may not be possible to close the channel
immediately because there are bytes waiting to be transmitted by the physical
layer. In this case, the physical layer must contain a scheduler loop task, and
the close routine should set a flag for the physical layer to complete the
release of the memory on the next invocation of that task in which it is
possible to do so. When this happens, it is usually necessary to build in a
special mechanism to cope with the undesirable event of a program closing a
channel to a particular device, and then re-opening it immediately only to
receive an "in use" error because the closed channel has not yet been
cleared.

The close routine should return with zero in DO, as it is assumed that a close
routine cannot fail. Only registers DO to D3 and AO to A3 may be smashed.

6.4.3 The Input/Output Routine -

The 1/O routine is called once when an I/O call is made, and then, unless
the time-out was set to zero, on every subsequent scheduler loop until the
operation is complete or the time-out has expired.

In addition to the usual values of A3, A6 and A7, the following
registers are set:

DO The trap code passed to the IOSS (0 in top three bytes)

D1 Additional information as defined in the trap calls in section 15.0
D2 Additional information as defined in the trap calls in section 15.0
D3 Zero on the first entry for a given trap call, -1 thereafter

AO Base of channel definition block

Al Additional information as defined in the trap calls in section 15.0
A2 Additional information as defined in the trap calls in section 15.0

The I/O routine should return ERR.NC (not complete) if it cannot complete
the operation immediately. If a string operation has been partially
completed, the values in D1 and Al (number of bytes transferred and buffer
pointer) should be set appropriately so that the operation can continue on
the next try. DO should be zero on return if the operation has been
completed correctly. Registers D2 to D7 may be smashed.

36

Since most of the code for handling serial 1/0 is common to all device drivers, the I/O
routine usually calls one of the utility routines 10.SERQ or I10.SERIO (which are
described in section 16.0). 10.SERQ assumes that the only function ofthe access layer
is to move bytes in and out of a pair of queues pointed to by fixed positions in the
channel definition block, while 10.SERIO assumes that the operations required of it can
all be made up out of three primitive routines for sending one byte, fetching one byte,
and checking for pending input, such routines being supplied by the writer of the device
driver.

Note that channels are assumed to be bidirectional; it is the responsibility of the 1/0
routine to trap an operation in a direction that is not allowed.

Note also that output operations which appear to the user as complete have merely
completed the access layer call correctly: there being no general way in which the user
can ascertain whether the physical layer has in fact completed the operation.

37

7.0 Directory Device Drivers

Drivers for devices which have a directory and form part of the filing
system have a somewhat extended set of functions. For directory device
drivers, there are three blocks in which memory is allocated, rather than
two: these are the directory driver linkage block, the physical definition
block and the channel definition block.

There is one directory driver linkage block for each directory driver: it is an
extended form ofthe device driver definition block as found in a non-directory
device driver. The block contains information about how to use the driver,
together with the links in the operating system'’s lists.

Each directory driver may control up to 8 drives (numbered 1 to 8). Each
drive has one physical definition block: this contains the drive humber
and information about the medium.

For each I/0 channel that is open, there is an open channel definition
block.

The file system is assumed to be composed of 512-byte blocks: thus a

byte within a file is addressed by the IOSS by a block number and a byte
number within that block. It is of course possible to have a different physical
block size, but the mapping ofthe IOSS structure onto the physical structure
will be less convenient.

Each file is assumed to have a 64-byte header (the logical beginning of file is
set to byte 64, not byte zero). This header should be formatted as follows:

$00 long file length

$04 byte file access key (not yet implemented - currently
always zero)

$05 byte file type

$06 8 bytes file type-dependent information

$0E 2+36 bytes filename

$34 long reserved for update date (not yet implemented)

$38 long reserved for reference date (not yet implemented)

$3C long reserved for backup date (not yet implemented)

The current file types allowed are: 2, which is a relocatable object file;

1, which is an executable program; 255 is a directory; and 0 which is anything
else. In the

38

case of file type 1,the first longword of type-dependent information holds
the default size of the data space for the program.

7.1 Initialisation of a Directory Driver

The initialisation routine should firstly allocate room for the directory driver
linkage block, and then write into it the information aboutthe driver routine
addresses, the length ofthe physical definition block required for each drive,
and the drive name. Note that for directory drivers, the decoding of the device
name is performed by the IOSS, not by the open routine in the device driver
as in non-directory drivers: the function of the open routine is to search for the
file name within the given drive. The linkage block may be allocated in the
resident procedure area if the driver is resident there, but will usually be in the
common heap. The system will crash if the linkage block is overwritten
without the driver being unlinked.

When this has been done, the traps MT.LXINT, MT.LPOLL,
MT.LSCHD and MT.LDD can be called to link the driver and any
associated tasks into Qdos.

The format of the directory driver linkage block is as follows (assuming that
A3 has been made to point to it):

$00(A3) link to next external interrupt routine

$04(A3) address of external interrupt routine

$08(A3) link to next 50/60 Hz interrupt routine

$OC(A3) address of 50/60 Hz interrupt routine

$10(A3) link to next scheduler loop routine

$14(A3) address of scheduler loop routine

$18(A3) link to access layer of next directory driver

$1C(A3) address of input/output routine

$20(A3) address of channel open routine

$24(A3) address of channel close routine

$28(A3) address of entry for forced slaving

$2C(A3) reserved

$30(A3) reserved

$34(A3) address of entry to format medium

$38(A3) length of physical definition block

$3C(A3) word-length of drive name characters of drive name
(e.g. MDV)

Note that a directory driver must have at least 40 bytes of RAM for the
linkage block.

39

7.2 Access Layer

The access layer of a directory driver contains five routines: the channel
open/file delete routine, the close routine, the 1/0 routine, the forced
slaving routine and the format routine.

For all directory device driver access layer calls (including open), A0 points
to the base of the channel definition block when each routine is called.
However, the format of the block is somewhat different:

The first $18 bytes are reserved for the IOSS.

$18(A0) FS_NEXT long link to next file system channel

$1C(A0) FS_ACCES byte access mode (03 on open call,
-ve on delete)

$10(A0) FS_DRIVE byte drive ID

$1E(A0) FS_FILNR word number of file on drive

$20(A0) FS_NBLOK word block number containing next byte

$22(A0) FS_NBYTE word next byte from block

$24(A0) FS_EBLOK word block number containing byte
after EOF

$26(A0) FS_EBYTE word byte after EOF

$28(A0) FS_CBLOK long pointer to slave block table for

current slave block which may
hold current/next byte
$2C(A0) FS_FNAME 2+36 bytes file name
$58(A0) FS_SPARE 72 bytes spare

Al points to the physical definition block, which is formatted as follows:

The first $10 bytes are reserved for the IOSS.

$10(A1) FS_DRIVR long pointer to access layer link for
driver

$14(A1l) FS_DRIVN byte drive number

$16(A1) FS_MNAME 2+10 bytes medium name

$22(A1l) FS_FILES byte number of files open on this
medium

40

7.2.1 The Channel Open/File Delete Routine-

The function of the open routine depends on the access mode. This may have
been passed to the IOSS in D3 if the open routine was called as a result of an
IO.OPEN trap, or it may be a negative number, which would be the case if the
routine has been entered as a result of an I0.DELET trap.

In order to understand the open routine, it is necessary first to understand the way
in which Qdos handles device names. When a device name is passed to the IOSS
as a result of an open or delete call, the IOSS looks for a match in its lists of device
drivers and directory device drivers. The matching mechanism for non-directory
device drivers is defined within the open routine for that driver. The matching
mechanism for directory device drivers is as follows. The first characters of the
name are checked against the drive name in the directory driver linkage block
(which is put there when the driver is initialised), and these are expected to be
followed by a drive number between 1 and 8, followed by an underscore, followed
usually by the filename. If a match is found, the file system looks to see if there is a
physical definition block for that drive already in existence. If there is not, a physical
definition block is created in the system's table of physical definition blocks (the
drive ID in the channel definition block is an index to this table). Note that the file
system has no knowledge of whether a drive is actually connected, and will set up
the definition block regardless.

The |OSS then checks to see if this is the second or subsequent open to a shared
file: if this is the case it generates the complete channel definition block itself,
setting FS_NBYTE to $40, and copies the remaining information from the channel
definition block for the first open. The directory driver's open routine is not called.
Otherwise, the IOSS calls the open routine, passing it the file name in the channel
definition block.

On entry to the open routine, the following registers are set:

A0 base of channel definition block

Al base of physical definition block

A3 base of directory driver linkage block
A6 base of system variables

41

The channel and physical definition blocks are all set to zero except for the
following, which are filled in by the IOSS:

FS_NEXT link to next file system channel

FS_ACCES access mode

FS_DRIVE drive ID

FS_FNAME file name

FS_DRIVR pointer to directory driver access layer

FS_FILES number of files open on this drive (maintained by IOSS)

In the case of a device with removable media, the open routine should find
out the name of the medium and install it in FS_MNAME. It should also look
at the access mode to find out which operation is required. If the required
operation is delete, it should perform that operation and return, but if the
required operation is another sort of open, then it should fill in the
appropriate portions of the channel definition block, namely FS_FILNR,
FS_EBLOK, FS_EBYTE, FS_NBLOK and FS_NBYTE. FS_CBLOK is a
pointer to the slave block table which may be filled in as an indication to the
I/O routine that the block it is looking for may be slaved there. The I/O
routine must check this however, normally by searching the slave) table.

The 10SS will free the channel definition block on exit from the open routine
if the action was a delete or if the open routine returns an error key in DO.

The maintenance ofthe directory structure of the medium is the responsibility
of the open and close routines - the I0OSS plays no part in this. Equally, the
open routine is responsible for understanding the meaning of the access
mode and reacting accordingly.

The open routine may smash registers D1 to D7 and Al to A5 inclusive
before returning. DO isthe error key, and the remaining registers should be
preserved.

7.2.2 The Channel Close Routine-

As far as the 0SS is concerned, this routine behaves in the same way as
for a non-directory device driver. It is of course necessary for the close
routine to maintain the directory structure of the medium, so its operation
will normally be rather more complicated.

42

The close routine for a directory device driver has two additional functions: it
must unlink the channel from the list of files open, and must decrement the
FS_FILES field in the physical definition block, which gives the number of
files open on the medium. Suitable code for performing these operations and
ending the close routine isas follows:

*get address of physical definition bLock into A2

MOVEQ #0, DO top three bytes must be
clear

MOVE.B FSiDRIVE(AO),DO get the drive ID

LSL.B #2, DO convert it to a table
offset

LEA.L SV getbaseofPDBtable

MOVE.L (A2,DO.W) ,A2 get address from

(basetoffset)
* now decrement the file count

SUBQ.B #1,FS_FILES (A2)
*now unlink the file

LEA FS_NEXT (A0),AQ get address of link pointer

LEA SV_FSLST (A6) ,Al ..and pointer to start of
linked list

MOVE . W UT.UNLNK, A4 routine to unlink an item

JSR (A4)

LEA -FS.NEXT (AOQ) , A0 restore A0 to base of
channel def

MOVE . W MM.RECHP, A4 routine to release
channel def space

JMP (A4) call it, and exit from the
close

The close routine must also initiate the process of tidying up any slave blocks
remaining for that channel. It need not force the slave blocks to be made into
true copies itself, but it must be guaranteed that the copying will happen
without further intervention by the calling program.

7.2.3. The Input/Output Routine _

This routine also appears to the 0SS to be identical for both directory and
non-directory device drivers, though once again the routine is usually rather
more complex for most normal file system devices. The main difference is
that the I/O routine for a random access file system device must take into
account the current block and position as provided by the IOSS, since these
may have been updated by the IOSS as a result of a file pointer positioning
trap.

43

7.3 Slaving

The area of memory between SV_FREE and SV_BASIC is used by the

filing system as temporary storage for file slave blocks and for the slave

block table. A slave block is a block of 512 bytes of data. The slave block table
is a table of 8 entries whose start point is held in the system variable
SV_BTBAS and whose top is held in the system variable SV_BITOP; the
system variable SV_BTPNT points to the most recently allocated slave block
table entry. The address of a slave block, relative to the base of system
variables, is equal to 512/8 times the offset of the corresponding entry in the
slave block table from the beginning of that table.

Currently, only the first byte of each slave block table entry is used by Qdos
itself: the remaining bytes are available for use by the driver. This byte is
divided into two four-bit nibbles. The most significant nibble contains the drive
identifier (0 ..15), and the least significant nibble is a code indicating the status
of the block. The byte is formatted as follows:

$00 unavailable to filing system

$01 empty block

$x3 block is true representation of file
$x7 block is updated, awaiting write
$x9 block is awaiting read

$xB block is awaiting verify

x is the drive ID for this file

For Microdrives, the remaining space in each slave block table entry is laid
out as follows:

BT_PRIOR 01 byte available for slaving algorithms
BT_SECTR 02 word physical sector number*2
BT_FILNR 04 word file number

BT_BLOCK 06 word block number within the file

It is left to the device driver to decide what the slave blocks are used for but it
must be prepared to release a slave block if requested to do so by the memory
manager. This is done by calling the driver's forced slaving routine with the
following parameters:

Al points to the base of the offending slave block
A2 points to the physical definition block
A3 points to the base of the directory driver linkage block

44

Registers DO to D3 and A0 to A4 inclusive may be smashed. There may not be
an error return to this routine.

Typically the slave blocks are used to buffer data being written to a device,
the actual writing being carried out by an asynchronous task.

Searching for an empty slave block involves performing a linear search
through the slave"block table, usually starting from SV_BTPNT or SV_BTBAS.
The status of each entry in the table must be checked and only those blocks
which are empty or true representations should be taken. When a new block is
allocated SV_BTPNT should be updated to point to the allocated block.
Allocating slave blocks is a form of memory allocation and should only be
carried out by access layer or scheduler loop calls.

This position in memory of a slave block which corresponds to a slave block
table entry may be calculated using the following code:

MOVE.L A4, DO A4 is pointer to slave
block table entry

*

*form offset into slave block table, gives
*slave block no.*8; entries are 8 bytes wide in table
*

SUB.L SV_BTBAS (A6) , DO

LSL.L #6,D0 multiply by 64 (8*64=512)
MOVE.L DO,AS5
ADD.L A6,A5 add offset to system

variable base
* A5 now has base address of slave block

7.3.1 The Format Routine

This routine is to a large extent independent of the other routines. It is called
with the drive number in D1, a pointer to the medium name in Al, and a
pointer to the directory driver linkage block in A3.

It should return the error code in DO, the number of good sectors in D1 and
the total number of sectors in D2. Registers D3 to D7 and A0 to A5 inclusive
may be smashed.

45

8.0 Built-in Device Drivers

The following devices are built in to the QL ROM:

CON_wXhaxXy_k Console I/O

SCR_wXhaxXy

SERnNpz

NETI_nn

NETO_nn

PIPE_n

MDVn_name

window area "w" by "h" pixels, top left hand corner at
pixel position "x", “y”

keyboard type-ahead buffer length "k" characters.

The size and position are defined in terms of pixels on a
512 x256 display map (position 256x128 is the centre of
the screen in both display modes).

Default CON_ 448x180a32x16 128

Screen output
window definition is as for CON.
Default SCR_448x180a32x16

RS232 serial 110

port "n",

"p" indicates parity: E,O,M,S for even, odd, mark or space parity,
"z" indicates protocol: R indicates raw data,

Z or C indicates that ctrl-Z is used as an EOF marker,

C indicates that ASCII 13 is to be exchanged with

ASCII 10.

Default SER1R no parity.

Serial network output

link from node "nn"

Serial network input
link to node"nn"

Job connection and synchronisation

if "n" given it is an output pipe of length n bytes,
otherwise it is an input pipe connected to the channel ID
passed in D3.

Microdrive file
MDV1 refers to Microdrive "1".

Within device names, no distinction is made between upper and lower case

letters.

46

9.0 Interfacing to SuperBASIC

When writing SuperBASIC procedures or functions in machine code, there are
several things that an applications programmer may want to do: he may wish to
look at or modify the information held in SuperBASIC variables and arrays, he
may wish to access or modify the SuperBASIC list of I/O channels, and he may
wish to reserve and use space on the arithmetic stack. He will also, of course,
wish to access the list of parameters passed to the routine and return values
either to those parameters or in a function return. In order to do this, it is
necessary to understand the data structures used by the interpreter and

to emulate the interpreter's technigues for manipulating them.

9.1 Memory Organisation within the
SuperBASIC Area

The SuperBASIC area contains twelve distinct areas:

the job header,

the SuperBASIC work area,
the name table,

the name list,

the variable values area,
the channel table,

the arithmetic stack,

the token list,

the line number table,
the program file,

the return list,

the buffer.

There are also various other stacks used by the interpreter.

The job header is located at the bottom of the SuperBASIC area, and looks just
like any other job header (see section 18.5). Immediately above this is the
SuperBASIC work area; this is an area of fixed storage used for the working
variables of the interpreter. Included in these working variables are pointers to
the other areas: the interpreter can not only shuffle these areas around, but may
ask Qdos to change the size of the whole SuperBASIC area.

47

The organisation of this area is shown in section 18.3. Throughout normal
operation of the interpreter, A6 points to the base of the SuperBASIC work

area, the whole of which may move between instructions, with a corresponding
change in A6. All the pointers are, of course, relative to A6, so that their values

need not be changed when the SuperBASIC area is moved.

The name table, the name list and the variable values area are required by the

applications programmer in order to access and/or modify SuperBASIC
variables and parameters. The channel table is required in order to access
SuperBASIC I/O channels, and the arithmetic stack (usually abbreviated to Rl
stack) is a convenient area in which to reserve storage, and is also where
parameters are passed. The remaining areas are not described in this
document.

9.2 The Name Table

All variables, procedure names, parameters and even expressions are
handled through the name table. This is a regular table of eight byte entries,
but the entries hold different information according to the type of entry.

The entries may be as follows:

48

Bytes 7-4 Bytes 3-2 Bytes 1-0 Type

Value pointer Name pointer $0001 Unset string

Value pointer Name pointer $0002 Unset floating point number
Value pointer Name pointer $0003 Unset integer

Ptr to RI stack -1 $0101 String expression

Ptr to RI stack -1 $0102 Floating point expression
Ptr to RI stack -1 $0103 Integer expression

Value pointer Name pointer $0201 String

Value pointer Name pointer $0202 Floating point number
Value pointer Name pointer $0203 Integer

Value pointer -1 $0300 Substring

Value pointer Name pointer $0301 String array

Value pointer Name pointer $0302 Floating point array

Value pointer Name pointer $0303 Integer array

Line noin msw| Name pointer $0402 SuperBASIC procedure
Line noin msw| Name pointer $0501 SuperBASIC string function
Line noin msw| Name pointer $0502 SuperBASIC f.p. function
Line noin msw| Name pointer $0503 SuperBASIC integer function
Value pointer Name pointer $0602 REPeat loop index

Value pointer Name pointer $0702 FOR loop index

Abs. address Name pointer $0800 Machine code procedure
Abs. address Name painter $0900 Machine code function

Byte 0 of the name table has an additional usage during parameter
passing: see section 9.8.

The Name pointer is a pointer to an entry in the name list (see the
following section). A name pointer of -1 indicates a nameless item

such as the value of an expression; any other negative pointer indicates a
pointer to another entry in the name table of which this entry is a copy.

The Value pointer is a pointer to an entry in the variable values area (see
section 9.4). A value pointer of -1 indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets
from the base of each area. For the RI stack, the base is at the high
address; for the others it is at the bottom.

Note that functions written in SuperBASIC are typed according to whether
the name ends in % ,$ or neither. Functions written in machine code, in
common with procedures written in SuperBASIC or machine code, have no

type.

The entries for expressions and substrings are for use within the expression
evaluator: the applications programmer would not normally use them.

9.3 Name List

The names in the name list are stored as a byte character count
followed by the characters of the name. Note that this format is different
from all other uses of strings in Qdos in which a word character count is
used.

9.4 Variable Values Area

This area is a heap in which the values are stored. The format for each type
of data item is given in the following sections.

49

9.5 Storage Formats

9.5.1. Integer Storage
An integer is a 16-bit two's complement word.

9.5.2 Floating Point Storage

A floating point number is stored as a two-byte exponent followed by a four-
byte mantissa.

The most significant four bits of the exponent are zero, whilst the remaining
twelve bits are an offset from -$800. The mantissa is two's complement and
fractional, with bit 31 of the mantissa representing -1, and bit 30 of the
mantissa representing +1/2. There are no implicit bits in the mantissa, so
either bit 31 or bit 30 will be set for a normalized number, except in the
special case of zero.

The value of the number is thus mantissa*2 to the power (exponent -
$800). If the mantissa is viewed as two's complement absolute (as opposed
to fractional), the value of the number is given by: mantissa *2 to the
power (exponent-$81F). The $1 F corresponds to 31 decimal the length of
the mantissa minus one.

Examples of floating point storage are as follows:
Hex Decimal

0804 50000000 10.00

0801 40000000 1.00
07FF 40000000 0.25
07FF 80000000 -0.50
0800 80000000 -1.00
0000 00000000 0.00

9.5.3 String Storage

A string is stored as a word character count, followed by the characters of the
string. The string storage always takes a multiple of two bytes.

