

QL· Technical
Guide

by Tony Tebby and David Karlin

Edited by Michèle Wright

First published in 1985

Sinclair Research Ltd

25 Willis Road, Cambridge CB1 2AQ, England

ISBN 1 850160368

Documentation and packaging © Sinclair Research Ltd

sinclair logo, QL and QL Technical Guide are

Registered Trade Marks of Sinclair Research Ltd.

All rights reserved. No part of this program, documentation or packaging
may be reproduced in any form. Unauthorized copying, hiring, lending or
sale and repurchase prohibited.

Made in the UK.

1

1.0 About this Guide 4

2.0 Introduction to Qdos 6

2.1 Memory Map 7

2.2 Calling Qdos Routines 10

2.3 Exception Processing 14

2.4 Start-up 16

3.0 Machine Code Programming on the QL 17

3.1 Jobs 17

3.2 SuperBASIC Procedures and Functions 20

3.3 Tasks 21

Contents

\

3.4 Operating System Extensions 21

4.0 Memory Allocation 22

4.1 Heap Mechanism 23

5.0 Input/Output on the QL 24
 5.1 Serial I/O 25

5.2 File I/O 26
5.3 Screen and Console I/O 27

6.0 Qdos Device Drivers 31

6.1 Device Driver Memory Allocation 32
6.2 Device Driver Initialisation 32
6.3 Physical Layer 33
6.4 The Access Layer 34

7.0 Directory Device Drivers 38

7.1 Initialisation of a Directory Driver 39

7.2 Access Layer 40

7.3 Slaving 44

8.0 Built-in Device Drivers 46

2

Contents continued

9.0 Interfacing to SuperBASIC 47

9.1 Memory Organisation within the SuperBASIC Area 47
9.2 The Name Table 48
9.3 Name List 49
9.4 Variable Values Area 49
9.5 Storage Formats 50
9.6 Code Restrictions 52
9.7 Linking in New Procedures and Functions 52
9.8 Parameter Passing 52
9.9 Getting the Values of Actual Parameters 53
9.10 The Arithmetic Stack Returned Values 54
9.11 The Channel Table 55

10.0 Hardware-related Programming 56

10.1 Memory Map 56
10.2 Display Control 57
10.3 Display Control Register 58
10.4 Keyboard and Sound Control 58
10.5 Serial I/O 59
10.6 Real-time Clock 59
10.7 Network 59
10.8 Microdrives 60

11.0 Adding Peripheral Cards to the QL 63

11.1 Expansion Connector 63

11.2 CPU Interface 64

11.3 Peripheral Card Addressing 65

11.4 Add-on Card ROMs 66

12.0 Non-English QLS 67

12.1 Video 67
12.2 Non-English-language Keyboards 68
12.3 Character Set 68
12.4 Special Alphabets 69

13.0 Manager Traps 69

14.0 I/O Management Traps 93

15.0 I/O Traps 98

3

18.11 Arithmetic Interpreter Operation Codes 170
18.12 IPC Link Commands 171
18.13 Hardware Keys 171
18.14 Trap Keys 173

/

 16.0 Vectored Routines 134

17.0 Qdos System Standards 157

18.0 Qdos Keys 158

18.1 Error Keys 158
18.2 System Variables 159

18.3 SuperBASIC Variables 161
18.4 Offsets On BASIC Channel Definitions 164
18.5 Job Header And Save Area Definitions 164

18.6 Memory Block Table Definitions 166

18.7 Channel Definitions 166

18.8 File System Definition Blocks 168

18.9 Screen Driver Data Block Definition 169

18.10 Queue Header Definitions 170

18.15 List Of Vectored Routines 176

19.0 Doing Business with Sinclair 178

179

180

19.1 How To Offer A Product To Sinclair

19.2 Where Software Products

 Should Be Sent For Review

19.3 How Products Are Reviewed

 And What Sinclair Are Looking For 181

19.4 Contractual Options

In Dealing With Sinclair Research

182

19.5 Promotion And Distribution 184

19.6 Summary 185

20.0 Bibliography 186

4

1.0 About this Guide

This guide describes the methods which may be used for machine code
programming on the QL. Its contents are also relevant to compiler

writers who must implement a run-time library for other languages. This

guide describes only those techniques which are specific to the QL. It does

not contain a general description of 68000 or 68008 assembly language

programming: this information can be obtained from a number of different

sources, details of which may be found in the bibliography. It is, therefore,

strongly recommended that a reference book describing 68000

assembly language be consulted before attempting to understand this

guide.