Examples are as follows:

Hex String

0004 41424344 "ABeD"
0003 414243xx "ABC"
0000 -

50

9.5.4 Array Storage

An array descriptor has a header which consists of a longword offset of the
array values from the base of the variable value area, followed by the number
of dimensions (word), followed by a pair of words for each dimension. The first
word is the maximum index, the second word is the index multiplier for this
dimension.

The storage of floating point and integer arrays is entirely regular. A floating
point array takes 6 bytes per element, an integer array 2 bytes per element.

A string array is stored as an array of characters; except that the zeroth
element of the final dimension is a word containing the string length. The final
dimension defines the maximum length of the string. This is always rounded
up to the nearest even number.

A substring is the result of internal slicing operations; this is a regular array
of characters; the base of the indexing is one rather than zero.

Examples of Floating Point Storage

Floating point variables (in hex)

0000 0000 0000 0.0
0801 4000 0000 1.0
0800 8000 0000 -1.0
0804 5000 0000 10.0

Floating point arrays

base,2,3,3,2,1 DIM A(3,2)
Examples of String Storage (Numbers are in decimal)
String variable

4,65,66,67,68 "ABCD"

String array

base,2,3,12,10,1 DIM A%$(3,10)

4:65,66,67,68,%,X,X,X,X,X "ABCD"

9;49,50,51,52,53,54,55,56,57,x "123456789"

OiX, XX, X, X, X, X, X, X, X
1:32,%,%,%,%,X, X, X, X, X,

Substring array
base, 1,3,1 A$(0,1 TO 3) as above
65,66,67 "ABC"

9.6 Code Restrictions

There is a simple set of rules for writing procedures in machine code for
SuperBASIC.

1. As the SuperBASIC program area is liable to move at any time while the
execution is in user mode, all refererences to this area must be indexed by A6
or A7. A6 and A7 must never be saved, used in arithmetic or address
calculations, and must never be altered, except by pushing or popping the A7
stack. In extreme circumstances it is possible to enter supervisor mode (Trap
#0) to make the following action atomic. If this is done, A6 and User stack
pointer must not be saved or manipulated before entering supervisor mode,
and they must be restored before exiting.

2. Not more than 128 bytes must be used on the user stack.

3. DO must be returned as an error code (long).

4. D1to D7 and A0 to A5 inclusive may be treated as volatile.

9.7 Linking in New Procedures and
Functions

New SuperBASIC procedures and functions written in machine code may be
linked into the name table using the vectored routine BP.INIT (see section
16.0). When the procedures and functions are in a ROM in the suitable
format (see section 11.4), BP.INIT is called automatically. If the procedures
and functions are to be stored in RAM, they should be loaded into the
resident procedure area as, once added, they may not be removed except by
re-booting the machine. It is usually convenient to load the code for calling
BP.INIT to make the linkage into the same area, although this is not
necessary.

9.8 Parameter Passing

The SuperBASIC interpreter passes parameters using a substitution
mechanism, which operates as follows. The interpreter first evaluates

any of the parameters that are expressions. A new entry is then created at the
top of the name table for each actual parameter. In the case of a procedure or
function written in SuperBASIC, this is followed by a null entry for any formal
parameter that is missing from the actual

52

parameter list. The interpreter then swaps the new name table entries with
the old name table entries corresponding to the actual parameters. In the
case of a procedure or function written in machine code, the code is then
called with A3 pointing to the name table entry for the first parameter in the
list, and A5 pointing to the last ((A5-A3)/8 is the number of parameters).

If a local statement is encountered, the entry in the name table is copied to
a new position at the top of the table, and an empty entry put in its place.

At the end of a SuperBASIC procedure or function, the parameter entries are
copied back and local variables are removed. The parameter entries in the
name table together with any temporary storage in the variable value table are
then removed for all procedures and functions.

Byte 0 of the name table entry for a parameter has an additional meaning to
that associated with a normal name table entry. The bottom four bits have
the usual indication of type (0=null, 1=string etc.), but the top four bits are
used to indicate the separator that was present after the parameter in the
actual parameter list, together with information as to whether the actual
parameter was preceded by a hash (#).

Thus the format of byte 0 is as follows:

h sss tttt
type: O=null, 1=string, 2=floating point, 3=integer

type of following separator: 0=none, 1=comma,
2=semi-colon, 3=backslash, 4=exclamation mark,
5=TO

1 if the parameter was preceded by hash, otherwise 0

9.9 Getting the Values of Actual Parameters

For the purpose of using scalar (as opposed to array) parameters locally in the
same way as "call by value" parameters in other high-level languages, it is
expedient to use one of a set of four vectored routines which place the values
of actual parameters on the arithmetic stack. Each routine assumes that all the
parameters will be of the same type. It is passed the values of A3 and A5
which point to the name table entries for the parameters; it returns the number
of parameters fetched

53

in the least significant word of D3, and the values themselves in order on the
arithmetic stack with the first parameter at the top (lowest address) of the
stack. These routines smash the separator flags. They are as follows:
CA.GTINT gets 16-bit integers, CA.GTFP gets floating point numbers,
CA.GTSTR gets strings, and CA.GTLIN gets floating point numbers but
converts them to 32-bit long integers.

These routines may still be used when processing parameters of mixed type
or when wishing to inspect the separators. To begin with, the values of A3 and
A5 should be saved; then, for each parameter in succession, the separator
flags are inspected, and the appropriate routine is called with A3 pointing to
the parameter and A5 equal to A3+8, thus getting one parameter.

These routines smash D1, D2, D4, D6, A0 and A2. The error codes are
returned in DO and the condition codes.

A special technique is provided for use in those routines in which it is
necessary for the user to be able to type in a string without quotes, as it's
required for SuperBASIC commands involving device names. Firstly, the name
is inspected to see if it is a valid set string variable. If it is, the string is fetched
using CA.GTSTR; if it is not, the parameter's name itself is fetched from the
name list, and converted to string form by changing its word count from byte to
word, realigning the string if necessary. If a string is to be input without quotes,
it must of course follow the rules for SuperBASIC names, as described in the
Concepts manual.

9.10 The Arithmetic Stack Returned Values

The top of the arithmetic stack is usually pointed to by Al. Space may be
allocated on the stack by calling the vectored routine BV.CHRIX: the number
of bytes required is given in DO.L; DO to 03 are smashed by the call. Since
both the stack within the SuperBASIC area and the SuperBASIC area itself
may move during a call, the stack pointer should be saved in BV_RIP(A6)
before the call, and restored from BV_RIP(AB6) after the call has been
completed. The routine ensures that the restored value will be correct.

The vectored routines for getting parameters reserve their own space on the
arithmetic stack.

54

The arithmetic stack is automatically tidied up both after procedures, and
after errors in functions. To make a good return from a function, the
returned value should be at the top (lowest address) of the stack with
nothing below it (that is with both (A6,A1.L) and BV_RIP(A6) pointing to it)
when the routine is exited. The type of the returned value should be in D4 (1
=string, 2=floating point number, 3=integer). Since SuperBASIC has no long
integer type, long integers must be converted to floating point before
returning.

Values can also be returned to parameters or, indeed, global variables, by
putting the value on the arithmetic stack in the same way, pointing A3 to the
appropriate name table entry and calling the vectored routine BP.LET. DO is
an error return, and D1, D2, D3, AO, A1 and A2 are smashed. If the actual
parameter was an expression, no error will be given, but the value returned
will be lost. The type of the returned parameter is determined by the name

table entry, and the information on the arithmetic stack must be in the correct
form.

Note that strings must be aligned on the arithmetic stack so that the character
count is on a word boundary. All entries on the stack must be a multiple of two
bytes long, so that a string of odd length has one byte at the end which
contains no information.

9.11 The Channel Table

A channel number (#n) is an index to an entry in the SuperBASIC channel
table. This is a table of items which are each of length CH.LENCH (currently
$28) bytes. The base of the table is at BV_CHBAS(A6), and the top is at
BV_CHP(A®6); thus the base of the entry for channel #n is given by:

(N*CH.LENCH+BV_CHBAS(A6)) (A6)
The format of each table entry is as follows:

$00 long the channellD

$04 float current graphics cursor (x)

$0A float current graphics cursor (y)

$10 float turtle angle (degrees)

$16 byte pen status

$20 word character position on line for PRINT and INPUT
$22 word WIDTH of page

If a channel entry is off the top of the channel table, or if the channel
ID is negative, there is no channel open to that # number.

55

10.0 Hardware-related Programming

10.1 Memory Map

The 68008 has one megabyte of address space. Although an unexpanded QL uses
only the bottom 256 kbytes of this, the allocation for the remainder is determined and
should be adhered to when designing add-on hardware. This is how it is made up:

$FFFFF
Add-on ROM
$eo0000 (Up to 128 kbytes)
Add-on peripherals
(8 slots of upto
$C0000 16 kbytes each)
Add-on RAM
$40000 (Up to 512 kbytes)
On-board user RAM
$28000 (96 kbytes)
Screen RAM
$20000 (32 kbytes)
On-board 1/0
$10000 (Partially decoded)
Plug-in ROM cartridge
$0C000 (16 kbytes)
On-board ROM
$00000 (48 kbytes)

The registers in the on-board I/O area are partially decoded: the details of this
decode may vary according to different versions of the QL hardware - some
versions will recognise any address in the entire area.

56

However, the address map normally used is the same for all QLs:

Address Function Function

(Hex) (Read) (Write)

$18023 Microdrive data (track 2) Display control

$18022 Microdrive data (track 1) Microdrive/RS-232-C data
$18021 Interrupt/IPC link status Interrupt control

$18020 Microdrive/RS-232-C status Microdrive control

$18003 Real-time clock byte 3 IPC link control

$18002 Real-time clock byte 2 Transmit control

$18001 Real-time clock byte 1 Real-time clock step
$18000 Real-time clock byte 0 Real-time clock reset

The display control registers are in the ZX8301 "Master chip", and the others
are in the ZX8302 "Peripheral chip”. The details of the QL hardware are
rather obscure, and it is strongly recommended that these registers should
not be used by applications programs, and should only be accessed via
Qdos traps or vectored routines.

10.2 Display Control

The display format in memory is explained below: this format is specific to the
QL and may change on future Sinclair products. It is, therefore, strongly
advised that screen output be performed using only the standard screen driver,
together with the MT.DMODE trap.

In 512-pixel mode, two bits per pixel are used, and the GREEN and BLUE
signals are tied together, giving a choice of four colours: black, white, green
and red. On a monochrome screen, this will translate as a four level greyscale.

In 256-pixel mode, four bits per pixel are used: one bit each for Red, Green and
Blue, and one bit for flashing. The flash bit operates as a toggle: when set for the
first time, it freezes the background colour at the value set by R, G and B, and
starts flashing at the next bit in the line; when set for the second time, it stops
flashing. Flashing is always cleared at the beginning of a raster line.

57

Addressing for display memory starts at the bottom of dynamic RAM and
progresses in the order of the raster scan - from left to right and from top to
bottom of the picture. Each word in display memory is formatted as follows:

High byte (A0=0) Low Byte (A0=1) Mode

D7 D6 D5 D4 D3 D2 D1 DO D7 D6 D5 D4 D3 D2 D1 DO

G7 G6 G5 G4 G3 G2 Gl GO R7 R6 R5 R4 R3 R2 Rl RO 512-pixel
G3 F3 G2 F2 G1 F1 GO FO R3 B3 R2 B2 R1 Bl RO BO 256-pixel

R, G, Band F in the above refer to Red, Green, Blue and Flash. The
numbering is such that a binary word appears written as it will appear on the
display: ie RO is the value of Red for the rightmost pixel, that is the last pixel
to be shifted out onto the raster.

10.3 Display Control Register

This is a write-only register, which is at $18063 in the QL .

One of its bits is available through the Qdos MT.DMODE trap: bit 3,
which is 0 for 512-pixel mode and 1 for 256-pixel mode.

The other two bits of the display control register are not supported by Qdos,
these being bit 1 of the display control register, which can be used to blank
the display completely, and bit 7, which can be used to switch the base of
screen memory from $20000 to $28000. Future versions of Qdos may allow
the system variables to be initialised at $30000 to take advantage of this dual-
screen feature: the present version does not.

Bits 0,2,4,5 and 6 of the display control register should never be set to
anything other than zero, as they are reserved and may have unpredictable
results in future versions of the QL hardware.

10.4 Keyboard and Sound Control

The keyboard and loudspeaker are controlled by the QL 's second processor,
which is an 8049 single-chip microcomputer: this is known in the QL as the
Intelligent Peripheral Controller or IPC. The MT.IPCOM trap provides a set of
commands that the CPU can send to the IPC over the serial link that connects
them. This trap is discussed in greater detail in section 13.0.

58

When the keyboard is accessed via the console driver, the usual functions of
debounce and conversion to ASCII are performed, in addition to the
functions described in section 15.0. The other way of accessing the
keyboard is to use the MT.IPCOM trap to monitor the instantaneous state of
the keys directly: this is the only way of detecting multiple key presses
(necessary for joystick input), or of detecting the state of the SHIFT, CTRL
and ALT keys when no other key has been depressed. See the SuperBASIC
Keywords entry on the KEYROW function for an example of the use of this
technique.

The same trap, with different parameters, is used for sound generation.

10.5 Serial 1/0

The QL's serial /O should only be accessed via the serial driver, except for
setting the baud rate, which is performed by the MT.BAUD trap. The only
other function that can safely be performed by the user independently of the
operating system is the checking of the transmit handshake lines (DTR on
channel 1 and CTS on channel 2), which can be looked at by monitoring bits 4
and 5 of the microdrive status register respectively. Note that if the connector
is rewired to use these pins as data lines, this function could be used to
perform RS-232-C reception entirely in software, which would make it possible
to perform XON-XOFF handshaking or split baud rate operation.

10.6 Real-time Clock

The QL's real-time clock is a 32-bit seconds counter. The three traps
MT.RCLCK, MT.SCLCK and MT.ACLCK are used to read, set and adjust
the clock. The vectored routines CN.DATE and CN.DAY are used to
convert the time obtained to a string.

10.7 Network

This should not be accessed other than by the built-in device driver.

59

10.8 Microdrives

Normally, these should not be accessed other than by the built-in device driver.
However, it is possible to write routines to access microdrive sectors directly in
order to perform such functions as fast medium-to-medium copying or recovery

of data from a damaged medium.

There are four vectored routines provided for this purpose: MD.READ,
MD.WRITE, MD.VERIN and MD.SECTR. Use of these routines requires a
detailed understanding of the microdrive hardware and format, and is
probably beyond the scope of most users.

However, to use these routines the following code example shows how a
microdrive is selected or de-selected. In later versions of the operating
system it will be a vectored entry.

Sys_wser
move.b do,-(sp) ;save operation
wait
subg.w #1,sv_timo (aO) :decrement timeout
blt.s set.mode :done?
move.w #(20000*15-82)/36,d0 ;time= 18*n+42 cycles
delayl
dbra d0,delayl ;delay
bra.s wait ;repeat until
timeout expires
set mode
clr.w sv_timo (a0) -clear wait
and.b #pc.notmd, sv_tmode (a0) ‘not RS232
move.b (sp) +,d0O ’
or.b dO, sv tmode (a0) i
and.b #OFFh:pc.maskt,sv pcint (a0) ’?nherrndV(N_net
- ;disable transmit
exit interrupt
move.b sv_tmode (a0) ,pc tctrel .
- - ;set pc
rts
Sys_rser
bclr #pc. .serb, sv_tmode (a0) ;set RS232 mode
or.b #pc.maskt, sv_pcint (a0) :enable transmit
interrupt
bra.s exit
md desel
moveq #pc.desel,d2 ;clock in deselect bit first
moveq #7,dl ;deselect all
bra.s sedes

60

md_selec

moveq #pc.selec,d2 ;clock in select bit first

subg.w #1,d1l ;and clock it through n
;times
sedes
clk loop
move.b d2, (a3) ;QOckh@h
moveq #(18*15-40)/4,d0 ;time=2*n+20 cycles
ror.1l do,do
bclr #pc..sclk,d2 ;clock low _ .
move.b d2, (a3) ;... clocks d2.0 into first
;drive
moveq #(18*15-40)/4,d0 ;time=2*n+ 20 cycles

ror.1l do, do

moveq #pc.desel,d2 ;clock high - deselect bit

;next
dbra dl,clk _loop
rts
drive
bsr.s startup
bsr.s wind dwn
rts
; Routine to start up a microdrive.
; NB: RETURNS IN SUPERVISOR MODE (if d3 =1
to 8)
d1 smashed
; dl d2 smashed
;a2 d3 preserved
; d3 number of microdrive a0 SV_BASE
;a0 a3 mdctrl (= 18020h)
; a3
; errors:
; OR: microdrive out of range
startup
cmp. 1 #1,d3 ;legal microdrive?
blt.s i1l drve ;jump if not
cmp #8,d3 ;legal microdrive?
bgt.s ill drve ;jump if not
move.l (sp)+,a3 ;a3=return address
moveq #mt.inf, d0 ;select MT.INF
trap #1 ;a0='to system
;variables
trap #0

;supervisor mode

move.l a3, - (sp) .
v P ;'return’ (geddit?) the

moveq #10h,d0 ;return address
bsr sys wser ;microdrive mode
a :wait for RS232 to
;complete

61

62

or #0700h, sr
move.l d3,d1l

move.l #mdctrl, a3
bsr md_selec
moveq #0,d0
rts
ill drve
moveq #-4,d0
rts

Routine to wind down (al!!) microdrives

N.B. MUST BE CALLED IN SUPERVISOR MODE

; dl

; d2

; a0

; a3

wind dwn
moveq #mt.inf, d0
trap #1
move.l #mdctrl, a3
bsr.s md_desel
bsr sys_rser
move. 1 (sp)+,a3
move #0,sr

move.l a3, - (sp)

rts

;shut out rest of world
;d1 is microdrive to be
;started

;a3= "control register
;start it up

;no problems

;return

;error=out of range

d1 smashed

d2 smashed

a0 SV_BASE

a3 Minstruction after
call to here(!!)

;select MT.INF

;a0= "to system
;variables

;a3= ~control register
;wind it down

;re-enable RS232
;a3=return address
;interrupts off
;'return’ (it's a killer!)
;return addr.

;return

11.0 AddingPeripheral Cards
to the QL

Peripheral cards may be plugged into the expansion connector on the left-
hand side of the QL , or into one of the connectors in the QL expansion
module: a unit which allows several add-on cards to be connected to the QL
in parallel. The QL expansion module consists of a power supply and a card
cage containing a specially wired backplane. The backplane is connected to
the QL via a ribbon cable and buffer card.

There are two general categories of peripheral card for the QL : pure add-
on memory cards, and other peripheral cards.

It is intended that only one pure add-on RAM card be plugged into the machine
at anyone time. It is allocated the address area between $40000 and $BFFFF;
the add-on memory should be contiguous from $40000 upwards. This allows
for an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 128 kbytes, which is
allocated the addresses $E0000 to $FFFFF.

Other peripheral cards contain electronics for the devices being added, a
small ROM containing the drivers for the devices being added together with a
code allowing the QL to detect that the card is present, and a 4-bit comparator
which is used to select the card as explained below.

Note that the convention adopted in this document for an active low signal is to
append the letter "L" to the end of the signal name, as in DTACKL, VPAL etc.
This takes the place of the overbar indication used in the data sheets from
most vendors.

11.1 Expansion Connector

The expansion connector allows extra peripherals to be plugged into the QL.
Details of the connections available at the connector may be found in the QL
Concepts manual.

63

The connector inside both the QL and the expansion module is a 64- way
male DIN-41612 indirect edge connector, as found on standard Eurocard
modules. The connector on each add-on card should be the inverse version
of this.

The VIN supply is in the region of +9V DC: the trough never falling below 7V.
Up to 500 mA may be drawn from this to power the card.

No add-on card should load any pin on the edge connector by more than two
LSTTL loads. All add-on card data bus output drivers should be a 74LS245
or equivalent, in terms of drive ability, and being tri-state.

When the expansion module is connected, RESETCPUL is held low until
power is applied to the expansion module. Switching off the expansion
module also forces RESETCPUL low.

11.2 CPU Interface

The CPU interface is totally memory-mapped onto the 68008's bus, control
of the bus for use with the video display controller being obtained by using
the DTACKL signal to arbitrate the bus. Memory access is entirely
controlled by DSL, with ASL left unused. ASL should not be used to gate
any add-on hardware.

An unexpanded QL does not look at address lines A19 and A18. In
peripheral cards which are to be added to the QL, it is hecessary for each
card to disable the circuitry on the QL itself when that peripheral card
recognises its own address.This is achieved by pulling signal DSMCL high
before DSL goes low including buffering times. This is done typically by
using a fast NPN switching transistor (such as an MPS2369) connected as
an emitter follower with the emitter connected to DSMCL, the collector to
+5V and the base to a logic Signal. Note that the timing for this operation is
the most critical in most hardware interfaces to the QL, especially when the
necessary signals have been buffered.

Add-on cards must supply DTACKL or VPAL as required, to notify the
CPU that they have recognised their address.

All 68008 signals are available both on the expansion connector and in the
expansion module to allow expansion to include coprocessors or other
peripherals.

The following signals are outputs only: A0-A19, RDWL, ASL, DSL, BGL,
CLKCPU, E, RED, BLUE, GREEN, CSYNCL, VSYNCH, ROMOEH, FCO0-2,
RESETCPUL.

64

The following lines are inputs only, and should only be driven from open
collector outputs: DTACKL, BRL, VPAL, IPLOL, IPL1L, BERRL, EXTINTL,
DBGL.

The data bus, D0-D7, is bidirectional.

When using the QL expansion module, the data bus buffers in the module
are enabled whenever A18 or A19 is high, or if the Data Bus Grab Signal

(DBGL) is asserted by any add-on card on pin 25A of the edge connector.
If DBGL is to be used, it should be driven by an open collector buffer.

The EXTINTL pin may be used to generate a level 2 external interrupt,
which can be linked to a user task (see section 6.3). Note thatthe EXTINTL
pin must not be negated until the Qdos start-up mechanism is complete, or
there is a risk of the system hanging up.

11.3 Peripheral Card Addressing

Peripheral cards (other than pure add-on memory cards) are allocated the
address space between $C0000H and $DFFFFH. Each peripheral card,
when selected, must disable DSMCL and assert VPAL or DTACKL as
required, for its own use. This address space is split into eight slots of

16 kbytes each; each peripheral card should normally take only one block
if a full set of eight peripheral cards is to be allowed to operate
concurrently.

There is a set of four select lines, SPO-SP3, appearing on the edge
connector. The first card in the QL expansion module, or a single card
directly plugged into the QL, receives a value of zero on these four lines.
Each slot in the expansion module has a value one different from that in the
other slots: this means that each card isallocated 16 kbytes of address
space. The card select logic compares the values on A17-A14 against the
number coming in on the select lines in order to determine whether that
card is selected. For the card to be selected it must be the case that
A14=SP0, A15=SP1, A16=SP2 and A17=SP3.

If there is a ROM containing device drivers for the peripheral card, it should
sit in the bottom addresses of the 16 kbyte block. The format of the lowest
part of this ROM is specified in the next section.

65

11.4 Add-on Card ROMs

When the machine is booted, the operating system checks for plug-in
ROM drivers by looking forthe characteristic longword flag $4AFB0001 at
the base of each location in which a ROM might be present. The beginning
of a plug-in ROM should be in the following format:

00 $4AFBO0001 (flag to indicate ROM is present)
04 pointer to list of BASIC procedures and functions

06 pointer to initialisation routine
08 string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero
then there will be no attempt to link routines into SuperBASIC.

The list of BASIC procedures and functions is in the form used by BP.INIT (see
section 16.0).

At start-up the machine will link in the additional BASIC procedures from the
ROM, then call the initialisation routine (in user mode) which must not
modify A6, and finally must restore AO (the initial window ID), and A3, the
pointer to the ROM, on exit. Up to 128 bytes may be used on the user stack.

The description should be in the form of a character count (word) followed
by the ASCII characters of the device description(s) ending with the
newline character (ASCII 10). It is recommended that the number of
characters should be limited to 36.

All code for device drivers must be position independent, since the
addresses of the ROM and the devices on the card will be dependent upon
the position at which it has been plugged into the QL expansion module.
This allows multiple copies of the same add-on card to be used
simultaneously.

66

12.0 Non-English QLs

There are three areas in which non-English QLs may differ from English

QLs: the video, the keyboard, and the character set for serial
communications.

The version codes for non-English QL s are adjusted appropriately to
contain a character identifying the country. In the version code returned by
MT.INF, this character replaces the decimal point; in the string returned by
the SuperBASIC VER$ function, the character is added on at the end,
producing a string three characters long for non-English QLs.

12.1 Video

This is different for countries where the television system is NTSC, which
permits the use of fewer raster lines than PAL. In QLs for such countries, the
following options are the defaults:

For monitor operation, a 50Hz 624-line non-interlaced system is used,; this is
the same system as is used on the English QL. The full 512x256 pixel display
is available, and the default windows and character size are the same as for
the monitor mode on an English QL .

For TV operation, a 60Hz 524-line non-interlaced system is used in which the
number of raster lines available is limited to 192. In order to ease the task of
software conversion, an alternate display font is provided which allows a 6x8
character square instead of the usual 6x10. This ensures approximately the
same number of visible rows of text on both PAL and NTSC QL s, at the cost
of true descenders and reduced vertical spacing. The default windows and
graphics scaling for TV operation are different from those of the English QL .

It is to be expected that a different version of any applications software (or at
least different options) will be required for NTSC operation on domestic
televisions.

67

12.2 Non-English-language Keyboards

The keyboard layout for most European countries will be different from the
English layout. This difference should be largely transparent to applications
software, since the "QL ASCII" codes contain all the characters necessary for
the European countries in question, and the codes generated are independent
of the keyboard layout and hence of the actual key depressions required to
generate them.

However, there are a few subtleties, the following being the most obvious:

1. A program which draws pictures of keys in certain places will certainly
produce an incorrect drawing if the location of those keys has changed between
countries.

2. The keyrow function (or MT.IPCOM trap) refers to the physical position of the
keys, not to their logical meaning. For example, a test on an English QL for the
letter "0" using keyrow will turn into a test for the letter "A" on a French QL which
has an AZERTY keyboard.

3. An instruction to "hit any key" will not be strictly accurate for a country which
employs non-spacing diacriticals, where the keypress of an accent character
does not generate a code until the character to be accented is pressed. The
length of the type-ahead buffer in the IPC will be apparently reduced in such
cases.

12.3 Character Set

The English character set is available in all countries. However, in non-English
countries, the character set for serial communications may (optionally) be
translated into a "local" character set, this being chosen by the Sinclair
distributor for that country as being a commonly used interface standard. A
further option allows the user to specify his own translation table, since it is
anticipated that a number of countries will have several standards (i.e., no
standards at all).

68

12.4 Special Alphabets

Languages with non-Roman alphabets, such as Hebrew, Greek, Thai, Arabic,
etc., require special treatment. No general scheme has been devised for making
software transportable to these countries, and the implementation means will be
specific to each country.

13.0 Manager Traps

The special trap #0 is used to enter supervisor mode. The user should store
the status register somewhere before calling this trap, so that he can return to
user mode by restoring it to its previous value.

TRAP #1 D0=$15 MT.ACLCK
Adjust the clock

Call parameters Return parameters

D1.L adjustment in seconds D1.L time in seconds

D2 D2 ?7??

D3 D3 ??7?

AO AO 7?77

Al A1l preserved

A2 A2 preserved

A3 A3 preserved

As setting the clock takes a significant time, no adjustment is made if a call is
made to adjust the clock and D1 =0.

Time starts at 00:00 1 January 1961.

TRAP #1 DO=%A MTACT'V

Activate a job

Call parameters
Return parameters

D1.L jobID

D2.B priority (0 to 127) D1.L jobID

D3.W timeout (0 or -1) AO D2 preserved

Al D3 preserved

A2 AO base of job ctrl area
A3 Al preserved

A2 preserved

Error returns:
A3 preserved if D3 =0

NJ job does not exist
NC job already active

This activates a job in the transient area. Execution commences at the start
address defined when the job was created.

If the timeout is zero then the execution of the current job continues, otherwise
the current job will be suspended until the job activated has
completed. The trap will then return with the error code from that job.

70

TRAP #1 D0=$16
Allocate BASIC program area

Call parameters

D1.L number of bytes required
D2

D3

AO

Al

A2

A3

A6 base address

A7 user stack pointer

Error returns:

OM out of memory

MT.ALBAS

Return parameters

D1.L nr. bytes allocated

D2
D3
AO
Al
A2
A3
A6
A7

???
?2??
??7?
?2??
?2??
?2??
new base address
new stack pointer

71

TRAP#1 D0=$18
Allocate common heap area
Call parameters

D1.L nr. bytes required
D2.L owner job ID

D3

A0

Al

A2

A3

Error returns:

OM out of memory
NJ job does not exist

MT.ALCHP

Return parameters

D1.L nr. bytes allocated

D2
D3
AO
Al
A2
A3

??7?
?2??
base address of area
?2?7?
??7?
??7?

This trap is a specific example of the general heap allocation mechanism
described in section 2.1.4 and accessible using MT.ALLOC.

72

Trap #1 D0=$C

Allocate an area in a heap
Call parameters

D1.L length required

D2

D3

AO ptrto ptr to free space
Al

A2

A3

A6 base address

Error returns:

MT.ALLOC

Return parameters

D1.L length allocated

D2
D3
AO
Al
A2
A3
A6

OM no free space large enough

??7?

???

base of area allocated
??7?

??7?

??7?

preserved

Two trap entries are provided for user heap management where this is required

to be atomic. A6 is used as a base address for both this call and for
MT.LNKFR so that A0 (and Al) is an address relative to A6.

See section 2.1.4 for details of the heap mechanism.

73

TRAP #1 DO=$E

Allocate resident procedure area

Call parameters

D1.L number of bytes reqd.
D2
D3
A0
Al
A2
A3

Error returns:

OM out of memory

MT.ALRES

Return parameters

D1
D2
D3
AO
Al
A2
A3

??77?
??77?
??7?
base address of area
??7?
??7?
??7?

NC unable to allocate (TRNSP area not empty)

This trap, in common with its partner MT.RERES (release resident
procedure area) should only be invoked when the transient program area is

empty.

74

TRAP #1 D0=$12

Set the baud rate
Call parameters

D1.W baud rate
D2
D3
A0
Al
A2

A3
BP non recognised baud rate

MT.BAUD

Return parameters

D1
D2
D3
AO
Al
A2
A3

?2??

preserved
preserved
preserved
preserved
preserved
preserved

TRAP #1 D0=$1

MT.CJOB

Create a job in transient program area

Call parameters

D1.L ownerjob ID

D2.L length of code (bytes)
D3.L length of data space AO
Al start address or O

A2

A3
Error returns:

OM out of memory

Return parameters

D1.L jobID

D2 preserved

D3 preserved

AO base of area allocated
Al preserved

A2 preserved

A3 preserved

NJ noroom in job table or D1 is not a job

75

This trap allocates space in the transient program area, and sets up a job
entry in the scheduler tables. This does not invoke the job and the only
initialisation is that two words of O are put on the stack. The program itself
would normally be loaded, by another job, into the space allocated, after this
system call. The stack pointer saved in the job control area points initially to
two zero words on the stack (at the highest addresses in the job's data area);
if channels are to be opened for the job, or a command string is to be passed
to the job, then this can be done before the job is activated.

If D1 is negative, the new job is independent, otherwise it is owned by the
calling job.

TRAP #1 D0=$10 MT.DMODE

Set or read the display mode

Call parameters Return parameters

D1.B key -1 read mode D1.B display mode
0 mode is 4 colour
8 mode is 8 colour

D2.B key -1 read display D2.B display type

0 monitor

1 625-line TV

2525 line TV
D3 D3 preserved
Al AO preserved
Al Al preserved
A2 A2 preserved
A3 A3 preserved

A4 27?

This call is used to set or read the current display mode. It is treated as a
manager trap as it affects all the displayed windows. If a call is made to set the
screen mode, then all the windows on the screen are cleared and the character
sizes may be adjusted. Obviously, there are serious risks involved in calling this
trap to set the mode when there are jobs in the machine accessing the screen.

76

TRAP #1 D0=$6

MT.FREE

Find largest contiguous free space that may be allocated in

the transient program area
Call parameters

D1
D2
D3
AO
Al
A2
A3

Return parameters

D1.L length of space found

D2
D3
AO
Al
A2
A3

???
???
?2??
?2??
?2?7?
???

TRAP #1 D0=$5

Force remove job from transient program area

Call parameters

D1.L job ID
D2

D3.L error code
A0

Al

A2

A3

Error returns:

NJ job does not exist

MT.FRJOB

Return parameters

D1
D2
D3
AO
Al
A2
A3

??7?
??7?
?2?7?
???
??7?
??7?
??7?

This inactivates a complete job tree and deletes all jobs init. If D1 is a

negative word then the job is the current job.

7

Neither of the traps MT.FRJOB or MT.RJOB to remove jobs can remove job
0.

Neither of these traps are guaranteed atomic.

If there is a job waiting on completion of any job removed, this is released
with 00 set to the error code (see MT.ACTIV D0=$%$A).

MT.INF

TRAP #1 D0=$0

System information

Call parameters Return parameters

D1 D1.L currentjob 10

D2 D2.L ASCII version (n.nn)
D3 D3 preserved

A0 AO pointer to system vars
Al Al preserved

A2 A2 preserved

A3 A3 preserved

78

TRAP #1 D0O=$11 MT.IPCOM

Send a command to the IPC

Call parameters Return parameters
D1 D1.B return parameter
D2 D2 preserved
D3 D3 preserved
D5 1?7?77
D7 ?7??
A0 A0 preserved
Al Al preserved
A2 A2 preserved
A3 pointer to command A3 preserved

This trap sends a command to the IPC.

A command sent to the IPC is a nibble followed by a stream of nibbles or bytes
being the parameters of the command; some information may then be returned
from the IPC. The command format for MT.IPCOM is a header describing the
command to be sent, followed by the parameters to be sent, followed by a byte
indicating whether a reply is expected. The IPC communication is completely
unprotected and the command must not contain any errors or else the entire
machine will hang up. IPC communications is a very slow process and excessive
use of the IPC, for example: polling all rows of the keyboard - the cursor keys
have been organised to all be in one row, will cause very high processor
overheads.

The command format allows 0, 4 or 8 bits to be transferred from each byte in
the parameter block. This is encoded in 2 bits:

00 send least significant 4 bits
01 send nothing
10 send all 8 bits
11 send nothing.

79

The complete command format is:

1 byte
1 byte
1 long word

n bytes
1 byte

the IPC command nibble in the LS 4 bits; the
number of parameter bytes to follow; containing
the codes for the amount of each parameter byte
to be sent in reverse order: bits 1,0 the amount of
the first byte to send bits 3,2 the amount of the
second byte etc.:

the parameter bytes

length of reply encoded in bits 1,0.

Most of the IPC commands are for use by the operating system and any
attempt by application programs to use these is liable to cause loss of data
or worse. There are three commands for the IPC which may be used by
applications programs:

$9

$A

$B

80

read a row of the keyboard, 1 parameter

4 bits

8 hits reply

the row number

initiate sound, 8 parameters

8 bits

8 bits
16 bits
16 bits
4 hits

4 hits

4 bits

4 bits
no reply

pitch 1

pitch2

interval between steps
duration

step in pitch

wrap

randomness of step
fuzziness

kill sound, no parameters, no reply.

TRAP #1 D0=$2

Information on a job

Call parameters

D1.L job 10
D2.L job at top of tree
D3

AO
Al
A2

A3

Error returns:

NJ job does not exist

MTJINF

Return parameters

D1.L next job in tree
D2.L owner job
D3.L MSB -ve if suspended

AO
Al
A2
A3

LSB priority

base address of job
?2?7?

preserved
preserved

This trap returns the status of a job.

This trap may be used to check the status of a tree of jobs. On each call

02 should be the 10 of the job at the top of the tree; to scan a complete tree
the trap is made with 01 being the return value of the previous call. When
the tree has been completely scanned 01 is returned equal to zero.

MT.LDD See the entry for MT.LXINT for details.

MT.LIOD See the entry for MT.LXINT for details.

81

Trap #1 D0=$0

Link a free space (back) into a heap

MT.LNKFR

Call parameters Return parameters
D1.L length to link in D1 77

D2 D2 M

D3 D3 7

AO base of new space A0 ??7?

Al ptrto ptr to free space Al M7?

A2 A2 7?

A3 A3 77?

A6 base address A6 preserved

A6 is used as a base address for this call and for MT.ALLOC so that AO (and
Al) is an address relative to A6.

MT.LPOLL See the entry for MT.LXINT for details.
MT.LSCHD See the entry for MT.LXINT for details.

82

TRAP#1 DO=$1A

Call parameters

D1
D2
D3
A0
Al
A2
A3

DO=$1C
DO=$1E
D0=$20
D0=$22

Link an external interrupt service routine
a polling 50/60 Hz service routine

a scheduler loop task
an I/O device driver

MT.LXINT

MT.LPOLL
MT.LSCHD
MT.LIOD
MT.LDD

or a directory device driver into the operating system

D1
D2
D3
address of link AO
Al
A2

A3

preserved
preserved
preserved
preserved
?7??

preserved
preserved

Return parameters

83

TRAP #1 D0=$B
Change job priority
Call parameters

D1.L jobID

D2. B priority (0 to 127)
D3

A0

Al

A2

A3

Error returns:

NJ job does not exist

MT.PRIOR

Return parameters

D1.L jobID
D2 preserved
D3 preserved
AO base of job ctrl area

Al preserved
A2 preserved
A3 preserved

This call is used to change the priority of a job. If D1 is a negative word it will
change the priority of the current job. Setting the priority to O will cause
inactivation. This call re-enters the scheduler and so a job setting its own priority

to zero will be immediately inactivated.

TRAP #1 D0O=$13

Read the clock

Call parameters

D1
D2
D3
A0
Al
A2
A3

MT.RCLCK

Return parameters

D1. L time in seconds

D2 ?7??
D3 preserved
A0 ?7?7?

Al preserved
A2 preserved
A3 preserved

84

MT.RDD See the entry for MT.RXINT for details.

D2
D3
A0
Al
A2
A3
A6
A7

TRAP #1 D0O=$17

Release BASIC program area
Call parameters

D1.L nr. of bytes to release

base address
user stack pointer

MT.REBAS

Return parameters

D1.L nr. bytes released

D2
D3
AO
Al
A2
A3
A6
A7

??77?
??7?
??7?
??77?
??7?
??7?
new base address
new stack pointer

D1
D2
D3
A0
Al
A2
A3

TRAP #1 D0=$19

Release common heap area

Call parameters

base of areato be freed

MT.RECHP

Return parameters

D1
D2
D3
A0
Al
A2
A3

277
277
277
277
277
277
277

85

TRAP #1 D0=$9 MT.RELJB

Release a job

Call parameters Return parameters

D1.L job ID D1.L job ID

D2 D2 preserved

D3 D3 preserved

A0 A0 base of job ctrl area
Al Al preserved

A2 A2 preserved

A3 A3 preserved

Error returns:

NJ not a valid job ID

After this call all jobs are rescheduled.

The activity of jobs can be controlled by activation or by modification of the
priority levels. A job at priority level O is inactive, at any other priority level it
is active.

86

TRAP #1 DO=$F MT.RERES

Release resident procedure area

Call parameters Return parameters
D1 D1 7
D2 D2 7?
D3 D3 ?7?
A0 A0 772
Al Al ?7?
A2 A2 777
A3 A3 ??7?

Error returns:

NC unable to release (TRNSP area not empty)

This trap, in common with its partner, MT.ALRES (allocate resident
procedure area), should only be invoked when the transient program area is
empty.

MT.RIOD See the entry for MT.RXINT for details.

87

TRAP#1 DO=%$4

Call parameters

D1.L jobl0
D2

D3.L error code
AO

Al

A2

A3

Error returns:

NJ job does not exist
NC job not inactive

Remove job from transient program area

MT.RJOB

Return parameters

D1
D2
D3
A0
Al
A2
A3

??7?
??7?
?2??
7?7
?2??
7?7
???

This trap removes a job (and its subsidiaries) from the transient program
area. Only inactive jobs may be removed.

MT.RPOLL See the entry for MT.RXINT for details.
MT.RSCHD See the entry for MT.RXINT for details.

88

TRAP #1 DO=$1B MT.RXINT

D0=$1D MT.RPOLL
DO=$1F MT.RSCHD
D0=$21 MT.RIOD
D0=$23 MT.RDD

Remove an external interrupt service routine a
polling 50/60 Hz service routine
a scheduler loop task
an 10 device driver
or a directory device driver from the operating

system
Call parameters Return parameters
D1 D1 preserved
D2 D2 preserved
D3 D3 preserved
A0 address of link ﬁ‘i preserved
'2; A2 preserved
A3 preserved
A3

89

TRAP #1 D0=$14

Set the clock

Call parameters

D1.L time in seconds
D2
D3
A0
Al
A2
A3

MT.SCLCK

Return parameters

D1.L time in seconds

D2
D3
AO
Al
A2
A3

???
?7??
?7??
preserved
preserved
preserved

90

TRAP #1 D0=$8 MT.SUSJB

Suspend a job

Call parameters Return parameters

D1.L jobID D1.L jobID

D2 D2 preserved

D3.W timeout period D3 preserved

A0 A0 base of job ctrl area
Al address of flag byte Al preserved

A2 A2 preserved

A3 A3 preserved

Error returns:

NJ not a valid job ID

A job may be suspended for an indefinite period, or until a given time has
elapsed. The timeout period is up to ($7FFF times the frame time).