The guide also gives details of how various peripherals such as hard

disk interfaces, add-on memory and ROM cartridges may be added on to the

QL, with many details about how the firmware for such devices should be

written.

Readers may notice that there are no circuit diagrams or detailed

explanations of the QL's internal hardware structure in this manual.

This is because it is not necessary to have such information in order to

write software for the QL. We have tried in the design of Qdos to

provide you with a stable interface to the machine through its operating

system; everything you need is there and so long as you build your

products using the interface provided there is no danger that any future

upgrade of the QL will introduce an incompatibility with existing software

products. We will, in short, continue to support all of the system routines

documented in this guide, but specifically reserve the right to change the

QL's hardware or firmware in any other way we think fit. Provision of

circuit diagrams and the like would, apart from endangering the safety of

our design patterns, be giving you a route to build products that rely on

nonsupported elements in the QL's design.

5

The commercial section of this guide sets out the various options

offered by Sinclair Research for the distribution of QL Software. Its aim is to

give you an idea of the way in which we work and the likely

 channels through which a potential product would pass before it is
accepted for publication and offered for sale to our customers. The

section also gives information on the purchase and duplication of

Microdrive cartridges.

Finally, should you feel that anything essential is missing from this manual

we would be very grateful if you would write and tell us. The address to write

to is:

Software Publishing Department

(Technical Manual)

Sinclair Research Limited

25 Willis Road

Cambridge CB1 2AQ

6

2.0 Introduction to Qdos

Qdos is the QL operating system. It is a single-user multi-tasking

operating system: that is, it provides the means for several independent
programs to run concurrently in the QL, but does not provide any
mechanisms to prevent those programs from interfering with each other.
Qdos can be thought of as a collection of several things:

1. A set of useful routines for performing functions such as memory

allocation, Input/Output, etc.

2. A mechanism for maintaining lists of things to be done on interrupt,

including the function of allocating slots of CPU time to programs which
require them.

3. A mechanism for starting up the computer, and determining the

configuration of any add-on hardware that is connected to it.

The Qdos mechanisms for start-up are described in section 2.4. Once

start-up has been performed, Qdos does not "run" in the sense that traditional
operating systems run: its pieces of code and data structures simply exist for
programs to use. There is no Qdos "main program" that maintains continuous
control of the machine: the SuperBASIC interpreter, which takes the place of
the command interpreter found in traditional operating systems, is simply a
program which runs on the QL and uses Qdos's facilities, albeit with a number
of special provisions. It is possible, and indeed commonly done, to destroy the
SuperBASIC interpreter completely, and yet still use all the facilities of the
operating system.

Note that in this guide, hex numbers are preceded by a dollar sign ($)

as used in the Motorola assembly language format.

7

Resident procedure area

Transient program area

SuperBASIC area
Free memory area (used up

for slave blocks by the filing

system)

Common heap area

System management

tables

System variables

Display RAM

2.1 Memory Map

This section describes how Qdos maintains its RAM area. In the QL, the RAM
starts with the screen RAM at address $20000, and the area available to
Qdos starts at $28000. In an unexpanded QL, the RAM finishes at $3FFFF,
whilst in a QL with expansion memory, the RAM may go up as far as $BFFFF.
The Qdos initialisation routine determines the amount of RAM present and
adjusts the position of its pointers accordingly.

The memory map is as follows:

SV_RAMT
SV_RESPR

SV_TRNSP

SV_BASIC
SV_FREE

SV_HEAP

2.1.1 Principles-

Base of system
variables

Base of RAM

There is no memory management hardware in the QL. This means that all
code must execute from fixed addresses in physical memory, and
that a piece of code may not be moved after it has been loaded into

memory. For this reason, memory is usually allocated in fixed size areas which
remain in a fixed location until deleted. The SuperBASIC area is an important
exception to this.

2.1.2 System Variables -

The Qdos system variables are a block of memory containing information
required by the operating system.

8

This block is normally located at address $28000, but is not fixed at this

address in principle. Applications programs should not rely on that

fixed address, but should get the address of the base of system

variables by calling the MT.INF trap (see section 13.0).

Some of the system variables can usefully be monitored by applications
programs, and some of them can safely be altered. A complete list of the
system variables, each with its size and offset from the base of system

variables, is given in section 18.2.

Included in the system variables area are a set of longword pointers
indicating the locations of the other areas in the memory map.

2.1.3 System Management Tables-

Immediately above the system variables are various tables used by Qdos
to maintain the list of jobs and various other pieces of information. The
supervisor stack also resides in this area.

2.1.4 Common Heap Area-

The common heap area contains the channel definitions which are maintained
by the I/O sub-system, together with the working storage) required by the I/O
drivers or programs. The allocation of space in this area is carried out either by
device drivers, when invoked, or directly by jobs. There are two traps provided
to allocate and release space in this area: MT.ALCHP and MT.RECHP (see

Section 13.0). The heap allocations of a job are automaticallyreleased when
the job is removed.

The common heap is an example of the use of a general heap mechanism
provided by Qdos, which operates in the way described in the entry for
MT.ALLOC in section 13.0.

The user code needs to retain one pointer to the free space in the heap. This is
a long word and is a relative pointer to the free space in the heap. When the
heap has no free space, either because it does not exist, or because it is full,
this pointer is zero.

9

2.1.5 Free Memory Area-

The free memory area is used by Qdos as a buffer memory for the
Microdrives, or, if Qdos is suitably extended, for other filing system devices.

The area is structured as a collection of slave blocks, that is,

blocks which are associated with a physical block on a medium. When
memory is allocated in another area which would encroach on the free
memory area, Qdos must remove one or more slave blocks. Before such a
removal takes place, Qdos ensures that a true copy of the information is
present on the medium.

Whilst the common heap grows upwards into the free memory area, the areas
above it grow downwards into it. As there are three areas above it (the
resident procedure area, the transient program area and the SuperBASIC
area), special provisions are made so that all three can grow at the
appropriate times.

2.1.6 SuperBASIC area-

The SuperBASIC interpreter owns a special area located immediately above the
free memory area: this area is used for all the interpreter's storage requirements
such as the SuperBASIC program, its variables, its table of I/O channels and
the interpreter's working storage. This area is noteworthy in that it can be moved
by Qdos without the knowledge of the SuperBASIC interpreter if an area above
it needs to grow, or if the SuperBASIC area itself needs to shrink. Its size may
also be altered. The mechanism which makes such movement or alteration in
size possible operates as follows.

All references to the SuperBASIC area are made relative to the address
register A6, and the value of A6 on entry to the interpreter is adjusted by Qdos
to the current base of the SuperBASIC area (which is held in the system
variable SV_BASIC), offset by the length of the interpreter's job header
(currently $68 bytes).

The SuperBASIC interpreter divides its working area into several portions,
details of which may be found by looking at the BV definitions in section 18.3.
All of the pointers to these various portions are also relative to A6.

10

2.1.7 Transient Program Area-

The transient program area is the area of memory into which the user's

applications programs are loaded. Each job is allocated a block of

memory in the transient program area, which it keeps until it is deleted:

this area is used for the job's code, data and stack. Programs loaded in this
way are not normally re-entrant, but it is relatively straightforward
to use the mechanisms in the system to set up a single piece of code which
is shared by several different jobs with different data areas.

There is no safe way of determining a priority where a program will be
loaded, therefore programs are normally position independent (see section
3.1 on jobs).

2.1.8 Resident Procedure Area-

Memory allocated in this area is unavailable to the operating system. The
system knows only two things about the resident procedure area: how to
allocate memory in it, and how to release it completely. Both of these
operations can only be carried out when there are no transient programs in the
machine, due to the fact that the transient program area cannot be moved.
Normally, the allocation is done immediately after start-up, and deallocation is
never performed.)

The area is normally used to load in machine code procedures and functions
written to extend the SuperBASIC language (see section 9.7), and occasionally
for loading in the code of device drivers when these are not located in ROM in
an add-on device.

2.2 Calling Qdos Routines

There are two categories of Qdos routines available to the user: traps and
vectored routines. The mechanism for calling a routine is different for each of
these two categories.

2.2.1 Traps-

Traps are called using the 68008 TRAP #n instruction: on the QL, this has the

effect of a subroutine call to a defined location which has the side effect of
saving the status register and entering supervisor mode.