If the job ID is a negative word, then the current job is suspended. The flag
byte is cleared when the job is released. If there is no flag byte, then A 1
should be o. If the timeout period is specified as -1, then the suspension is
indefinite; no other negative value should be used. If the job is already
suspended, the suspension will be reset. All jobs are rescheduled.

91

TRAP #1 D0=$7 MT.TRAPV

Set the per-job pointer to trap vectors

Call parameters Return parameters
D1.L job ID D1.L job ID

D2 D2 preserved
D3 D3 preserved
A0 A0 base of job
Al pointer to table Al 777

A2 A2 preserved

A3 A3 preserved

Note: When a routine in the table is entered as a result of an exception, the
CPU is in supervisor mode. The routine should return with an RTE command
(not RTS). Any registers used must be saved and restored.

92

14.0 I/O Management Traps

TRAP #2 D0=$2

Close a channel

Call parameters

D1
D2
D3
AOQ channel ID
Al
A2
A3

Error returns:

NO channel is not open

|10.CLOSE

Return parameters

D1 preserved
D2 preserved
D3 preserved

A0 2727
Al

27
?

A2 preserved
A3 preserved

93

TRAP #2 D0=%$4
Delete a file

Call parameters

D1.L job ID (as file opent!!)

D2

D3

AO address of channel name
Al

A2

A3

Error returns:

Return parameters

D1
D2
D3
AO
Al
A2
A3

?2??
preserved
???
???
???
preserved
preserved

NO not opened -too many channels open

OM out of memory

NF file or device not found
BN bad file or device name

|O.DELET

94

TRAP #2 D0=$3 |O.FORMT

Format a sectored medium

Call parameters Return parameters

D1 D1.W number of good sectors
D2 D2.W total nr of sectors

D3 D3 preserved

A0 ptr to medium name A0 777

Al Al 2727

A2 preserved

A2
A3 preserved

A3
Error returns:

OM out of memory
NF drive not found

IU drive in use
FF format failed

The medium name is in the form of a character count (word) followed by the
ASCII characters of the drive name, the drive number, underscore then up to
10 characters for the medium name. For example, MDV1_November.

TRAP #2 DO=$1 |IO.OPEN

Open a channel

Call parameters Return parameters
D1.L job ID D1 jobID

D2 D2 preserved
D3.L code D3 preserved

0 old (exclusive) file or device
1 old (shared) file

2 new (exclusive) file

3 new (overwrite) file

4 open directory

AO address of channel name AO channel ID
Al Al ??7?

A2 A2 preserved
A3 A3 Ppreserved

Error returns:

NO not opened - too many channels open
NJ job does not exist

OM out of memory

NF file or device not found

EX file already exists

IU file or device in use

BN bad file or device name

If the job ID is passed as a negative word (for example -1) then the channel
will be associated with the current job.

The file or device name should be a string of ASCII characters. This string is
preceded by a character count (word), the pointer should point to this word (on
a word boundary).

The error return "BN" indicates that the name of the device has been
recognised but that the additional information is incorrect, for example
CON_512y240.

The code is usually ignored for access to any non-shared device: in practice,
this is anything other than a file store. If the error code is non- zero then no
channel has been opened.

Note that New (overwrite) is not currently supported for Microdrive files.

97

15.0 I/O Traps

TRAP#3 D0=$40

FS.CHECK

Check all pending operations on a file

Call parameters

D1
D2

D3.W timeout
A0 channel ID
Al

A2

A3
Error returns:

NC not complete
NO channel not open

Return parameters

D1 7?77
D2 preserved

D3. L preserved
A0 preserved
Al ???

A2 preserved
A3 preserved

This trap is used to check whether all of the pending operations have
completed.

98

TRAP #3 DO=$41 FS.FLUSH

Flush buffers for this file

Call parameters Return parameters
D1 D1 ?7??

D2 D2 preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
Al Al ???

A2 A2 preserved
A3 A3 preserved

Error returns:

NC not complete
NO channel not open

When a write operation to a file is complete, the data written may still be in the
slave blocks rather than on the file. For further details please see Section 5.2
on File I/0O. This call may be used to check that a file is in a known state.

TRAP #3 D0=$47 FS.HEADR

Read file header

Call parameters
Return parameters

D1

D2.W buffer length D1.W length of header read
D3.W timeout D2 preserved

A0 channel ID D3.L preserved

Al base of read buffer A0 preserved

A2 Al top of read buffer
A3 A2 preserved

A3 preserved

Error returns:

NC not complete
NO channel not open
BO buffer overflow

The read header call is provided so that a job can allocate the space for a load
call as well as determining the characteristics of a file. The buffer provided
must be at least 14 bytes long. In the case of a trap to a pure serial device,
then the length of the header returned in D1 will be spurious.

The file pointer is such that position zero is the first byte after the header.

Thus block boundaries on standard directory driver files are at positions
512*n-64.

100

TRAP#3 D0=$46

Set file header

Call parameters

D1

D2

D3.W timeout
A0 channellO

FS.HEADS

Return parameters

D1.W length of header set

D2
D3.L
A0

Al base of header def

A2
A3

Error returns:

Al
A2
A3

NC not complete

NO channel

not open

preserved
preserved
preserved
end of header def
preserved
preserved

This call sets the first 14 bytes of the header. The length of file will normally be
overwritten by the filing system. When a header is sent over a pure serial
device, then the 14 bytes of the header are preceded by a byte $FF.

101

TRAP #3 D0=$48 FS.LOAD

Load file into memory

Call parameters Return parameters

D1 D1 7?7?77

D2.L length of file D2 preserved

D3.W timeout D3. L preserved

A0 channellD AO preserved

Al base address for load Al top address after load
A2 A2 preserved

A3 A3 preserved

Error returns:

NO channel not open

Files may be loaded into memory in their entirety with the file load trap. If the
transient program area is used for this, a trap # 1 must have been invoked to
reserve the space before the file load trap is invoked.

D3 should be set to -1 before both this trap, and FS.SAVE, and the base
address in A1 must be even.

102

TRAP#3 D0=$45 FS.MDINF

Get information about medium

Call parameters Return parameters

D1 D1.L empty/good sectors
D2 D2 preserved

D3.W timeout D3.L preserved

AO channel ID A0 preserved

Al ptr to 10 byte buffer Al end of medium name
A2 A2 ???

A3 A3 ?7?7?

Error returns:

NC not complete
NO channel not open

The name of the medium, its capacity, and the available space may be
obtained for a file or directory that is open.

The medium name is 10 bytes long and left justified. Any remaining bytes
are filled with the space character ($20).

The number of empty sectors is in the most significant word (msw) of
D1, the total available on the medium is in the least significant word
(Isw).

A sector is 512 bytes.

103

TRAP#3 D0=$42
Position file pointer absolute
Call parameters

D1.L file position
D2

D3.W timeout
A0 channel 10
Al

A2

A3

Error returns:
NC not complete

NO channel not open
EF end of file

FS.POSAB

Return parameters

D1.L new file position
D2 preserved
D3.L preserved

A0 preserved

Al ???

A2 preserved

A3 preserved

104

TRAP #3 DO=$43 FS.POSRE

Position file pointer relative

Call parameters Return parameters

D1.L offsetto file pointer D1.L new file position
D2 D2 preserved

D3 preserved

D3.W timeout A0 preserved

A0 channel ID Al ?2?2?

22 A2 preserved
A3 preserved

A3

Error returns:

NC not complete
NO channel not open
EF end of file

If a file positioning trap returns an off file limits error, then the pointer is set to
the nearest limit, this being 0 or end of file. The relative file positioning may, of
course, be used to read the current file position.

105

TRAP#3 D0=%$49

Save file from memory

Call parameters

D1
D2.L length of file
D3.W timeout

A0 channel 10

Al base address of file
A2

A3

Error returns:

NO channel not open
OF drive full

FS.SAVE

Return parameters

D1 2?2

D2 preserved

D3.L preserved

A0 preserved

Al top address of file
A2 preserved

A3 preserved

In common with FS.LOAD, D3 should be set to -1 before this trap, and the

base address in A1 must be even.

106

TRAP #3 D0=$4 |O.EDLIN

Edit a line of characters (console driver only)

Call parameters Return parameters

D1 cursor/line length D1 cursor/line length
D2.W length of buffer D2 preserved

D3.W timeout D3 preserved

AO channel ID A0 preserved

Al pointer to end of line Al pointer to end of line
A2 A2 preserved

A3 A3 preserved

Error returns:

NC not complete
NO channel not open
BO buffer overflow

This is similar to the fetch line trap, except that the pointer A 1 is always to the
end of the line, D1 contains the current cursor position in the msw and the
length of the line in the Isw and the line (from the current cursor position) is
written out to the console when the call is made. The line should not have a
terminating character when the trap is made, but the terminating character will
be included in the character count on return. Enter (ASCII 10), up cursor or
down cursor are all acceptable terminatingcharacters.

107

TRAP#3 DO0=$1 IO.FBYTE

Fetch a byte
Call parameters Return parameters
D1 D1.B byte fetched
D2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved

Al ??7?

Al
A2 A2 preserved
A3 A3 preserved

Error returns:

NC not complete
NO channel not open
EF end of file

108

TRAP #3 DO=$%$2 or 3

|O.FLINE

IO.FSTRG

D0=$2 IO.FLINE fetch aline of characters terminated

by ASCII <LF> ($A)

D0=$3 IO.FSTRG fetch astring of bytes

Call parameters

D1
D2.W length of buffer
D3.W timeout

A0 channel ID

Al base of buffer
A2

A3

Error returns:
NC not complete

NO channel not open
EF end of file

Return parameters

D1.W nr. of bytes fetched
D2.W preserved

D3.L
AO
Al
A2
A3

BO buffer overflow (fetch line only)

preserved
preserved
updated ptr to buffer
preserved
preserved

The character count of a fetch a line trap includes the linefeed character

if found.

10.FSTRG See the entry for IO.FLINE for details.

109

TRAP #3 DO0=%$0
Check for pending input
Call parameters

D1

D2

D3. W timeout
A0 channel ID
Al

A2

A3

Error returns:

NO channel not open
EF end of file

Return parameters

D1 ???

D2.L preserved
D3.L preserved
A0 preserved

Al ???

A2 preserved
A3 preserved

NC not complete (no pending input)

|O.PEND

This trap is used to check for pending input on a channel. It does not read
any data or modify the input channel in any way. This only works on the
console device if D3=0 and the keyboard queue is already connected to the

console.

110

TRAP #3 D0=%5

Send a byte

Call parameters

D1.B byte to be sent

D2

D3.W timeout

AO
Al
A2
A3

channellD

Error returns:

NC not complete

NO channel not open

DF drive full

OR off window/paper etc

Return parameters

D1 1?7?72

D2.L preserved
D3.L preserved
AO preserved
Al ?27??

A2 preserved
A3 preserved

|I0.SBYTE

111

TRAP#3 D0=$7 |O.SSTRG

Send a string of bytes

Call parameters
Return parameters

D1

D2.W nr of bytes to be sent D1.W nr. of bytes sent
D3.W timeout D2.W preserved

AO channel ID D3.L preserved

Al base of buffer A0 preserved

A2 Al updated ptr to buffer
A3 A2 preserved

A3 preserved
Error returns:

NC not complete
NO channel not open
OF drive full

Please refer to section 5.3.5 for details of the special treatment afforded to
newlines on the console or screen device.
SD.ARC See the entry for SD.POINT for details.

112

TRAP #3 D0=$C SD.BORDR

Set the border width and colour

Call parameters Return parameters
D1.B colour D1 ??7?

D2.W width D2.L Preserved
D3.W timeout D3.L breserved
A0 channel ID AO preserved
Al Al preserved
A2 A2 preserved

Error returns:

NC not complete
NO channel not open

This call redefines the border of a window. By default this is of no width. The
width of the border is doubled on the vertical edges. The border is inside the
window limits. All subsequent screen traps (except this one) use the reduced
window size for defining cursor position and window limits.

As a special case, the colour $80 defines a transparent border so that the
border contents are not altered by the trap.

If the call changes the width of the border, then the cursor is reset to the
home position (top left hand corner).

SD.CHENQ See the entry for SD.PXENQ for details.

113

TRAP #3 D0=$20 to 24

Clear part or all of a window

D0=$20 SD.CLEAR
D0=%$21 SD.CLRTP
D0=$22 SD.CLRBT
D0=$23 SD.CLRLN
D0=$24 SD.CLRRT

Call parameters

D1

D2

D3.W timeout
A0 channellD
Al

A2

Error returns:

NC not complete
NO channel not open

SD.CLEAR

SD.CLRBT
SD.CLRLN
SD.CLRRT
SD.CLRTP

clear all of window

clear top of window

clear bottom of window

clear cursor line

clear right hand end of cursor line

Return parameters

D1 2?2
D2.L preserved
D3.L preserved
AO preserved
Al 2?7?77
A2 preserved

The clear window traps can clear all or part of a window. To clear a part of
a window the cursor is used as a reference. The clear operation consists of
overwriting all the pixels in the designated area with paper colour.

The division between the top of the window and the bottom of the window
is the cursor line. The cursor line is in neither the top nor the bottom ofthe
window.

114

The cursor line is the whole height of the current character fount (either 10 or
20 rows). The right hand end includes the character at the current cursor
position.

SO.CLRBT See the entry for SO.CLEAR for details.
SO.CLRLN See the entry for SO.CLEAR for details.
SO.CLRRT See the entry for SO.CLEAR for details.
SO.CLRTP Seethe entry for SO.CLEAR for details.

TRAP #3 DO=$E SD.CURE

Enable the cursor

Call parameters Return parameters
D1 D1 ???

D2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
Al Al ???

A2 A2 preserved

Error returns:

NC not complete
NO channel not open

The cursor is automatically enabled when a read line or edit line trap is
issued to a console window.

115

TRAP #3 DO=$F SO.CURS

Suppress the cursor

Call parameters Return parameters
D1 D1 ?7??

D2 D2.L preserved
D3.W timeout D3.L preserved
AO channellD AO preserved
Al Al ???

A2 A2 preserved

Error returns:

NC not complete
NO channel not open

The calls to suppress or enable the cursor do not return an error if the cursor
is already suppressed or enabled (respectively), as they merely ensure that
the cursor is in the desired state.

SD.ELIPS See the entry for SD.POINT for details.

116

TRAP #3 D0=$9 SD.EXTOP

Call an extended operation

Call parameters Return parameters
D1 parameter D1 parameter
D2 parameter D2 preserved
D3.W timeout D3.L preserved
AO channel ID A0 preserved
Al parameter Al parameter

A2 start address of routine A2 preserved
Error returns:
NC not complete

NO channel not open
and anything from the operation routine

This trap invokes an externally supplied routine as if it were part of the
standard screen driver. D1, D2 and Al are passed to the routine, while only
D1 and Al are returned. The code within the routine is executed in supervisor
mode with AO pointing to the channel definition block (see Section 7.2) and A6
pointing to the system variables as for standard device drivers.

117

TRAP #3 DO=$2E SO.FILL

Fill rectangular block in window

Call parameters Return parameters
D1.B colour D1 ???

D2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
Al base of block definition Al ???

A2 A2 preserved

Error returns:

NC not complete
NO channel not open
OR block falls outside window

This trap fills a rectangular block of a window with the current ink colour,
taking into account the mode set by SD.SETMD.

The block definition is in the same form as the window definition. It is 4 words
long: width, height, X origin and Y origin. The origin is referred to the window
origin.

This is a fast way of drawing horizontal or vertical lines.

118

TRAP #3 D0=$35

Turn area flood on and off

Call parameters

D1.L key O=end flood
1= start or restart flood
D2
D3.W timeout
A0 channel ID
Al
A2
A3

Error returns:

NC not complete
NO channel not open

SD.FLOOD

Return parameters

D1 7?77

D2 preserved
D3.L preserved
A0 preserved
Al ???

A2 preserved
A3 preserved

119

TRAP #3 D0=$25 SD.FOUNT

Set or reset the fount

Call parameters Return parameters
D1 D1 ??7?

D2 D2.L preserved
D3.W timeout D3.L preserved
AO channel ID AO preserved
Al base of fount Al ???

A2 base of second fount A2 preserved

Error returns:

NC not complete
NO channel not open

The character fount is a 5x9 array of pixels in a 6x1 0 rectangle. A default
fount and a second fount are built into the ROM, although alternative founts
may be selected.

If the fount address is given as zero the default fount will be used.

The structure of the fount assumes that up to a certain value characters are
invalid (default $1E), from the next value (default $1F) a known number of
characters are valid (default $61). Thus the structure is as follows:

$00 lowest valid character (byte)

$01 number of valid characters-1 (byte)

$02 to $0A 9 bytes of pixels for the first valid character
$08 to $13 etc.

Each byte of pixels has the pixels in bit 6 to bit 2 (inclusive) of the byte. The
top row of any character is implicitly blank.

If a character, which is to be written, is found to be invalid in the first fount, it
is written using the second fount. If it is also invalid in the second fount, then
the lowest valid character of the second fount is used.

120

The default fount extends from $20 to $7F.

SD.GCUR See the entry for SD.POINT for details.

SD.LINE See the entry for SD.POINT for details.

SD.NCOL See the entry for SD.POS for details.

SD.NL See the entry for SD.POS for details.

SD.NROW See the entry for SD.POS for details.

TRAP #3 DO0=$1B, 1E and 1F

Pan part or all of a window

D0=$1B SD.PAN
DO=$1E SD.PANLN
DO=$1F SD.PANRT

Call parameters

D1.W distance to pan

D2

D3.W timeout
A0 channel ID
Al

A2

Error returns:

NC not complete
NO channel not open

SD.PAN

SO.PANLN
SO.PANRT

pan all of window
pan cursor line
pan right hand end of cursor line

Return parameters

D1 ?7??

D2.L preserved
D3.L preserved

A0 preserved
Al ???

A2 preserved

121

The whole of a window, or the whole of the cursor line, or the right hand end of
the cursor line may be panned by any number of pixels to the right or to the
left. A positive distance implies that the pixels will move to the right. The space
left behind will be filled with paper colour.

The cursor line is the whole height of the current character fount
(either 10 or 20 rows). The right hand end includes the character at the current
cursor position.

SO0.PANLN See the entry for SD.PAN for details.
S0.PANRT See the entry for SD.PAN for details.
S0.PCOL See the entry for SD.POS for details.

TRAP #3 DO0=$17 SD.PIXP

Position cursor using pixel coordinates

Call parameters Return parameters
D1.W X-coordinate D1 ???

D2.W V-coordinate D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
Al Al 2?77

A2 A2 preserved

Error returns:

NC not complete
NO channel not open
OR off window

The cursor position is the top left hand corner of the next character rectangle
referred to the top left hand corner of the window. This trap clears the pending
newline in the window.

122

TRAP #3 D0=$30
D0=$31
D0=$32
D0=$33
D0=$34
D0=$36

Plot a point, line, arc, ell

Call parameters

Error returns:

NC not complete

SD.POINT SD.POINT
SD.LINE SD.ARC
SD.ARC SD.ELIPS
SD.ELIPS SD.GCUR
SD.SCALE SD.LINE
SD.GCUR SD.SCALE

ipse, set scale or graphics cursor position.

Expects parameters on the arithmetic stack pointed to by (A1)

Return parameters

D1 D1 ???
D2 D2.L preserved
D3.W timeout D3.L preserved
AO channel ID AO preserved
Al arithmetic stack pointer Al ???
A2 A2 preserved

NO channel not open

These four traps draw various lines and arcs in the window. Any point on
these lines which falls outside the window will not be plotted.

The format of the parameters required is as follows:

SO.POINT $00(Al)

$06(A1)
SO.LINE $00(A1)
$06(A1)
$0C(A1)
$12(A1)

y-coordinate
x-coordinate

y-coord of finish of line x-
coord of finish of line y-
coord of start of line
x-coord of start of line

123

SD.ARC $00(A1) angle subtended by arc

$06(A1) y-coord of finish of line
$OC(AL) x-coord of finish of line
$12(A1) y-coord of start of line
$18(Al1) x-coord of start of line
SD.ELIPS $00(A1) rotation angle
$06(AL) radius of ellipse
$OC(AL) eccentricity of ellipse
$12(A1) y-coord of centre
$18(AL) x-coord of centre
SD.SCALE $00(Al) y position of bottom line of window
$06(A1) x position of left hand pixel of window
$0C(AL) length of Y axis (height of window)
SD.GCUR $00(A1) graphics x-coordinate
$06(A1) graphics y-coordinate
$OC(AL) pixel offset to right
$12(A1) pixel offset down

For all the graphics traps, the parameters on the Al stack are floating point,
and coordinates are referred to an arbitrary origin (default is 0,0) with an
arbitrary scale (default is height of window = 100 units).

The calling program must allocate at least 240 bytes on the Al stack.