11

Of the sixteen trap numbers available on the 68008, numbers 0 to 4 inclusive are
defined for use by Qdos, the remainder being free for the user to redirect to his own
routines. Roughly speaking, the traps are utilised as follows:

TRAP

TRAP

#0

#1

Special trap for entering supervisor mode

Manager traps - routines which perform overall control

 of the QL hardware and of the operating system's
resources

TRAP

#2

Input/Output management traps (I/O traps which
allocate resources)

TRAP

#3

Input/Output traps which do not allocate resources

TRAP

#4

Special trap for the SuperBASIC interpreter.

Traps are called by setting up any required parameters in registers A0-A3 and
D1-D3, setting up the code for the required trap in D0 (usually with a MOVEQ
instruction), then executing the TRAP instruction. Trap routines do not affect D4
to D7 or A4 to A6. There are, however, a few defined cases which are
exceptions to this.

When the TRAP operation is complete, control is returned to the program at the
location following the TRAP instruction, with an error key in all 32 bits of D0. This
key is set to zero if the operation has been completed successfully, and is set to a
negative number for any of the system-defined errors (see section 17.1 for a list of
the meanings of the possible error codes). The key may also be set to a positive
number, in which case that number is a pointer to an error string, relative to address
$8000. The string is in the usual Qdos form of a word giving the length of the string,
followed by the characters.

Note that all traps can return the error code ERR.BP (for bad parameter).
Note also that the condition codes may not be set according to the error code
on return from a trap, thus a program wishing to detect an error should
execute a TST.L D0 instruction immediately after the TRAP instruction.

Details of all the Qdos traps are given in sections 13.0-15.0.

12

2.2.2 Vectored Routines-

In addition to the routines accessed by traps, there are several utility
routines which are available to the applications program: their

addresses are held in a vector table which is located in the ROM
starting at address $C0. A vectored routine can be accessed by the

following code:

MOVE.W VECTOR_ADDRESS,An

JSR (An)

where VECTOR_ADDRESS is the address of the vector table entry, and An

is a suitable address register which is not required by the particular
routine on entry.

There are some exceptions to this technique: for some vectored
routines, the code is:

MOVE.W

JSR

VECTOR_ADDRESS,An

$4000(An)

The entries in section 16.0 for vectored routines which require this
treatment are suitably marked.

There are no general rules covering the handling of errors in vectored
routines. Some routines return an error code in D0 in the same way as traps,
but others use the technique of returning to one of a set of alternative return
addresses. An example is the vectored routine

MD.SECTR, which returns to the location after the call if there is a "bad

medium" error detected, to the address 2 bytes later if there is a "bad sector

header" error detected, and to the address 4 bytes later for a correct

completion. Thus the correct code to trap these errors would be:

MOVE.W

JSR

BRA.S

BRA.S

VECTOR_ADDRESS,An

$4000(An)

BAD_MEDIUM_ERROR

BAD_SECTOR_ERROR

* Code for processing a correct return starts here

"
“

“

13

BAD_MEDIUM_ERROR

* Code for processing a bad medium error starts here

"
“
“

BAD_SECTOR_ERROR

* Code for processing a bad sector error starts here

"
“
“

Obviously, a similar mechanism can be used with any number of error returns
(including zero or one).

Complete details of the vectored routines are given in section 16.0,
including information about the behaviour of each routine when an error
occurs.

2.2.3 Atomic Actions-

In general, system calls are treated as atomic: while one job is in
supervisor mode, no other job in the system can take over the

processor. This provides for resource table protection without the need for
complex procedures using semaphores. If ajob needs to execute some action
other than a single system call into which no other job must be allowed to
intervene, it should enter supervisor mode before entering the code which

performs this action. Supervisor mode is entered using TRAP #0. The stack
pointer only is changed by this trap.

A job should only use 64 bytes on the supervisor stack, and all of the space
used on this stack must be released before exiting supervisor mode. In
general, there should be nothing on the supervisor stack when a manager
trap is made.

Some system calls are only partially atomic, that is, when they have
completed their primary function, some other job may gain a share of CPU
time before control returns to the calling job. These partially atomic system
calls must not be made from a job in supervisor mode. All of the scheduler

calls (ie, TRAP #1 with D0=4, 5, 8, 9, $A, $8) fall into this category, as do all
the I/O calls (TRAP #3), unless immediate return (timeout<>0) is specified.

14

A piece of code in supervisor mode can be interrupted by the frame (50/60
Hz) or external interrupts, so care must be taken, when writing interrupt
servers, that the system's internal data structure is not modified, directly or
indirectly, by system calls. In practice, since interrupt servers tend only to be
moving data into or out of queues, this is not a serious limitation.

2.3 Exception Processing

There are three categories of exception traps on the 68008: user traps, traps
for software error conditions, and traps for hardware interrupts. There is also
one special hardware trap called "bus error', which can be used to trap bad
conditions on the address bus: this trap is not supported by the QL hardware.

User traps 0 to 4 inclusive are treated as defined in sections 13.0
through 15.0.

User traps 5 to 15 inclusive, together with the software error traps for "address
error", "illegal instruction", "divide by zero", "check array", "trap on overflow",

"privilege violation" and "trace" are redirectable by the user on a per-job basis:

see the entry for MT.TRAPV in section 13.0.

Traps and exception vectors which are not used by Qdos may be redirected
through a table which is set up by a particular job.

If a job has set up a table of trap vectors for itself, then that table will
automatically be used when that particular job is being executed. The
vector tables used by other jobs will not be affected. A job set up by, even if
not owned by, a job which has set up a table of trap vectors, will use the
same table as that job, until it is redefined.

If the job ID is a negative word, then the table will be set up for the calling
job.

15

The table is in the form of a long word address for each trap or
exception. They are in the following order:

$00 address error

$04 illegal instruction

$08 zero divide

$0C CHK

$10 TRAPV

$14 privilege violation

$18 trace

$1C interrupt level 7

$20 trap #5

$24 trap #6

$28 trap #7

$2C trap #8

$30 trap #9

$34 trap #10

$38 trap #11

$3C trap #12

$40 trap #13

$44 trap #14

$48 trap #15

$4C end of table

All interrupts on the QL are auto-vectored, therefore there is no treatment of
the 68008 vectored interrupt traps. Interrupts generated by the QL internally
are level 2 auto-vectors: the interrupt handling mechanism includes the
facility for detecting an interrupt on the EXTINTL (external interrupt, active
low) line in the QL's expansion port. (See section 11.1 for details of the
interface to the relevant hardware.)

It is also possible to generate a level 7 (non-maskable) interrupt: the treatment
of this can also be redirected on a per-job basis. Pressing CTRL-ALT-7 on the
keyboard generates a level 7 interrupt and also resets all communications with
the IPC: a suitable interrupt handler could be written to perform a warm start
on the system to allow partial recovery from a crash.

16

2.4 Start-up

The first thing that Qdos does when the system is reset is to execute a

RAM test. This test determines the amount of contiguous RAM present, and if there is
any RAM failure, hangs up the machine.

Qdos then initialises the system variables, the system management tables, and the
SuperBASIC area.

The address $COOO is then checked by Qdos for the characteristic longword
$4AFB0001: if this is found, Qdos links in the SuperBASIC procedures contained in
the ROM, prints out the name of the ROM, and performs a JSR to its initialisation

point (details of the correct format of the ROM are found in section 8.0 on ROM
device drivers). It is perfectly in order for the code in this ROM to take over the
machine completely and never return to the system, for example if another
operating system were being booted.

Qdos then does the same for the other ROMs in the expansion slots.

If all of these ROMs return control to Qdos, the next action is to try to open a
device driver "BOOT": if this is found, its contents are loaded as a SuperBASIC
program and executed. If no device driver "BOOT" has been linked in, Qdos
attempts to find a file "MDV1_BOOT" and load and execute its contents as a
SuperBASIC program. If both of these attempts fail, Qdos starts up the
SuperBASIC interpreter with an empty program memory.

17

3.0 Machine Code Programming
on the QL

Four types of machine code are available to program the QL, each being
used to perform quite different operations: jobs, SuperBASIC procedures and
functions, tasks, and the operating system or extensions to it. Thus there are
several differences in both the form in which they are written, and the way in
which they are treated by Qdos.

3.1 Jobs

Most application programs written in machine code or compiled code will be
in the form of jobs. A job is an entity which has a share of machine resources:
it has a priority which allows it to claim time-slots of CPU activity, and it has a
fixed-size area of memory where data and code can be stored: code normally
starts at the bottom of the area, and data at the top. This area is located
somewhere in the transient program area.