124

TRAP #3 D0=$10to 16 SD . POS

SD.NCOL
Cursor positioning by character intervals SD.NL
SD.NROW
D0=$10 SD.POS absolute position SD.PCOI
D0=$11 SD.TAB tabulate SD.PROW
D0=$12 SD.NI newline SD.TAB
D0=$13 SD.PCOI previous column
D0=$14 SD.NCOI next column
D0=$15 SD.PROW previous row next
D0=%$16 SD.NROW row
Call parameters Return parameters
D1.W column number (D0=10,11) D1 2?7?72
D2.W row number (D0=10) D2.L preserved
D3.W timeout D3.L preserved
AO channel ID AO preserved
Al Al ???
A2 A2 preserved

Error returns:

NC not complete
NO channel not open
OR position would be out of window

In the case of an error return, the cursor position is not changed. The cursor
position is the top left hand corner of the next character rectangle referred to
the top left hand corner of the window. These traps clear the pending
newline in the window.

SD.PROW Seethe entry for SO.POS for details.

125

TRAP #3 DO=$A or B SD.PXENQ

SD.CHENQ
Return the current window size and cursor position
DO=$A SD.PXENQ enquiry in pixel coordinates
D0=3$B SD.CHENQ enquiry in character coordinates
Call parameters Return parameters
D1 D1 preserved
D2 D2 preserved
D3.W timeout D3.L preserved
AO channel 10 A0 preserved

Al base of enquiry block Al 7?7
A2 A2 preserved

Error returns:

NC not complete
NO channel not open

The window size (X,Y) and cursor position (X,Y) are put into a 4 word
enquiry block. The top left hand corner of the window is cursor position 0,0.
These traps activate the newline if pending in the window.

126

TRAP#3 D0=$26 SD.RECOL

Recolour a window

Call parameters Return parameters
D1 D1 ?7??

D2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
Al pointer to colour list Al ??7?

A2 A2 preserved

Error returns:

NC not complete
NO channel not open

A window may be recoloured without changing the information in it. This
allows the same sort of effects as resetting the attributes of an attribute
based screen, but it is very much slower.

The colour list is 8 bytes long and should contain the new colours required for
each of the 8 colours in the window. Each of the new colours must be in the
range 0 to 7. For 4 colour mode, only bytes 0,2,4 and 6 need to be filled in.
SD.SCALE See the entry for SD.POINT for details.

SD.SCRBT See the entry for SD.SCROL for details.

127

TRAP #3 DO0=$18to 1A

Scroll part or all of a window

D0=$18 SD.SCROL
D0=$19 SD.SCRTP
DO=$1A SD.SCRBT

Call parameters

D1.W distance to scroll

D2

D3. W timeout
A0 channel ID
Al

A2

Error returns:

NC not complete
NO channel not open

SD.SCROL

SO.SCRBT
SO.SCRTP

scroll all of window scroll
top of window scroll

bottom of window

Return parameters

D1 ??7?
D2.L preserved
D3.L preserved
A0 preserved
Al ???
A2 preserved

Part or all of a window may be scrolled; for partial scrolling the cursor is used as

a reference. These traps cause pixels to be transferred from one row to
another. Vacated rows of pixels are filled with paper colour. A positive scroll
distance implies that the pixels in the window will be moved in a positive
direction, ie, downwards.The space left behind will be filled with paper colour.

The division between the top of the window and the bottom of the window is
the cursor line. The cursor line is included in neither the top nor the bottom of

the window. The cursor is not moved.

SD.SCRTP See the entry for SD.SCROL for details.

128

TRAP #3 D0=$2A and 2B

Set flash and underscore

DO=%$2A
DO=%$2B

SD.SETFL
SD.SETUL

Call parameters

D1.B 0 attribute off
else attribute on

D2

D3.W timeout
A0 channel ID
Al

A2

Error returns:

NC not complete
NO channel not open

SD.SETFL

SD.SETUL

set flash
set underscore

Return parameters

D1 ???

D2.L preserved
D3.L preserved
AQ preserved
Al ???

A2 preserved

SD.SETIN See the entry for SD.SETPA for details.

129

TRAP #3 DO0=$2C SD.SETMD

Set the character writing or plotting mode

Call parameters Return parameters
D1.W mode D1 ??7?

-1 ink is exclusive ored into the background

0 character background is strip colour

1 character background is transparent

0 or 1 plotting is in ink colour
D2 D2.L preserved
D3.W timeout D3.L preserved
AO channel ID AO preserved
Al Al ???
A2 A2 preserved

Error returns:

NC not complete
NO channel not open

130

TRAP #3 D0=$27 to 29 SO.SETPA

SO.SETIN
Set screen colours SO.SETST
DO=%$27 SD.SETPA
DO=%$28 SD.SETST set paper colour
DO=$29 SD.SETIN set strip colour
set ink colour
Call parameters Return parameters
D1.B colour D1 preserved
D2 D2 preserved
D3.W timeout D3.L preserved
AO preserved
A0 channel ID Al oo
Al A2 d
A2 preserve

Error returns:

NC not complete
NO channel not open

The screen driver uses three colours. There is the background colour of a
window: referred to as paper colour; this is the colour which is used by the
scroll, pan and clear operations. There is the colour which is used by the
character generator to provide a highlighting background for individual

characters or words: referred to as strip colour. Finally, there is the colour used

for writing characters and drawing graphics: referred to as ink colour.

SO.SETST See the entry for SO.SETPA for details.

131

TRAP#3 D0=$20 SD.SETST

Set character size and spacing

Call parameters Return parameters
D1.W character width/spacing D1 ??7?
0 single width, 6 pixel spacing
1 single width, 8 pixel spacing
2 double width, 12 pixel spacing
3 double width, 16 pixel spacing
D2.W character height/spacing D2.L preserved
1 single height, 10 pixel spacing
1 double height, 20 pixel spacing
D3.W timeout D3.L preserved

AO channel ID A0 preserved
Al 2?7

. A2 d

A2 preserve

Error returns:

NC not complete
NO channel not open

The character generator supports two widths and two heights of character. In 8
colour mode, only the double width characters may be used. In addition the
spacing between characters is entirely flexible, but for simplicity of use only two
additional spacings are supported directly: these are 8 pixel and 16 pixel, in
single and double width respectively.

Calls with D1=0 or 1 in 8 colour mode will operate as though a call had
been made with D1 equal to 2 or 3.

SD.SETUL See the entry for SD.SETFL for details.

SD.TAB See the entry for SD.POS for details.

132

TRAP #3 DO0=$0 SD.WDEF

Redefine a window

Call parameters Return parameters
D1.B border colour D1 ?7?

D2.W border width D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
Al base of window block Al ?7?

A2 A2 preserved

Error returns:

NC not complete
NO channel not open
OR window does not fit on page

This call redefines the shape or position of a window: the contents are not
moved or modified, but the cursor is repositioned at the top left hand corner of
the new window. The window block is 4 words long and is the width, height, X
origin and Y origin.

133

16.0 Vectored Routines

Vector $110 BP.INIT

All addresses passed to this routine must be relative to A6.

BP.INIT is used to link in a list of procedures and functions to be added to the
SuperBASIC name table. Once added, the functions can be called from
SuperBASIC in the same way as the procedures and functions built into the
ROM.

On entry, Al should point to a table in the following form:

word approximate number of procedures (see below)

for each procedure

(word pointer to routine - here

(byte length of name of procedure

(characters

word 0

word approximate number of functions (see below)

for each function

(word pointer to routine - here
(byte length of name of function
(characters

word 0

The "approximate number" of procedures or functions is used to reserve
internal table space. It should be exactly equal to the number

of procedures or functions unless the average length of the procedure

or function names exceeds 7, in which case it should be:

(total number of characters + number of functions or procedures + 7) /8

134

The pointers to the routines are relative to the address of the pointer
(e.g. DC.W ENTRY- *)

All registers except A 1, and D2 are preserved by BP.INIT and no more than
48 bytes are used on the user stack.

Vector $120 B P |_ ET

All addresses passed to this routine must be relative to A6.

BP.LET assigns a value to be associated with an entry in the SuperBASIC
name table. On entry, (A6,A3) should point to the name table entry, and
(A6,A1) should point to the value to be assigned (see section 9.5 for details of
the storage format for the various types of data). A1 and A3 should be on
word boundaries.

The type of the entity to be assigned (and hence its length) is determined by the
type in the name table entry.

On exit, DO is an error code, and D1, D2, D3, AO, A 1 and A2 are smashed.

Vector $11A BV.CHRIX

All addresses passed to this routine must be relative to A6.

BV.CHRIX is used to reserve space on the arithmetic stack (A6,A1). On
entry, the number of bytes required should be in D1.L: DO to D3 are
smashed.

Since not only the stack but the whole SuperBASIC area may move during
the call, the arithmetic stack pointer should be saved in BV_RIP(A6),
whence it should be retrieved after the call has been completed.

135

CA.GTFP See the entry for CA.GTINT for details.

Vector $112 CA.GTINT

$114 CA.GTFP
$116 CA.GTSTR
$118 CA.GTLIN

All addresses passed to these routines must be relative to A6.

These routines are used to get the values of actual parameters to
SuperBASIC procedures or functions onto the arithmetic stack. Each routine
assumes that all the parameters will be of the same type, as follows:

CA.GTINT 16-bit integer
CA.GTFP floating point

CA.GTSTR string
CA.GTLIN floating point: convert to 32-bit long integer

On entry, (A6,A3) points to the name table entry for the first parameter in
the list, and (A6,A5) points to the entry for the last.

The number of parameters fetched is returned in the least significant word
of D3. The values themselves are returned in order on the arithmetic stack
(A6,A 1) with the first parameter at the top (lowest address) of the stack.
These routines smash D1, D2, D4, D6, A0 and A2. DO, and also the
condition codes, give the error code. The separator flags in the name table
entries are also smashed.

CA.GTLIN See the entry for CA.GTINT for details.

CA.GTSTR See the entry for CA.GTINT for details.

CN.BTOIB See the entry for CN.DTOF for details.

136

CN.BTOIL See the entry for CN.DTOF for details.

CN.BTOIW See the entry for CN.DTOF for details.

Vector $EC CN.DATE
$EE CN.DAY

Call parameters

D1.L date (internal value)
D2

D3

A0

Al pointer to stack

A2

A3

get date and time

get day of week

Return parameters

D1
D2
D3
AO
Al
A2
A3

preserved
preserved
preserved
preserved
pointer to stack
preserved
preserved

CN.DATE

CN.DAY

All addresses passed to these routines must be relative to A6.

There are two date conversion routines: CN.DATE returns the date in the form
yyyy mmm dd hh:mm:ss, CN.DAY returns a three letter day of the week. The
result is put on the A 1 stack in string format. At least 22 bytes are required by

CN.DATE and at least 6 bytes by CN.DAY. CN.DAY See the entry for

CN.DATE for details.

137

D1
D2
D3
D7
A0
Al
A2
A3

Vector $100 CN.DTOF

$102 CN.DTOI
&$104 CN.BTOIB
&$106 CN.BTOIW
&$108 CN.BTOIL
&$10A CN.HTOIB
&$10C CN.HTOIW
&$10E CN.HTOIL

Call parameters

0 or ptr to end buffer
pointer to buffer
pointer to stack

Error returns:

floating point CN . DTO F

integer
binary (byte)
binary (word)
binary (long)
hex (byte)
hex (word)
hex (long)

Return parameters

D1 7?7
D2 ?77?
D3 ???

D7 preserved

A0 pointer to buffer
Al pointer to stack
A2 ???

A3 ???

XP error in conversion (eg 1..0 as floating pt.

or no digits or too many hex or binary digits)

CN.BTOIL
CN.BTOIW
CN.DTOI
CN.HTOIB
CN.HTOIL
CN.HTOIW

All addresses passed to these routines must be relative to A6.
Utilities marked & are non-functioning in V1.03 and earlier.

These routines convert from ASCII characters in a buffer (pointed to by
AO0) to a value on the stack (pointed to by Al).

The hex and binary conversions from ASCII to number, always put a
long word on the Al stack. Al is set to point to the least significant

byte or less significant word for the byte and word conversions.

The decimal conversions may use up to about 30 bytes on the Al stack.

138

If there is an error then A0 and Al are both unchanged. Otherwise, on return,
Al points to the return value (floating point, long word, word or byte) and AO
points to the next character in the buffer.

CN.DTOI See the entry for CN.DTOF for details.

Vector $F0 CN.FTOD floating point CNFTOD
$F2 CN.ITOD integer CN.ITOBB
$F4 CN.ITOBB binary (byte) CN.ITOBL
$F6 CN.ITOBW binary (word) CN.ITOBW
$F8 CN.ITOBL binary (long) CN.ITOD
$FA CN.ITOHB hex (byte) CN.ITOHB
$FC CN.ITOHW hex (word) CN.ITOHL
$FF CN.ITOHL hex (long) CN.ITOHW

Call parameters Return parameters

DO ???

D1 D1 ???

D2 D2 ?7?

D3 D3 ???

A0 pointer to buffer AO pointer to buffer

Al pointer to stack Al pointer to stack

A2 A2 2?77

A3 A3 ??7?

All addresses passed to these routines must be relative to A6.

These routines convert a value on the stack (pointed to by Al) to a set of
ASCII characters in a buffer (pointed to by AO).

CN.HTOIB See the entry for CN.DTOF for details.
CN.HTOIL See the entry for CN.DTOF for details.
CN.HTOIW See the entry for CN.DTOF for details.
CN.ITOBB See the entry for CN.FTOD for details.

139

CN.ITOBL See the entry for CN.FTOD for details.
CN.ITOBW See the entry for CN.FTOD for details.
CN.ITOD See the entry for CN.FTOD for details.
CN.ITOHB See the entry for CN.FTOD for details.
CN.ITOHL See the entry for CN.FTOD for details.
CN.ITOHW See the entry for CN.FTOD for details.

Vector $122 |O NA M E

Decode a device name

Call parameters
Return parameters

D1

D2 DL 277

D3 D2 7?7

AQ pointer to name D3 ???

Al A0 preserved
Al 7?7?77

po A2 2?77

A3 pointer to parameters A3 preserved

Error returns:

ERR.NF not recognised
ERR.BN name recognised - but bad parameters

This routine parses a device name. Given a device name and a description
of the syntax of the name to be checked against and for the possible
parameters to be appended to it, the routine determines-) whether the name
is recognised, and extracts the parameters if it is. The device name is formed
using four components:

140

Name ASCII characters, normally letters. Case is ignored.

Separator Single ASCII character. Case is ignored.
Number Decimal number in the range 0 to 32767
Code One of a list of ASCII characters

On entry to the routine, AO must point to the device name (which is in the
usual Qdos string format), A3 must point to an area of memory which is
sufficient to hold the decoded parameter values, and A6 must point to the base
of system variables. The device description starts 6 bytes after the call, and is
in the following format:

word number of characters in the device name to be checked for words
the characters of the device name to be checked for
word number of parameters

For each parameter, one of the following options:
byte space, byte separator, word default value (numeric with
separator)
word negative number, word default value (numeric with no
separator)
word positive number of possible codes, bytes for the ASCII
codes

Note that all letters must be in upper case.

For each numeric parameter value in the description, the utility will return
either the value given in the device name, or the default. For each list of codes
in the description the utility will return the position of the code in the list, or
zero.

Examples:

The CON description is:

DCW 3,'CON' console

DCW 5 five parameters

DCc.w _+448,X,180 window size

pcw AL32X.16 window position

DC.W 128 keyboard queue length

141

Device name

Parameters

CON 448,180,0,0,128
CON_256 256,180,0,0,128
con_60 448,180,0,0,60
cona0x12 448,180,0,12,128

con_256x64a64x128_20

The SER description is:

256,64,64,128,20

DC.W 3,'SER' RS232 serial device

DCW 4 four parameters

DCw -11 port number (default 1)
DCW 4'OEMS parity (odd/even/mark/space)
DCW 2/IH ignore/use handshaking
DCW 3’'RZC Raw/use CTRLZ/use CR
Device name Parameters

SER 1,0,0,0

SERE 1,1,0,0

ser2miz 2,3,1,2

If the name is not matched, the routine returns immediately after the call with
ERR.NF in DO. If the name is matched but the additional information is
incorrect, it returns 2 bytes after the call with ERR.BN in DO. If a match is
found, it returns 4 bytes after the call with DO=0.

I0.QEOF See the entry for IO.QSET for details.

IO.QIN See the entry for |0.QSET for details.

10.QOUT See the entry for IO.QSET for details.

142

Vector $DC 10.QSET

set up a queue

|0.QSET

$DE 10.QTEST test status of queue I0.QEOF
$EO 10.QIN put byte into queue 10.QIN
$E2 10.QOUT extract byte from queue 10.QUOT
$E4 10.QEOF put end of file marker into queue 10.QTEST

Call parameters Return parameters

D1.L queue length or data D1 data

D2 D2 preserved/free space

D3 D3 preserved

AO A0 preserved

Al Al preserved

A2 pointer to queue A2 preserved

A3 A3 maodified by QIN, QOUT,

QTEST,QSET

Error returns:

ERR.NC queue is full (QIN) or empty (QOUT, QTEST)
ERR.EF end of file reached (QOUT, QTEST)

The data length should be less than 32767

I0.QTEST See the entry for I0.QSET for details.

I0.SERIO See the entry for I0.SERQ for details.

143

Vector $E8 10.SERQ direct queue handling |OSERQ

$EA IO.SERIO general 10 handling I0.SERIO
Call parameters Return parameters
D1 standard IOSS value D1 standard IOSS value
D2 standard I0OSS value D2 standard I0SS value
D3 standard IOSS value D3 ?7??
A0 standard I0SS value A0 preserved
Al standard IOSS value Al standard IOSS value
A2 A2 ?7?7?
A3 A3 ?2?7

Error returns:

ERR.BP undefined action
or errors returned from supplied routines

These routines must be called from supervisor mode, with A6 pointing to
the base of system variables. It may not be called from a task which
services an interrupt.

10.SERQ is a direct queue handling routine. When the channel definition
block is set up for simple serial I/O then the 7th and 8th long words should
be set to point to the queues for input and output respectively. If either input
or output is prohibited, then the corresponding pointer should be zero.

I0.SERQ should be called with standard 1055 values in DO, D1, D2,
D3,A0 and Al.

For serial I/O where the operations for byte input and output are not so
simple, the routine 10.SERIO may be called. The call instruction should be
followed by three long words, these being the entry addresses for

testing for pending input, (next byte in D1)

fetch byte, (byte in D1)

send byte. (byte in D1)

144

The use of absolute addresses for these may prove awkward; so the entry to
this routine is best included in the physical definition block for the driver:

at $28(A3) or similar or
387800E8 MOVE.W SE8,A4 DC. L TEST
4E94 JSR (A4d) DC. L FETCH
DC.L TEST DC. L SEND
DC.L FETCH 4E75 RTS
DC.L SEND
4875 RTS
invoked by or
JSR $28 (A3) PEA $28 (A3)
MOVE . W $E8,Ad
JMP (A4)

For the calls to the three service routines DO should be returned as the error
code, D1 to D3 and Al to A3 inclusive are volatile.

Both of these calls treat actions 0,1,2,3,5 and 7, the header set and read
actions and load and save: for undefined actions they return ERR.BP.

145

Vector $124 MD.READ read a sector MD.READ

$126 MD.WRITE write a sector MD.SECTR

$128 MD.VERIN verify a sector MD.VERIN

$12A MD.SECTR read a sector header MD.WRITE
Call parameters Return parameters

D1 file nr (read/verify)

g; D2 block nr (read/verify)
D7 D7 sector nr (read headr)
AO A0 ???
Al pointer to start of bufr ﬁ% ggl’;]ter to end of bufr
A2 et
A3 $18020 A3 $18020
Error returns:

MD.WRITE none

MD.READ, MD.VERIN normal - failed

return+2 OK
MD.SECTR normal - bad medium

return+2 - bad sector header
return +4 - OK

The microdrive support routines are vectored to simplify the writing of file
recovery programs. On entry A3 must point to the microdrive control register,
and the interrupts must be disabled. All registers except A3 and A6 are treated
as volatile.

These routines do not set DO on return but have multiple returns.
Before calling MD.WRITE the stack pointer must point to a word: the file

number and the block number of the sector to be written are in the high and
low byte respectively.

146

These vectors point to $4000 bytes before the actual entry point. The

following code may be used:

MOVE.W aa.aaaa,An
JSR $4000 (An)

MD.SECTR See the entry for MD.READ for details.

MD.VERIN See the entry for MD.READ for details.

MD.WRITE See the entry for MD.READ for details.

Vector $CO
Allocate common heap area
Call parameters

D1.L space required
D2
D3
A0
Al
A2
A3

Error returns:

OM out of memory

MM.ALCHP

Return parameters

D1.L space allocated

D2
D3
A0
Al
A2
A3

??7?
?7?77?
base of area allocated
??7?
?7?7?
??7?

147

This routine must be called from supervisor mode, with A6 pointing to the
base of system variables. It may not be called from a task which services an

interrupt.

The space requested must include room for the heap entry header. For
simple heap entries this is 16 bytes long, for IOSS channels this is 24 bytes

long.