Note that the command interpreter is itself a job but with the exceptional
characteristic that its data area is expandable.

A job also has the ability to own I/O channels or other jobs. There is no
protection between jobs under Qdos, so that channels are available for use by
all jobs. Ownership simply implies that when the owner of a channel or job is
deleted, the owned channel or job is deleted also (this process continues
recursively).

Jobs have three well-defined states: they are active, sharing CPU resources
with other jobs; suspended, for example, waiting for I/O or another job; or
inactive, occupying memory but not capable of using CPU resources.

The priority of a job can be zero, in which case it is suspended, and does not
consume CPU time. It can in fact be suspended for its entire lifetime and
never execute at all, which would be the case if it was simply used as a
means of obtaining some memory into which data could be loaded. A job at
any other priority level is active.

18

(A6,A5) Command string

 Channel ID

Channel ID

"
"
Channel ID

(A7) Number of Channel IDs

(A6,A4) Data area

 Code area

 Job name

 $4AFB

(A6) JMP.L JOB_START

When a job is started, two parts of its area of memory have defined
meanings: the bottom of the code area, and the stack, which is at the top of
the data area. It is the programmer's responsibility to set up the

bottom of the code area, which should be in the following form for use
by Qdos utilities:

JMP.L JOB_START

DC.IN $4AFB

DC.IN JOB_NAME_LENGTH

DC.IN 'Nameofjob'

JOB_START

* Code begins execution here (assuming that the start address

defined when the job was created was zero)

On the first occasion that a job is activated, (A6) points to the base of the job
area, (A6,A4) points to the bottom of the data space, and (A6,A5) points to
the top of the job area. There may be some information on the stack, which
will be in the following form: (A7) points to the number of channels which
have been opened for the jobbefore it was activated; above this is a
sequence of longwords holding the channel IDs, and above these are a
command string which may have been passed to the job. It is the
programmer's responsibility when starting a job to set up this information: the
SuperBASIC EXEC, EXEC_W commands and any utilities produced by
Sinclair are compatible with this form.

19

Note that the normal sequence in Qdos is as follows:

1. reserve space for a job;

2. load its code in;

3. open its channels;

4. activate it.

Execution begins at an address specified when the job was created.

This is normally specified as zero, which is why the first thing in a job is

normally a JMP.L instruction to the entrypoint of the code.

Since Qdos cannot give guarantees as to where a job will be loaded, it is
usual to write jobs as position-independent code, although it is possible to
avoid this constraint if a special relocating loader is used after the space for
the job has been allocated.

The system job table holds information about the jobs within the system. The

system variable SV_JBBAS points to the base of the job table, and SV_JBTOP
points to the top. The table is a series of longwords each of which points to a
job control block: the contents of this are described in section 18.5. The job is
identified to the system by its Job ID: this is a longword consisting of a word
giving its position in the job table (in the least significant word), and a word of
tag allocated by the operating system when the job is created (in the most
significant word).

The traps that may be called relating to jobs are as follows:

MT.lNF returns the current job ID, plus miscellaneous

information
MT.JINF returns the status of a job

MT.CJOB creates a job

MT.JOB returns information on a job

MT.RJOB removes an inactive job

MT.FRJOB forces removal of a job (whether inactive or not)
MT.FREE finds the largest space available for a job MT.TRAPV
 sets the trap-vector table for a job
MT.SUSJB suspends a job
MT.REUB releases a job
MT.ACTIV activates a job
MT.PRIOR changes the priority of a job

A job terminates itself by calling MT.FRJOB with its own job ID (or -1,

which always refers to the current job).

20

3.2 SuperBASIC Procedures and Functions

The SuperBASIC command interpreter is job number zero. It behaves

like all other jobs in most respects, with the important exception that it

owns a special data area which is expandable, and may be moved
without the knowledge of the interpreter. This area is located
immediately below the transient program area.

Machine code procedures and functions which are added to SuperBASIC
appear to the user to be identical to those which are built into the ROM. From
the user's point of view they are routines which are executed from within job
number zero, but which have certain constraints on the way they are coded.