The address of the heap area is the base of the area allocated, not the base
of the area which may be used (contrast with trap #1 DO= $18 and $19).

The area allocated is cleared to zero.

Vector $D8 MMALLOC

Allocate an area in a heap

Call parameters Return parameters

D1.L length required D1.L length allocated

D2 D2 ?7??

D3 D3 ?7??

AO ptr to ptr to free space AO base of area allocated
Al Al 2?7?77

A2 A2 ??7?

A3 A3 ???

Error returns:

OM no free space large enough

See section 4.1 for details of the heap allocation mechanism.

148

Vector $DA

Link a free space (back) into a heap

Call parameters

MM.LNKFR

Return parameters

D1.L length to link in D1 7?7?77

D2 D2 2?7?77

D3 D3 2?77

AO base of new space A0 ???

Al ptrto ptr to free space Al ???

A2 A2 ??7?

A3 A3 2?72

Vector $C2 MMRECHP

Release common heap space
Call parameters

D1

D2

D3

AO base of area to release
Al

A2

A3

Return parameters

D1
D2
D3
AO
Al
A2
A3

?7?7?
??7?
??7?
??7?
??7?
??7?
??7?

This routine must be called from supervisor mode, with A6 pointing to
the base of system variables. It may not be called from a task which
services an interrupt. See entry for MM.ALCHP

149

Vector $11C RI.LEXEC executes an operation RlEXEC
$11E RI.LEXECB executes a list of operations RI.LEXECB
Call parameters Return parameters
DO.W operation (RI.EXEC) DO error code
D1 D1 preserved
D2 D2 preserved
D3 D3 preserved
AO A0 preserved
Al pointer to arith stack Al updated
A2 A2 preserved
A3 ptr to operation list A3 preserved
A4 ptr to base of var area A4 preserved
Error returns:
OV arithmetic overflow

All addresses passed to these routines must be relative to A6. The arithmetic
package is available for general use through two vectors: the first executes a
single operation; the second executes a list of operations.

The package operates on floating point numbers on a downward stack
pointed to by (A6,Al.L). It operates on the top of the stack (TOS) which is
pointed to by (A6,Al.L), and the next on stack (NOS) at 6(A6,Al.L).

See section 9.5 for details of the floating point format.

The interpreter takes two types of operation codes. The first is a true arithmetic
operation with an operation code between $02 and $30 inclusive, the second is
a negative code between $FFFF and $FF31 inclusive: this indicates a load or
store operation of a floating point number to or from the location given by the
calculation (A6.L +A4.L +opcode$FFFE). If bit O of the opcode is clear the
operation is a load (Al decremented by 6, creating a new TOS), if it is set the
operation is a store (Al incremented by 6, NOS- ->TOS)

150

For RI.LEXEC the operation code should be passed asa word. For

RI.EXECB the operation codes are in a table of bytes pointed to by A3. The

table isterminated by a zero byte.

Note: for the function EXP, D7 should be set to zero or an erroneous

value will be returned.

The operation codes for the interpreter are asfollows:

CODE

$02
$04
$06
$08
$0A
$0C
$OE
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30

RININT
RLINT
RINLINT
RI.FLOAT
RI.ADD
RI.SUB
RI.MULT
RI.DIV
RI.ABS
RI.NEG
RI.DUP
RI.COS
RI.SIN
RLTAN
RI.COT
RIASIN
RIACOS
RIATAN
RIACOT
RI.SQRT
RI.LN
RI.LOG10
RI.EXP
RI.POWFP

function change to A1

nearest integer to TOS +4
truncate TOS to integer +4
nearest long integer to TOS +2
integerTOS to floating point -4
add TOS to NOS +6

subtract TOS from NOS +6
multiply TOS by NOS +6
divide TOS into NOS +6
positive value of TOS 0
negate TOS 0

duplicate TOS -6

cosine

sine

tangent

cotangent

arcsine

arccosine

arctangent

arccotangent

square root

natural logarithm

logarithm to base 10
exponential

NOS to the power of TOS + 6

UT.COM See the entry fer UT.WINDW for details.

change TOS only
Al unchanged

— e e

151

Vector $E6 UTCSTR

Compare two strings

Call parameters Return parameters
DO0.B comparison type D1.L -1,0,0r +1
D1 01 preserved
D2 02 preserved
D3 03 preserved
A0 base of string O wrt A6 AO preserved
Al base of string 1 wrt A6 A1l preserved
A2 A2 preserved
A3 A3 preserved
A6 base address register A6 preserved

All addresses passed to this routine must be relative to A6.
DO (and the status register) is set negative if the string at (A6,A0) is less than
the string at (A6,A 1) etc.

UT.ERRO

UT.ERR
Vector $CA UT.ERRO write error message to channel 0
$CC UT.ERR write error message to given

channel

Return parameters
Call parameters

DO0.1 preserved

DO0.1 error
0.1 error code D1 preserved
D1

D2 preserved
D2

D3 preserved
D3

AO preserved
AO channel ID (UT.ERR only)

Al preserved
Al

A2 preserved
A2

A3 preserved
A3

152

These routines must be called from user mode.

These routines exist for writing simple messages to a channel. They are
basic error message handlers which write a standard or device driver
supplied error message to either the command channel 0, or else to a
defined channel.

UT.LINK
UT.UNLINK
Vector $02 UT.LINK link an item into a list
$04 UT.UNLNK unlink an item from a list
Call parameters Return parameters
D1 D1 preserved
D2 D2 preserved
D3 D3 preserved
A0 base of item (un)linked A0 preserved
Al pointer to previous item Al updated
A2 A2 preserved
A3 A3 preserved

These two routines are provided for handling linked lists.

These routines are passed the base address of the item to be linked or
unlinked, and a pointer which points to either the pointer to the first item in
the list, or to an item in the list.

When an item is linked in, it will be linked in at the start of the list, or, if the
pointer was to an item in the list, after that item.

When an item is removed, the pointer may point to the pointer to the
first item in the list, or to any item in the list before the item to be
removed.

When starting a new list, the pointer to the first item in the list must be zero.

153

Each item in the list must have 4 bytes reserved at the start for the link pointer.

Vector $CE UTM'NT

Convert an integer to ASCII and send it to the
defined channel

Call parameters Return parameters
D1.W integer value D1 7?77

D2 D2 7?7

D3 D3 ?7??

A0 channellD A0 preserved
Al Al ??7?

A2 A2 preserved
A3 A3 preserved

Error returns:

All the usual IO

This routine ought usually to be called from user mode.

154

Vector $DO UT MTEXT

Send a message to a channel

Call parameters Return parameters
D1 D1 ?7?7?

D2 D2 77

D3 D3 ??7?

AO channellD A0 preserved
Al base of message Al 7

A2 A2 preserved
A3 A3 preserved

Error returns:

All the usual 10

This routine ought usually to be called from user mode.

The above routines (UT.MINT and UT.MTEXT) are provided to write parts
of more complex messages to a defined channel.

The message is in the form of a text string: number of characters (word)
followed by the characters in ASCII. If a new line is required at the end of the
message, this should be included in the message. If the channel is 0 then D3
will be returned 0, otherwise D3 will be returned -1. In version V1.03 and
earlier, DO is set to the error return but is not tested so the condition codes
will not be correct. As a special concession, interrupt servers and other
supervisor mode routines can call these routines with A0=0. If the command
channel is in use, they will attempt to use channel 1. This operation is not
recommended, but it does seem to work!

UT.SCR See the entry for UT.WINDW for details.

UT.UNLNK See the entry for UT.LINK for details.

155

UT.WINDW

Vector $C4 UT.WINDW set up a window using a UT.CON
supplied name UT.SCR
set up console window

$C6 UT.CON ;
$C8 UT.SCR set up screen window
Call parameters Return parameters
D1 D1 ?7?
D2 D2 ?7?
D3 D3 77?2
AO ptr to name (WINDW only) A0 channel ID
Al ptrto parameter block Al ???
A2 A2 M7?
A3 A3 777

Error returns:

BN bad device name (WINDW only)
OM out of memory

NO out of channels

OR window is off-screen

The above three routines, which must be called in user mode, set up console
or screen windows using a parameter list which follows the call statement. In
the first case, the window is opened using a name which has been supplied,
a block of parameters defining the border, and the paper, strip and ink
colours. The window is set up and cleared for use.

The second and third routines define the window using an additional block
of four words.

156

The parameter block is as follows:

$00 border colour (byte)
$01 border width (byte)

$02 paper/strip colour (byte)
$03 ink colour (byte)

$04 width (word)

$06 height (word)

$08 X origin (word)

$OA Y origin (word)

not required for UT.WINDW

~— ' — —

17.0 Qdos System Standards

In order to make best use of the third-party work, both software and
hardware, currently going on on the QL, a humber of Sinclair standards
have been produced.

1. Floppy disc standard - This covers the physical layout, formatting,
directory structure and disk handling of floppy disks under Qdos.

2. Relocatable object file standard - To allow the linking of separately
compiled modules, potentially written in different languages.

These standards are available on application to Sinclair Research at the
address in the introduction.

157

18.0 Qdos Keys

The following sections contain keys for various features of Qdos. These
keys provide a definition for several of the data structures within Qdos.

18.1 Error Keys

The following keys indicate error messages already defined in the system.
A positive error code istaken as an address of a user-supplied error
message. See the Concepts manual for a fuller description ofthe way in
which these are used by the procedures built into SuperBASIC.

ERR.NC -1 operation not complete
ERR.NJ -2 not avalid job
ERR.OM -3 out of memory
ERR.OR -4 out of range

ERR.BO -5 buffer overflow
ERR.NO -6 channel not open
ERR.NF -7 file or device not found
ERR.EX -8 file already exists
ERR.IU -9 file or device in use
ERR.EF -10 end of file

ERR.DF -11 drive full

ERR.BN -12 bad device name
ERR.TE -13 transmission error
ERR.FF -14 format failed

ERR.BP -15 bad parameter
ERR.FE -16 file error

ERR.XP -17 error in expression
ERR.OV -18 arithmetic overflow
ERR.NI -19 not implemented (yet)
ERR.RO -20 read only

ERR.BL -21 bad line (syntax error in BASIC)

158

18.2 System Variables

The following list gives the offset of each system variable from the base
of the system variables (whose position can be found using the MT.INF
trap), together with the length of the variable.

SV_IDENT $00 word identification word

The following variables are the pointers which define the current state of the
Qdos memory map.

SV_CHEAP $04 long base of common heap area
SV_CHPFR $08 long first free space in common heap area
SV_FREE $0C long base of free area

SV_BASIC $10 long base of basic area

SV_TRNSP $14 long base of transient program area
SV_TRNFR $18 long first free space in transient program area
SV_RESPR $1C long base of resident procedure area
SV_RAMT $20 long top of ram (+1)

SV_RAND $2E word random number

SV_POLLM $30 word count of poll interupts missed
SV_TVMOD $32 byte 0 if not TV display

SV_SCRST $33 byte screen status (0= active)

SV_MCSTA $34 byte current value of display control register
SV_PCINT $35 byte current value of interrupt control/mask register
SV_NETNR $37 byte network station number

The following system variables are pointers to the list of tasks and drivers.

SV_I2LST $38 long pointer to list of interrupt 2 drivers
SV_PLIST $3C long pointer to list of polled tasks
SV_SHLST $40 long pointer to list of scheduler tasks
SV_DRLST $44 long pointer to list of device drivers
SV_DDLST $48 long pointer to list of directory device drivers
SV_KEYQ $4C long pointer to a keyboard queue
SV_TRAPV $50 long pointer to the trap redirection table

159

The following system variables are pointers to the resource management tables.
The slave block tables have 8 byte entries, whilst the others have 4 byte entries.

SV_BTPNT $54 long pointer to most recent slave block entry
SV_BTBAS $58 long pointer to base of slave block table
SV_BTTOP $5C long pointer to top of slave block table
SV_JBTAG $60 word current value of job tag
SV_JBMAX $62 word highest current job number
SV_JBPNT $64 long pointer to current job table entry
SV_JBBAS $68 long pointer to base of job table
SV_JBTOP $6C long pointer to top of job table
SV_CHTAG $70 word current value of channel tag
SV_CHMAX $72 word highest current channel number
SV_CHPNT $74 long pointer to last channel checked
SV_CHBAS $78 long pointer to base of channel table
SV_CHTOP $7C long pointer to top of channel table

The following variables contain information about how to treat the keyboard, and
about other aspects of the IPC and serial port communications. SV_CAPS,
SV_ARDEL, SV_ARFRQ and SV_CSUB can safely be poked.

SV_CAPS $88 word caps lock

SV_ARBUF $8A word autorepeat buffer

SV_ARDEL $8C word autorepeat delay

SV_ARFRQ $8E word autorepeat l/freq

SV_ARCNT $90 word autorepeat count

SV_CQCH $92 word keyboard change queue character code

SV_SOUND $96 word sound status

SV_SERI1C $98 long receive channel 1 queue address

SV_SER2C $9C long receive channel 2 queue address

SV_TMODE $AO byte ZX8302 transmit mode (includes
baudrate)

SV_CSUB $A2 long subroutine to jump to on CAPSLOCK

SV_TIMO $A6 word timeout for switching transmit mode

SV_TIMOV $A8 word value of switching timeout (two
characters)

SV_FSTAT $AA word flashing cursor status

160

SV_MDRUN $EE byte which drive is running?

SV_MDCNT $EF byte microdrive run-up run-down counter
SV_MDDID $F0 8 bytes drive ID*4 of each microdrive
SV_MDSTA $F8 8bytes status 0=no pending ops

SV_FSDEF $100 16*long pointers to file system physical definition
SV_FSLST $140 long pointer to list offile channel definitions

The following area, between $180 and $480 is reserved for the supervisor
stack. There is no explicit stack protection in the code, although the stack
should be of sufficient size for most normal purposes.

18.3 SuperBASIC Variables

Note that the system variable SV_BASIC points to the bottom of the

SuperBASIC area, where its job header, which is $68 bytes long, is located.

The value of A6 used during the interpreter points to the address
immediately above the job header, which contains a set of variables
formatted as shown in this table.

The first part of the area holds the pointers to the various areas of
memory used by the interpreter: it defines the partitioning of
SuperBASIC's own area of memory.

BV_START 0 start of pointers
BV_BFBAS $00 long buffer base
BV_BFP $04 long buffer running pointer
BV_TKBAS $08 long token list
BV_TKP $0C long

BV_PFBAS $10 long program file
BV_PFP $14 long

BV_NTBAS $18 long name table
BV_NTP $1C long

BV_NLBAS $20 long name list
BV_NLP $24 long

BV_VVBAS $28 long variable values
BV_VVP $2C long

BV_CHBAS $30 long channel table
BV_CHP $34 long

BV_RTBAS $38 long return table

161

BV_RTP
BV_LNBAS
BV_LNP

BV_CHANGE

BV_BTP
BV_BTBAS
BV_TGP
BV_TGBAS
BV_RIP
BV_RIBAS
BV_SSP
BV_SSBAS

BV_ENDPT

BV_LINUM
BV_LENGTH
BV_STMNT
BV_CONT
BV_INLIN

BV_SING
BV_INDEX

BV_VVFREE
BV_SSSAV

BV_RAND
BV_COMCH

BV_NXLIN
BV_NXSTM
BV_COMLN
BV_STOPN
BV_EDIT
BV_BRK
BV_UNRVL
BV_CNSTM
BV_CNLNO

162

$3C
$40
$44

$48

$48
$4C
$50
$54
$58
$5C
$60
$64

$64

$68
$6A
$6C
$6D
$6E

$6F
$70

$72
$76

$80
$84

$88
$8A
$86
$8C
$8E
$8F
$90
$91
$92

long
long
long

long
long
long
long
long
long
long
long

word
word
byte
byte
byte

byte
word

long
long

long
long

word
byte
byte
word
byte
byte
byte
byte
word

line number table

change of direction marker

backtrack stack during parsing
temporary graph stack during parsing
arithmetic stack

system stack (real one!)

end of pointers

current line number

current length

current statement on line

continue ($80) or stop (0) processing
processing in-line clause or not

loop (1), other ($FF), not (0)

single line execution on ($FF) or off (0)
name table row of last in-line loop index
read

first free space in variable value table
saved sp for out/mem to go back to

random number
command channel

which line number to start after which
statement to start after command line
saved ($FF) or not (0) which stop
number set

program has been edited ($FF) or not (0)
there has been a break (0) or not ($80)
need to unravel ($FF) or not (0)
statement to CONTINUE from

line to CONTINUE from

BV_DALNO
BV_DASTM
BV_DAITM

BV_CNIND
BV_CNINL

BV_LSANY
BV_LSBEF
BV_LSBAS
BV_LSAFT
BV_LENLN
BV_MAXLN

BV_TOTLN

BV_AUTO
BV_PRINT

BV_EDLIN
BV_EDINC

BV_TKPOS
BV_PTEMP
BV_UNDO

BV_ARROW

BV_LSFIL
BV_WRLNO
BV_WRSTM
BV_WRINL
BV_WHERR

BV_ERROR
BV_ERLIN
BV_WVNUM
BV_WVBAS
BV_END

$94
$96
$97

$98

$9A
$9B
$9C
$9E
$A0
$A2

$A4

$A6

$AA
$AB

$AC
$AE

$BO
$B4
$B8

$B9

$BA
$BC
$BE
$BF
$CO

$C2
$C6
$C8
$CA
$100

word
byte
byte

word
byte
byte
word
word
word
word
word

word

byte
byte

word
word

long
long
byte

byte

word
word
byte
byte
byte

long
word
word
long

current DATA line number
current DATA statement number
next DATA item to read

in-line loop index to CONTINUE with
in-line loop flag for CONTINUE
whether checking list ($FF) or not (0)
invisible top line

bottom line in window

invisible bottom line

length of window line

max nr of window lines

The 2 words immediately following this
will be overwritten on changing lenin
and maxin

nr of window lines so far

whether AUTO/EDIT on ($FF) or off (0)
print from prtok ($FF) or leave in

buffer (0)

line number to edit next

increment on edit range

pos of A4 in tklist on entry to PROC
temp pointer for GO_PROC

undo rt stack IMMEDIATELY then redo
procedure

down ($FF) or up (01) or no (00) arrow

fill window when relisting at least to here
when error line number

when error statement

when error in-line ($FF) or not (0)
processing when error ($80) or not (0)

last error code

line number of last error

number of watched (WHEN) variables
base of WHEN variable table wrt WBAS
top of BV area

163

18.4 Offsets on BASIC Channel Definitions

The following section gives the format of an entry in the SuperBASIC
channel table, These entries can be monitored or modified by user-

defined SuperBASIC procedures which need to have a channel
attached using a '#n' construct.

CH.ID $00 channel id

CH.CCPY $04 float current cursor position, y
CH.CCPX $0A float current cursor position, X
CH.ANGLE $10 float turtle angle

CH.PEN $16 byte pen status (up or down)
CH.CHPOS $20 word character position on line
CH.WIDTH $22 word width of line in characters
CH.SPARE $24 ..spare ..

CH.LENCH $28 length of a channel definition block

18.5 Job Header and Save Area Definitions

The location of the job table can be found by looking at the system
variables SV_IBBAS and SV_IBTOP. Each entry in the table is a longword
pointing to a block of $68 bytes in the format given here.

JB_LEN* $00 long total length of job area
JB_START $04 long start address on activation (usually 0)
JB_OWNER $08 long job ID of the owner of this job JB_HOLD
$0C long ptr to byte to be cleared when job
released
JB_TAG* $10 word tag for this job, allocated by MT.CJOB
JB_PRIOR $12 byte current accumulated priority:

set to zero when the job is executing,
incremented on each scheduler call ifthe
job isactive but not executing
JB_PRINC $13 byte priority increment (the actual priority of
the job) set to zero if the job is inactive

SuperBASIC activates jobs at priority $20
JB_STAT* $14 word job status

0 => not suspended

>0 => numberofframe times to release
-1 => suspended

-2 => waiting for another job to finish

164

JB_RELA6

JB_WFLAG

JB_WJOB
JB_TRAPV
JB_00
JB_01
JB_02
JB_03
JB_04
JB_05
JB_06
JB_07
JB_AD
JB_A1
JB_A2
JB_A3
JB_A4
JB_A5
JB_A6
JB_A7
JB_USP
JB_SR
JB_PC
JB_ENO

Thus the job identified by <job-ID> starts at ((SV_JBBAS) +4 * <job-
ID>.W), and the most significant word of <job-ID> must match the tag
held at 10H on from this address (otherwise that job no longer exists). A
negative <job-ID> implies that the job no longer exists, as does a value of
<job-ID>.W which is greater than the length of the job table held in

SV_IBMAX.

Entries marked by * should not be modified. Other entries may be
modified by a trap, or may be changed directly with caution.

$16

$17

$18
$1C
$20
$24
$28
$2C
$30
$34
$38
$3C
$40
$44
$48
$4C
$50
$54
$58
$5C
$5C
$60
$62
$68

byte
byte

long
long

MSB set if next trap #2 or #3 has
addressing relative to A6

set if there is a job waiting on
completion of this one

job 1d of waiting job

pointer to trap redirection vectors

save offset of DO
save offset of D1
save offset of D2
save offset of D3
save offset of D4
save offset of D5
save offset of D6
save offset of D7
save offset of AO
save offset of Al
save offset of A2
save offset of A3
save offset of A4
save offset of A5
save offset of A6
save offset of A7

save offset of USP

save offset of SR
save offset of PC

165

18.6 Memory Block Table Definitions

The following keys define the format of the start of a slave block.

BT_STAT $00 byte drive ID/status byte - see below
BT_PRIOR $01 byte block priority

BT_SECTR $02 word sector number (Microdrive*2)
BT_FILNR $04 word file number (Microdrive) logical
BT_BLOCK $06 word block number (Microdrive) location
BT_END $08

The most significant 4 bits of the status byte contain the pointer to the physical
device block SV_FSDEF, the least significant are the status

codes:

BT.UNAV 00000000B block is unavailable to file system

BT.EMPTY 00000001B block is empty

BT.RREQ 00001001B block required to be read from
microdrive

BT.TRUE 00000011B block is a true representation of file

BT.AVER 00001011B block is awaiting verify

BT.UPDT 00000111B block is updated

Status code masks:

BT.ACTN 00001100B check for read or write request

BT.INUSE 00001110B check if a file block in use

Bits of status codes:

BT..FILE 0 1 if a file block

BT..ACCS 1 1 if contents may be accessed

BT.WREQ 2 1 if block required to be written

BT..RDVR 3 1 if block required to be read/verified

18.7 Channel Definitions

The position of a channel definition block corresponding to a given channel 10 can
be found using a similar method to that used for finding the block for a job
described in section 3.1. The relevant system variables are SV_CHBAS and
SV_CHMAX.

166

Channel definition header for all channels:

CH_LEN $00 long length of definition block
CH_DRIVR $04 long address of driver
CH_OWNER $08 Iong owner job
CH_RFLAG $0C long address to be set when space released
CH_TAG $10 word channel tag
CH_STAT $12 byte status - 0 OK, negative waiting
-1 Al abs, $80 Al rel A6
CH_ACTN $13 byte stored action for waiting job ID
CH_JOBWT $14 long of job waiting on 10
CH_END $18

Extended channel definition for plain serial queues:

CH_QIN $18 long pointer to input queue (or zero)
CH_QOuT $1C long pointer to output queue (or zero)
CH_QEND $20

Device driver header:

CH_NEXT $00 long pointer to next driver entry
CH_INOUT $04 long for input and output entry for
CH_OPEN $08 long open

CH_CLOSE $0C long entry for close

The following are for directory devices (file system) only:

CH_SLAVE $10 long entry for slaving blocks entry

CH_RENAM $14 long reserved for rename

CH_FORMT $1C long entry for format medium CH_DFLEN
$20 long length of physical definition block

CH_DRNAM $24 2+n bytes drive name

167

18.8 File System Definition Blocks

File system channel definition block format:

FS_NEXT
FS_ACCES
FS_DRIVE
FS_FILNR
FS_NBLOK
FS_NBYTE
FS_EBLOK
FS_EBYTE
FS_CBLOK
FS_UPDT

FS_FNAME
FS_SPARE
FS_END

$18
$1C
$1D
$1E
$20
$22
$24
$26
$28
$2C

$32
$58
$A0

long
byte
byte
word
word
word
word
word
long
byte

2+36
72 bytes

link to next file system channel
access mode

drive ID

file number

block containing next byte

next byte in block

end of file (block)

end of file (byte in block)

pointer to table for current slave block
set if file is updated

file name

The common part of a physical definition block

FS_NMLEN
FS_HDLEN

FS_DRIVR
FS_DRIVN

FS_MNAME
FS_FILES

168

$24
$40

$10
$14

$16
$22

long
byte

max length of file name
length of file system header

pointer to driver
drive number

word+10 bytes medium name

byte

number of files open

18.9 Screen Driver Data Block Definition

This is the format of the block handed to a screen driver operation.

SD_XMIN
SD_YMIN
SD_XSIZE
SD_YSIZE
SD_BORWD
SD_XPOS
SD_YPOS
SD_XINC
SD_YINC

SD_FONT
SD_SCRB

SD_PMASK
SD_SMASK
SD_IMASK

SD_CATTR

SD_CURF
SD_PCOLR
SD_SCOLR
SD_ICOLR

SD_BCOLR

SD_NLSTA

SD_FMOD
SD_YORG
SD_XORG
SD_SCAL
SD_FBUF
SD_FUSE
SD_LINEL

SD_END

$18
$1A
$1C
$1E
$20
$22
$24
$26
$28

$2A
$32

$36
$3A
$3E

$42

$43
$44
$45
$46
$47

$48

$49
$4A
$50
$56
$5C
$60
$64

$68

word
word
word
word
word
word
word
word
word

2*long
long

long
long
long

byte

byte
byte
byte
byte
byte

byte

byte
float
float
float
long
long
word

window top LHS
window size

border width
cursor position

cursor increment

font addresses
base address of screen

paper colour mask
strip colour mask
ink colour mask

character attributes

cursor flag O=suppressed, >0=visible
paper colour byte

strip colour byte

ink colour byte

border colour byte

new line status (>0 implicit, <0 explicit)

fill mode (0=off, 1=0n)

graphics window y-origin
graphics window x-origin
graphics scale factor

pointer to fill buffer

pointer to user defined fill vectors
line length in bytes

169

18.10 Queue Header Definitions

The following is the format of the header of a queue manipulated using
the system's built-in queue handling routines.

Q_EOFF $00 bit end of file flag (MShit)

Q_NEXTQ $00 long link to next queue

Q_END $04 long pointer to end of queue

Q_NEXTIN $08 long pointer to next location to put byte in
from

Q_QUEUE $10 start of queue

18.11 Arithmetic Interpreter Operation
Codes

The following are the codes for the operations which can be performed on the
QL through the vectored routines which access the arithmetic interpreter.

RLTERM $00 terminator byte

RLNINT $02 nearest integer to top of stack (tos)
RLINT $04 truncate tos to integer
RLNLINT $06 nearest long integer to tos
RLFLOAT $08 integer tos to floating point
RI.LADD $0A add tos to next on stack (nos)
RLSUB $0C subtract tos from nos
RLMULT $0E multiply tos by nos

RLDIV $10 divide tos into nos

RLABS $12 positive value of tos

RI.NEG $14 negate tos

RLDUP $16 duplicate tos

RLCOS $18 cosine

RLSIN $1A sine

RLTAN $1C tangent

RLCOT $1E cotangent

RLASIN $20 arcsine

RLACOS $22 arccosine

RILATAN $24 arctangent

RLACOT $26 arccotangent

170

RIL.SQRT $28 square root

RI.LN $2A natural log
RI.LOG10 $2C logarithm to base 10
RI.LEXP $2E exponential
RI.POWFP $30 nos to power of tos
RI.MAXOP $30 highest valid opcode
RI.LOAD $00 load operation bit
RI.STORE $01 store operation bit

18.12 IPC Link Commands

These can be used with the MT.IPCOM trap.

RSET_CMD O system reset

STAT_CMD 1 report input status
OPS1_CMD 2 open RS232 channel 1
OPS2_CMD 3 open RS232 channel 2
CLS1 CMD 4 close RS232 channel
CLS2_CMD 5 1 close RS232 channel
RDS1 _CMD 6 2 read RS232 channel
RDS2_CMD 7 fead RS232 channel 2
RDKB_CMD 8 read keyboard
KBDR_CMD 9 keyboard direct read
INSO_CMD 10 initiate sound process
KISO_CMD 11 kill sound process
MDRS_CMD 12 Microdrive reduced sensitivity
BAUD_CMD 13 change baud rate
RAND_CMD 14 random number generator
TEST_CMD 15 test

18.13 Hardware Keys

The following are the addresses of the registers within the QL hardware.

PC_CLOCK $18000 real time clock in seconds (long word)
PC_TCTRL $18002 transmit control

PC_MCTRL $18020 Microdrive control/status and IPC status
PC_IPCRD $18020 IPC read is the same

PC_IPCWR $18003 IPC write

PC_INTR $18021 interrupt control/status

171

PC_TDATA $18022 transmit data

PC_TRAK1 $18022 Microdrive read track 1
PC_TRAK2 $18023 Microdrive read track 2
MC_STAT $18063 display control

The following is the format of the interrupt register.

PC.INTRG $01 gap interrupt
PC.INTRI $02 interface interrupt
PC.INTRT $04 transmit interrupt
PC.INTRF $08 frame interrupt
PC.INTRE $10 external interrupt
PC.MASKG $20 gap mask
PC.MASKI $40 interface mask
PC.MASKT $80 transmit mask

The following is the format of the transmit control register.

PC..SERN 3 serial port number
PC..SERB 4 O=serial 10

PC..DIRO 7 direct output

PC.BMASK 00000111B baud rate mask
PC.NOTMD 11100111B all bits except mode control
PC.MDVMD 00010000B Microdrive mode
PC.NETMD 00011000B network mode

The following is the format of the Microdrive control/systems register.

PC..SEL 0 Microdrive select bit
PC..SCLK 1 Microdrive select clock bit
PC..WRIT 2 Microdrive write

PC..ERAS 3 Microdrive erase

PC..TXFL 1 Microdrive Xmit buffer full
PC..RXRD 2 Microdrive read buffer ready
PC..GAP 3 gap

PC..DTR1 4 DTR on port 1

PC..CTS2 5 CTS on port 2

172

Write masks:

PC.READ 0010B read (or idle) Microdrive
PC.SELEC 0011B select bit set
Egggig—z 0010B select bit not set
PCZWRITE 1010B eraseon/write off

1110B eraseand write

The following is the format of the display control register.

MC..BLNK 1 bit 1 blanks display
MC..M256 3 bit 3 sets 256 mode
MC..SCRN 7 bit 7 sets screen base

18.14 Trap Keys

This section gives a summary of all of the Qdos traps, together with their

access keys passed in DO. All keys are in hex.

18.14.1 Trap 1Keys (Manager Traps) -

MT.INF $00 get system information
MT.CJOB $01 create a job

MT.JINF $02 get information on job
MT.RJOB $04 remove a job

MT.FRJOB $05 force remove a job

MT.FREE $06 find out how much free spacethere is
MT.TRAPV $07 set pointer to trap redirection vectors
MT.SUSJB $08 suspend a job

MT.REL.IB $09 release a job

MT.ACTIV $0A activate a job

MT.PRIOR $0B set a job priority

MT.ALLOC $0C allocate a bit of a heap
MT.LNKFR $0D releasea bit of a heap
MT.ALRES $0E allocate resident procedure area
MT.RERES $OF releaseresident procedure area
MT.DMODE $10 set display mode

MT.IPCOM $11 send IPCcommand

MT.BAUD $12 set baud rate

MT.RCLCK $13 read clock

MT.SCLCK $14 set clock

MT.ACLCK $15 adjust clock

173

MT.ALBAS $16
MT.REBAS $17
MT.ALCHP $18
MT.RECHP $19
MT.LXINT $1A
MT.RXINT $1B
MT.LPOLL $1C
MT.RPOLL $1D
MT.LSCHD $1E
MT.RSCHD $1F
MT.LIOD $20
MT.RIOD $21
MT.LDD $22
MT.RDD $23

allocate BASIC area

release BASIC area

allocate space in common heap
release space in common heap
link in external interrupt handler
remove external interrupt

link in polled task

remove polled task

link in scheduler task

remove scheduler task

link in 10 driver

remove 10 driver

link in directory driver

remove directory driver

18.14.2 Trap 2 Keys (I/O Management Traps)-

I0.0OPEN $01
I0.CLOSE $02
I0.FORMT $03
IO.DELET $04
I0.0PEN D3
10.0LD 0
I0.SHARE 1
IO.NEW 2
I0.OVERW 3
10.DIR 4

18.14.3 Trap 3 Keys (I/O Traps)-

|0.PEND $00
|0.FBYTE $01
|0.FLINE $02
|0.FSTRG $03
|0.EDLIN $04
l0.SBYTE $05
10.SSTRG $07
SD.EXTOP $09
SD.PXENQ $0A
SD.CHENQ $0B
SD.BORDR $0C

174

open channel

close channel
format medium
delete file
keys:

open old (exclusive) file or device
open old (shared) file

open new (exclusive) file
overwrite (or open new) file

open directory

check for pending input

fetch a byte

fetch a line of bytes

fetch a string of bytes

edit a line

send a byte

send a string of bytes

external operation (A3)

pixel based size/position enquiry

character based size/position enquiry

define window border

SD.WDEF $0D define window

SD.CURE $O0E enable cursor
SD.CURS $OF suppress cursor
SD.POS $10 absolute position
SD.TAB $11 tab (horizontal position)
SD.NL $12 newline

SD.PCOL $13 previous column
SD.NCOL $14 next column
SD.PROW $15 previous row
SD.NROW $16 next row

SD.PIXP $17 set pixel position
SD.SCROL $18 scroll whole window
SD.SCRTP $19 scroll top of window
SD.SCRBT $1A scroll bottom of window
SD.PAN $18 pan window
SD.PANLN $1E pan cursor line
SD.PANRT $1F pan RHS of cursor line
SD.CLEAR $20 clear whole window
SD.CLRTP $21 clear top of window
SD.CLRBT $22 clear bottom of window
SD.CLRLN $23 clear cursor line
SD.CLRRT $24 clear to right of cursor
SD.FOUNT $25 set fount addresses
SD.RECOL $26 recolour a window
SD.SETPA $27 set paper colour
SD.SETST $28 set strip colour
SD.SETIN $29 set ink colour
SD.SETFL $2A set flash on/off
SD.SETUL $28 set underline on/off
SD.SETMD $2C set write mode
SD.SETSZ $2D set character size
SD.FILL $2E fill block

SD.DONL $2F do pending newline
SD.POINT $30 set point in window
SD.LINE $31 draw line

SD.ARC $32 draw arc

SD.EIIPS $33 draw ellipse
SD.SCALE $34 set graphics scale
SD.FLOOD $35 set fill mode/vectors
SD.GCUR $36 set text cursor using graphics coords
SD.ROP $37 rasterop

SD.DOT $38 points in pixel coords

175

SD.LIN

FS.CHECK
FS.FLUSH
FS.POSAB
FS.POSRE
FS.MDINF
FS.HEADS
FS.HEADR
FS.LOAD
FS.SAVE

$39

$40
$41
$42
$43
$45
$46
$47
$48
$49

lines in pixel coords

check all pending operations
flush buffers

position file pointer (absolute)
position file pointer (relative)
information about medium
set file header

read file header

load file

save file

18.15 List of Vectored Routines

The following is a list of the vectored routines, together with the addresses
of their associated vectors. All keys are in hex.

BP.INIT

BP.LET
BV.CHRIX

CA.GTINT
CA.GTFP
CA.GTSTR
CA.GTLIN

CN.BTOIB

CN.BTOIL
CN.BTOIW
CN.DATE
CN.DAY
CN.DTOF
CN.DTOI
CN.FTOD
CN.HTOIB
CN.HTOIL
CN.HTOIW
CN.ITOBB
CN.ITOBL
CN.ITOBW
CN.ITOD
CN.ITOHB

176

$110
$120
$11A

$112
$114
$116
$118

$104
$108
$106
$EC
$EE
$100
$102
$FO
$10A
$10E
$10C
$F4
$F8
$F6
$F2
$FA

add m/c procs/fns to BASIC
assign tos to variable
reserve space on RI stack

get word parameters to RI stack
get floating point numbers

get strings

get long integers

ASCII binary to byte
ASCII binary to long
ASCII binary to word
get ASCII date and time
get ASCII day of week
ASCII to floating point
ASCII to integer
floating point to ASCII
ASCII hex to byte
ASCII hex to long
ASCII hex to word
byte to ASCII binary
long to ASCII binary
word to ASCII binary
word integer to ASCII
byte to ASCII hex

CN.ITOHL $FE long to ASCII hex

CN.ITOHW $FC word to ASCII hex
I0.NAME $122 decode a device name
I0.QSET $DC set up a queue

I0.QTEST $DE test status of queue

10.QIN $EO put byte into queue
10.QOUT $E2 extract byte from queue
10.QEOF $E4 put EOF marker into queue
I0.SERQ $ES8 direct queue handling
I0.SERIO $EA general 10 handling

The MD routines are indexed by $4000.

MD.READ $124 read a sector

MD.WRITE $126 write a sector

MD.VERIN $128 verify a sector

MD.SECTR $12A read a sector header

MM.ALCHP $Co allocate common heap space
MM.ALLOC $D8 allocate an area in a heap
MM.LNKFR $DA link free space back into heap
MM.RECHP $C2 release common heap space
RI.EXEC $11C execute an operation

RI.LEXECB $11E execute a list of operations

UT.CON $C6 set up console window

UT.CSTR $E6 compare two strings

UT.ERR $CC write error message to channel
UT.ERRO $CA write error message to channel
UT.LINK $D2 link an item into a list

UT.MINT $CE convert integer to ASCII,put on chan
UT.MTEXT $DO send message to channel

UT.SCR $C8 set up screen window

UT.UNLNK $D4 unlink an item from a list
UT.WINDW $C4 set up window using supplied name

177

19.0 Doing Business with Sinclair

The purpose of this section is to encourage those thinking of developing
commercial software for the QL to consider offering it to Sinclair Research for
publishing, promotion and distribution. There are various options offered to
software houses, with varying degrees of Sinclair involvementand support.

The first option is that of full publication and manufacture by Sinclair,
whereby the new product is taken as a master with draft documentation,
packaged in Sinclair packaging style and sold under the Sinclair logo in all
the outlets stocking Sinclair hardware products. The software house is
thereby released completely from the tasks of production, packaging,
promotion, distribution and sale. For such a proposal to be financially viable,
Sinclair has to obtain an exclusive licence for the product on Sinclair
computers, and Sinclair will pay a percentage royalty on every unit sold. The
software house remains free, of course, to develop the software for other
computers, should it wish to do so.

The second option is for the software house to give Sinclair an exclusive
licence to distribute the product in Sinclair packaging, but to sell the product
to Sinclair as a fully packaged finished product to Sinclair specification. In this
way the software house remains responsible for production and packaging,
with Sinclair undertaking promotion, distribution and sale.

The third option is for the software house to retain responsibility for
production, packaging, promotion, distribution and sale of the product, but
allowing Sinclair to offer the product for sale in addition. This method
provides the software house with an opportunity to increase its sales, as the
product will be promoted in all Sinclair Mail Order literature. As orders are
received, they will be passed to the software house, and Sinclair will require
a percentage commission on orders generated in this way. Under this option,
Sinclair packaging is not used for the product and so it remains very much
the software house's ‘own brand'.

178

Further details of the above options are given later on in this section, but
first, the procedure for offering software to Sinclair is dealt with, together
with Sinclair methods of review and appraisal.

19.1 How to offer a Product to Sinclair

When a software house offers a product to Sinclair for publication, two main
areas have to be examined.

The first of these areas is the product concept. Under this heading,
answers must be provided to such questions as:

What is the product?

What does it do?

For what type of market is it intended?
Does it exist?

If it exists:

How is it selling?
Methods of sale?
Volumes to date?
What machine does it run on?

If it does not exist:
What kind of sales are anticipated?
Based on what kind of information?
Are there any other products like it and if so which?

Obviously, some of the questions listed above assume that the product does
not already exist for the QL or any other Sinclair computer. However, if it does
run on some other computers, the second area to be examined would be
concerned with how the product might be adapted to make use of the QL's
features.

179

Specifically:

How would the product change?

What kind of pricing structure is envisaged?')

What volume of sales are expected with respect to a low-cost
computer such as the QL?

Would the target market change at all and if so, how?

Apart from considering the two areas described above, the product would need
to be reviewed by Sinclair. For such a review to take place, the software house
would need to send either:

1, The product itself, running on the QL, together with draft documentation, It
need not be finished and completely bug free, so long as it is sufficiently
complete to be able to be put out for review,

or

2, The product running on another machine, preferably on Apple II,
Macintosh or an IBM Pc.

or
3. A detailed product proposal on paper if the product exists only as a design.

Such a proposal should cover at the very least the product concept and the
proposals for the QL version of it.

19.2 Where Software Products should
be sent for Review
1. Business software or proposals should be sent to the Business

Software Editor, at the address given in the introduction to this
manual.

2. Educational software or proposals should be sent to the Educational
Software Editor, at the same address.

3. Anything that does not fall clearly into either of these two categories

(e.g., games, compilers, utilities, expert systems etc.), should be sent
to the Software Manager, at the same address.

180

19.3 How Products are reviewed and what
Sinclair are looking for

1. Games and entertainment software

Software of this type is generally reviewed by outside reviewers,
often sixth formers. They are looking for originality, graphics,
excitement, variety and pace. The software isjudged under these
five categories. The reviewers also compare the software to other
similar products, and finally try to identify any bugs which may
require fixing together with any improvements which may be
made.

As the computer games market is both extremely competitive and
overcrowded, Sinclair can only consider absolutely top quality
products for distribution. At the same time, the QL has expanded
the range of possibilities in the context of entertainment software,
thus any new ideas for using computers at home for entertainment
and leisure activities would be reviewed with great interest.

2. Compilers and utilities

Technical products ofthis kind will be reviewed internally in the first
instance by Sinclair software engineers. They will judge the product
for its completeness, the adequacy of its documentation, the speed
at which it runs on the QL and its technical competence. In some
cases where the product is of a very specialist nature it would be put
out for review by an independent consultant.

3. Educational software

Educational products, either for school, polytechnic, university or
home use, will be reviewed internally at first, and possibly also by
Sinclair educational consultants. The following categories are of
particular interest to Sinclair:

1. Software which caters for specific university and polytechnic
markets.

181

2. Software which provides adult home education in fields
previously uncatered for.

3. Software wh ich actually teaches rather than tests foreign
languages such as French, German or Spanish.

4. Software which teaches people how to expand their potential
for different employment markets, for example, teaching touch typing,
word processing, how to understand accounts, how to program etc.

5. Expert systems and authoring systems, especially if they have application
software running under them which can also be sold.

4. Business software
Business software will be reviewed internally unless it caters for a
specific vertical market in which case Sinclair may seek permission to
have the product reviewed in detail by an independent
consultant. When possible business packages are being considered,
both the company and the product will be examined very carefully.
Thus the following are particularly sought after:

1. Established suppliers of business products with a respected hame in
the business market.

2. Products which would benefit from distribution in wider markets and
at a lower price than at present.

3. Suppliers who can, if necessary, provide any direct support
needed by their product to Sinclair customers, possibly at

additional cost.

4. A secure financial backing which will ensure that the company will
not disappear after Sinclair have launched the product, leaving no
support for it.

19.4 Contractual Options in dealing with
Sinclair Research

In the introduction to this section several possible contractual options were
described, which will now be explored in more detail.

182

1. Distribution in Sinclair packaging

Royalty contract - every software house which offers a product to
Sinclair Research for distribution in Sinclair packaging under the

Sinclair name, will be asked to sign a Licence Agreement of the type
shown in Appendix A. This agreement allows for the grant of an exclusive
licence to Sinclair Research for the distribution and sale of the specified
software products, in return for a royalty which is normally 20% of the
selling price.

2. Distribution of finished goods

Those software houses from whom Sinclair agree to buy a complete
finished product packaged to Sinclair specifications, will be asked to sign a
second contract in addition to the software licence contract described
above. This second contract would provide for the supply and purchase of
manufactured goods on an 'at cost plus' basis. In this way, a packaging
specification would be agreed upon for the product, and Sinclair would
nominate approved suppliers of each component of that packaging. The
software house would then purchase these components from the
nominated supplier at a price previously negotiated between Sinclair and
the supplier. The cost of the product would then be passed on to Sinclair,
the software house having added a fixed margin as their handling fee for
controlling production.

3. Sinclair approved products

Under this option, the product would neither be sold in Sinclair packaging
nor would it carry the Sinclair name. It would instead be packaged in the
software house's own packaging under its own name. It would, however,
be promoted as a Sinclair endorsed product in the Sinclair catalogue.
Orders would be sent to a special PO box at Sinclair's despatching
warehouse and would then be forwarded direct to the software house for
fulfilment. Sinclair would, of course, expect to be paid a percentage
commission on orders generated in this way, which would normally be
equivalent to 15% of the retail selling price.

183

19.5 Promotion and Distribution

1. Sinclair packaged software

As might be expected, software carrying the Sinclair logo attracts the
bulk of Sinclair promotional activities. In particular, all software carrying
the Sinclair logo and name will:

1) be offered initially to all Qlub members directly, possibly at a small
discount as an introductory offer;

2) be carried in a catalogue which will be included with every QL
shipped;

3) be launched to the trade and specialist press, and included in
advertising campaigns from time to time;

4) be the subject of special promotions which will be considered for
vertical market software;

5) be offered the possibility of consideration for bundling contracts
from time to time. This can be a very lucrative way of ensuring that
the software reaches the widest possible market;

6) be offered to our local area offices and distributors all over the world,
for translation into foreign languages;

7) be similarly offered to our Boston Office for publication and
distribution in the United States.

2. Sinclair endorsed products

184

Where a product is not distributed in the Sinclair packaging, but is being
promoted and offered for sale through Sinclair, then it is likely to be
promoted using methods 1.) and 2.) only, though from time to time, where
appropriate, other methods of promotion and marketing will be considered.
To attract the full range of Sinclair's marketing activities a product needs to
be offered for distribution in both the Sinclair packaging and brand name.

19.6 Summary

Many software houses writing software for personal computers today are
concerned about the possible dilution of effort that is entailed

when a product has to be packaged, promoted, marketed and sold as
well as developed. Sinclair Research are known for their ability to obtain
media coverage and for their marketing and distribution capabilities.

In the case of the QL, Sinclair believe that software houses can be offered
distribution opportunities without equal. The Qlub will enable direct contact to
be retained with customers on a far larger scale than previously possible with
other Sinclair computers. It is proposed to use the Qlub Newsletters as a
method of informing customers of every new product launched in advance of
the general public. Small discounts will be offered which will make the product
attractive tothe customer, but will not begin to approach the kind of discounts
Sinclair would need to give should the product be offered through a distributor
or a retailer.

It is hoped that software houses will feel that to offer software to

Sinclair in one of the ways described above will prevent many of the
problems previously associated with bringing their products onto the market
place.

185

20.0 Bibliography

1. MC68000 16/32-bit microprocessor programmer's reference manual.
Published by Prentice-Hall for Motorola. ISBN 0-13-566795-X.
Contains instruction set details for the MC68000 and MC68008,
including permissible addressing modes and bus cycle diagrams.

Some hardware detail is included, but no timing diagrams.

2. Motorola Semiconductors 16-bit microprocessors data manual -
1983.

Published by Motorola Ltd., York House, Empire Way, Wembley,
Middlesex.

Contains the hardware reference for the MC68008.

186

21.0 Index

Al stack see arithmetic stack
access layer
of device driver 31,32,34,37
of directory drive 38-45
add-on
card ROM 66
cards 63,66
hardware 56
peripherals 56
RAM 56,63
ROM 10,56,63,66
allocation
heap 8,23,147
memory 9-10,22,31
alphabets, special 69
area flood 119
arithmetic
interpreter operation codes 170-171
stack 47,54-55,135
array storage 51
atomic actions 13
auto-repeat 30

baud 59,75,173
blocks
physical 38
slave 9,44,166
BOOT
device driver 16
file 16
border 28,113
BP.INIT 52,69,134,176
BP.LET 55,135,176
buffer 47
bus error 14
business 178-185
BV.CHRIX 22,54,135,176

CA.GTFP 54,136,176
CA.GTINT 54,136,176

CA.GTLIN 54,136,176
CA.GTSTR 54,136,176

CAPSLOCK 30
change queue character 30
channel 24
close 24,30,35-36,42-3
console
definition block 32,38,166-167
ID 17,24
number 55
open 24,30,34-35,41-42
table 47,55
superBASIC 9,164

character conversion 138,139
character set 68

change queue 30

freeze screen 30

local 68

spacing 27
character size 125,130,175
clock 59

real-time 57,59
CN.BTOIB 138,176
CN.BTOIL 138,176
CN.BTOIW 138,176
CN.DATE 59,137
CN.DAY 59,137
CN.DTOF 138,176
CN.DTOI 138,176
CN.FTOD 139,176
CN.HTOIB 138,176
CN.HTOIL 138,176
CN.HTOIW 138,176
CN.ITOBB 139,176
CN.ITOBL 139,176

187

CN.ITOBW 139,176
CN.ITOD 139,176
CN.ITOHB 139,176
CN.ITOHL 139,177
CN.ITOHW 139,177
code
initialisation 31,33
position-independent 19
restrictions 52
colour 28,74
border 28
ink 28
paper 28
strip 28
command interpreter 17
common heap 7,8
allocation 8,23,147
release 149
console 27
I/0 27-30,46
console channels 27
special properties 29-30
contracts 182-183
coordinate system
graphics 27
pixel 27
CPU interface 64-65
CTS 59
cursor 125
flashing 30
increment 28
position 28

date 137
definition block
channel 31,38,166-167
device driver 31-33
directory device
linkage 38
file system 166-167
physical 38

188

device 24
decoding 31,140
name 24
device driver(s) 22,24,31-37
access layer 31,32,34-37
BOOT 16
built-in 46
console 46
definition block 32
directory 38-45,60
initialisation 32-33
memory allocation 32
Microdrive 46
network 59
non-directory 39,41
physical layer 21,31,33-34
pipe 46
screen 46
serial 1/0 46
serial network link 46
user defined 21
user supplied 31
directory device driver(s) 38-45
access layer 40
initialisation 38
linkage block 39
Microdrive 60
display
control 57-58
modes 27,76
RAM 56
display control register 58
distribution 183-184
draw 123
DTR 59

error
bus 14
keys 158
messages 152,158
exception processing 14-15

EXEC 18
EXEC_W 18
expansion 63-64

extensions, operating system 17,21
external interrupt 14,34

file

BOOT 16

header 26,38

format 26

1/0 26

pointer 26

program 47

shared 41
file delete 41-42
file system definition blocks 168
flag 28

characteristics 66
flashing 30,57,58
floating point storage 50,51
format routine 41,45
fount 120
frame interrupt 14
free memory 7,9,22-23
freeze screen character 30
FS.CHECK 26-27,98,176
FS.FLUSH 26-27,99,176
FS.HEADR 100,176
FS.HEADS101.176
FS. LOAD 102,176
FS.MDINF103,176
FS.POSAB 104,176
FS.POSRE 105,176
FS.SAVE106,176
functions 52

linking 52

superBASIC 21

graphics 29,123
coordinate system 27
operations 29

hardware 56,171-173
add-on 56
heap 23
allocation 8,23,147,149
common 7,8,9,147-149
expanding 23
linking free space into 149
mechanism 8,23
management 72-73
setting up 23
user 23

initialisation

code 31,33

device driver 32,33

directory device driver 38

Qdos 6-16,158-177

system management

tables 16

system variables 16
Input/Output (I/0O) 24-30,33

36-37,42,43

console 27-30,46

file 26

queue 30

screen 27-30,46

serial 24,31,46,59,144
Input/Output sub-system 8,24,43
Integer storage 50,51
Intelligent Peripheral

Controller

8049 (IPC) 58,79

link commands 171
interfacing 47-55
interrupt

auto-vectored 13

external 13,24

frame 14

level 10,15

non-maskable 15

polling 34

traps for 14-16

189

interrupt servers 14
1/O see Input/Output
10.CLOSE 93,174
I0.DELET 41,94,174
I0.EDLIN 29,107,174
I0.FBYTE 108,174
I0.FLINE 29,109,174
I0.FORMT 95,174
I0.FSTRG 108,174
I/O management traps 10-11,93-97
close channel 93,174
delete file 94,174
format medium 95,174
keys 174
open channel 96,174
I0.NAME 35,140,177
I0.0OPEN 35,41,96,174
I0.PEND 110,174
10.QEOF 143.177
10.QIN 143.177
10.QOUT 143.177
10.QSET 143,177
I0.QTEST 143,177
I0.SBYTE 25,111,174
I0.SERIO 37,144,177
I0.SERQ 37,144,177
IOSS see Input/Output
sub-system
I0.SSTRG112.174
I/O traps 11,21,98-133
absolute position 104,125
character based size/position
enquiry 126,174
check all pending
operations 98,176
check for pending input 110,174
clear part or whole
window 114,174
define window 133,174
define window border 113,174
edit a line 107,174

190

enable cursor 115,175
extended operation 117,174
fetch a byte 108,174

fetch a line of bytes 109,174
fetch a string of

bytes 108,174

fill block 118,175

flush buffers 99,176
information about

medium 103,176

keys 173-176

load file 102,176

newline 125,175

next column 125,175

next row 125,175

pan part or whole

window 121,175

pixel based size/

position enquirer 104,126
plot and draw various lines and
arcs 123,175

position file pointer (absolute)
104,176

position file pointer (relative)
105,176

previous column 125,175
previous row 125,175

read file header 100,176
recoloura window 127,175
save file 106,176

scroll part or whole window
128,175

send a byte 111,174

send a string of bytes 112,174
set character size and spacing
132,175

set character size 130,175
set file header 101,176

set fill mode vectors 119,175
set flash and under-score
129,175

set fount addresses 120,175
set pixel position 122,175

set screen colours 131,175

set write mode 130,175
suppress cursor 116,175

tab (horizontal position) 125,175

IPC see Intelligent Peripheral
Controller
job(s)10,17-21
active 17-19
format
header 47,164-165
ID 13,18-19
inactive 17
start-up 17-19
suspended 17
table 19
tree 47,49

keyboard
auto-repeat 30
control 58
non-English language 67
special functions 30
type-ahead 30
KEYROW 40,59

line number table 47
linked lists 23,90
linking
functions 52
procedures 52

machine code
procedures 20
programming 17-21

Manager traps 11,69-92
activate a job 69,173
adjust clock 69,173
allocate a bit of a
heap 73,173

allocate BASIC area 71,173
allocate resident procedure area
74,173

allocate space in common heap
72,173

create a job 75,173

find how much free space there is
77,173

force remove a job 77,173

get information on job 81,173
get system information 78,173
keys 173-176

link external interrupt handler
83,174

link in directory driver 83,174
link in 1/O driver 83,174

link in polled task 83,174

link in schedulertask 83,174
read clock 84,173

release a bit of a heap 82,173
release a job 86,173

release BASIC area 85,174
release resident procedure area
87,173

release space in common heap
85,174

remove directory driver 89,174
remove external interrupt handler
89,174

remove 1/O driver 89,174
remove job 88,173

remove polled task 89,174
remove schedulertask 89,174
send IPC command 79,173

set a job priority 84,173

set baud rate 75,173

set clock 90,173

set display mode 76,173

set pointer to trap redirection
vector 92,173

suspend a job 91,173

Master chip 57

191

MD.READ 60,146,177

MD.SECTR 12,60,146,177
MD.VERIN 60,146,177

MD.WRITE 60,146,177
medium name 42
memory
allocation 8-10,22,31
block table 166
device driver 31
free 7,9,22
map 7-10,56

organisation in superBASIC 47-48

Microdrive 46
Microdrives 24,26,46,60

Microdrive support routines 146

MM.ALCHP 22,147,177
MM.ALLOC 22,148,177
MM.LNKFR 22,149,177
MM.RECHP 22,149,177
MT.ACLCK 59,69,173
MT.ACTIV 70,173
MT.ALBAS 22,71,174
MT.ALCHP 8,22,72,174
MT.ALLOC 8,73,173
MT.ALRES 14,74,173
MT.BAUD 59,75,173
MT.CJOB 75,173
MT.DMODE 27,57,58,76,173
MT.FREE 77,173
MT.FRJOB77.173
MT.INF 8,19,67,78,173
MT.IPCOM 58,68,79,173
MT.JINF81,173

MT.LDD 31,39,83,174
MT.LIOD 31,83,174
MT.LNKFR82,173
MT.LPOLL 31,39,83,174
MT.LSCHD 31,39,83,174
MT.LXINT 31,39,83,174
MT. PRIOR 84,173
MT.RCLCK 59,84,173

192

MT. RDD 31,85,89,174
MT.REBAS 14,85,174
MT.RECHP 8,22,85,174,
MT.RELJB 86.173
MT.RERES 22,87,173
MT.RIOD 31,89,174
MT.RJOB 88,173
MT.RPOLL 31,89,174
MT.RSCH 031,89,174
MT.RXINT 31,89,174
MT.SCLCK 59,90,173
MT.SUSJ 691,173
MT.TRAPV 14,92,173

name
decode 31,35,39,140,177
list 48,49
pointer 49
table 48-49,53,134
network 46,59
newline 25,28
non-English 67-68
version codes
NTSC 40

on-board
RAM 56
ROM 56
operating system 6
extensions to 17,21
operations
executing lists of 151
execution of 150
ownership 178

PAL 67

pan 28,121,175

parameter passing 52-53
parameters, actual 53-54
peripheral card addressing 65
peripheral cards 63-65

peripheral chip 57
physical definition block 38
physical layer device driver 21,31,33-34
pipe 24,46
pixel coordinate system 27
plot 123
polling interrupt 34
priority 17,84,86
procedures 52

linking 52

SuperBASIC 17,20-21
program file 47
programming 56-62
promotion 183-184
publication 178

Qdos
initialisation 7
keys 105-
routines 10-14
queue(s) 143
asynchronous 31
handling 144
header 170
1/0 30
type-ahead 30

RAM 7,22-23
add-on 56,63
base 7
display 6,56
on-board 56
screen 56
test 16
real-time clock 57,59
recolouring 127
resident procedure area 7,9,10,20,22
restrictions on code 52
return list 47
RI.LEXEC 105,150
RI.LEXECB105,150

RI stack see arithmetic stack
ROM 3,10,24 -34
add-on 10,56,63,65,66
format 46
on-board 56
plug-in 56
RS232 see serial 1/0

save area 97
scheduler loop 34
screen

colour 131

I/0 27-30,46

RAM 56
screen character output operations

28
screen driver 46

datablock169
scrolling 128
SD.ARC 29.123
SD.BORDR 28,113,174
SD.CHENQ 28,126,174
SD.CLEAR 28,114,175
SD.CLRBT 28,114,175
SD.CLRLN 28,114,175
SD.CLRRT 28,114,175
SD.CLRTP 28,114,175
SD.CURE 28,115,175
SD.CURS 28,116,175
SD.ELIPS 29,123,175
SD.EXTOP 30,117,174
SD.FILL 28,118,175
SD.FLOOD 29,119,175
SD.FOUNT29,120,175
SD.GCUR 29,123,175
SD.LINE 29,123,175
SD.NCOL 125,175
SD.NL 125,175
SD.NROW 125,175
SD.PAN 28,121,175
SD.PANLN 28,121,175

193

SD.PANRT 28,121,175
SD.PCOL 125,175
SD.PIXP 122.175
SD.POINT 29,123,175
SD.POS 125,175
SD.PROW 125,175
SD.PXENQ 28,126,174
SD.RECOL 28,127,175
SD.SCALE 29,123,175
SD.SCRBT 28,128,175
SD.SCROL 28,128,175
SD.SCRTP 28,128,175
SD.SETFL 29,129,175
SD.SETIN 28,131,175
SD.SETMD 28,130,175
SD.SETPA 28,131,175
SD.SETST 28,132,175
SD.SETSZ 29,132,175
SD.SETUL 29,129,175
SD.TAB 125,175
SD.WDEF 28,133,175
serial /0 24,31,36,46,84
device driver 46
serial network link 46
slave block 9,44,166
table 44

slaving 26,40,44-45 software

business 181

commercial 178

compilers, utilities 180

educational 180-181

entertainment 180

games 180

review of 180-181
sound control 58-59
stack

arithmetic 47,54—55

supervisor 13

user 66

194

start-up 6,16
job 17-19
system 16
storage 50-51
array 51
floating point 50,51
integer 50,51
string 51
substring 51
strings, comparison of 152
string storage 51
substring storage 51
SuperBASIC 7,9,10
channel table 9
format 164
data area 20
function 52
initialisation 16
interfacing 47-55
memory organisation 47-48
procedures and functions 20-21
program 9
traps 10-11
variables 7-8,161-163
work area 7,9,47
supervisor
mode 11,13,52
stack 13
suspended job 17
system
job table 19
management tables 7-8
initialisation 16
start-up 16
variables 7-8,20,159-161
base 6,159
initialisation 16

tables
channel 47,55
job 19

line number 47
memory block 166
name 47-49,53,78
system management 7,8,16
tasks 17,21,31
external interrupt 34
polling interrupt 34
scheduler loop 34
time-out 30,36,42
token list 47
transient program area
7,9,10,17,20,22,45
trap(s) 10-11
#0 11,13
#1 11,13
#2 11
#3 11,13
#411,21
errors in 11
hardware interrupts 14-15
Input/Output 11,21,98-133
Input/Output control 11,93-97
keys 173-176
manager 11,69-92
redirection 14
software error 14
SuperBASIC 11
user 14
type, name table 47,48
type-ahead queue 30

user
code 8,22
heap 22
traps 14
user stack 66
UT. CON 156,177
UT.CSTR 152.177
UT.ERR 152.177
UT.ERRO 152,177
UT.LINK 153,177

UT.MINT 154,177
UT.MTEXT 155,177
UT.SCR 156,177
UT.UNLNK 153,177
UT.WINDW 156,177

value pointer 49
variables
SuperBASIC 9,161-163
system 7,8,16,19,93-94
variable values area 47,48
vectored routines 12-13,54,134-
157,176-177
error handling 12
video 67
for monitor operation 67
for TV operation 67

windows 27-28
border 28,113
clearing 114
colour 28,127
overlap 27
position 27

properties and operations 27-28

setting up 156
size 27

ZX8301 57
ZX8302 57

195