The most important constraint is that A6 is used to point to the (moveable)
base of the SuperBASIC data area. The system may move the area and
change the value of A6 between instructions without the knowledge of the
interpreter, therefore A6 must not be modified within the procedure or
function, and its value must not be stored or used in calculation. This
constraint may be side-stepped by entering supervisor mode, but A6 must
then be restored on exit back to user mode (the processor is in user mode
when a procedure or function is entered). The stackpointer A7 must of course
be restored to its original value before exiting from the procedure.

On exit from the procedure, an error key is passed to the interpreter in DO.L:
this must be setto zero if there was no error. The procedure or function can
then be exited using an RTS statement.

If machine code procedures or functions are to be used either recursively or in
recursive SuperBASIC procedures, they must obey the usual constraints of
having no local variables and no self-modifying code.

Machine code procedures and functions are normally loaded into the

resident procedure area above the transient program area. This area can only
be expanded or deleted when the transient program area is

empty, which is normally immediately after the machine is booted.

21

Trap #4 is the one special trap which relates to SuperBASIC procedures and
functions. This trap is used to make the addresses passed to an I/O trap
relative to A6, which is necessary when working with the SuperBASIC
variables area. It only affects the following trap, and must therefore be called
before each trap whose addresses are to be modified.

Details of parameter passing, function returns and other useful information
about the SuperBASIC interface are given in section 9.0.

3.3 Tasks

Tasks are special pieces of code invoked under interrupt, usually as part of the
physical layer of a device driver. They obey special rules according to the
precise conditions under which they are called: these rules are described in the
sections on device drivers (sections 6.0-8.0). The important restriction on tasks
is that they must not allocate or release machine resources: this should only be
done from within a job, or within the access layer of a device driver.

3.4 Operating System Extensions

Some parts of user-defined device drivers do not fit into any of the above
categories: they are special routines called from within a job via the Qdos
Input/Output sub-system (see section 6.0). These routines have their own
rules, and these are described in the sections on device drivers (sections 6.0-
8.0).

22

4.0 Memory Allocation

Memory is allocated differently in each area of the Qdos memory map.

• Memory in the resident procedure area is allocated using the traps
MT.ALRES and MT.RERES.

• Memory in the transient program area is allocated by the mechanisms
described in section 13.0 for creation and deletion of jobs. The vectored
routines MM.ALLOC and MM.LNKFR may be used within a job to perform
primitive heap allocation inside that job's own data area.

• Memory in the SuperBASIC area is allocated by various mechanisms. The
traps MT.ALBAS and MT.REBAS are used by the interpreter to change the
size of the entire area, but are not normally used by anything else. The
vectored routine BV.CHRIX is used to allocate space on the arithmetic
stack: the interpreter itself cleans up this space on return from a procedure
or function. Space in the remaining parts of the SuperBASIC area is usually
allocated by the vectored routines being used to perform the operations that
require the space, so that this allocation is invisible to the user, except that it

usually results in a modification of the value of A6.

• Memory in the free memory area is not allocated or deallocated by the user,
except by the slave block mechanisms defined in section 7.0 on directory
device drivers.

• Memory in the common heap is allocated and released by the traps
MT.ALCHP and MT.RECHP. The area allocated in this way by a job is
released when that job is deleted. The same mechanisms can be accessed
from within device drivers via the vectored routines MM.ALCHP and
MM.RECHP.

23

4.1 Heap Mechanism

The mechanisms for allocating and releasing heap space are common to
various routines. They are as follows:

A heap is an area of memory which contains a linked list of used heap items,
and a linked list of free heap items. Each heap item is an area of memory
(which is a multiple of 8 bytes long), together with a pair of longwords: the first is
the length of the heap item, while the second is a pointer (relative to itself) to the
next heap item in the list. The use of relative pointers ensures that heaps may
be moved.

A heap is set up by linking an area of ram→memory into a non- existent
heap (free space pointer=0). A heap is expanded by linking an area of ram-
e rnernory, preferably but not necessarily, contiguous with the current top
of the heap, into the heap.

Provided the user code can remember the length of a heap item, all of the
memory in it may be used by the code. On allocation of the heap item, the first
long word holds its length, and so, if desired, this may be retained by the user
code.

The user code requires to keep one pointer to the first free space item in the
heap. This is a long word, and is relative. When the heap has no free space,
either because it does not exist, or because it is full, this pointer is zero.

Releasing a heap item adds it to the list of free space items within the heap,
and consolidates it with adjacent free spaces where appropriate.

24

5.0 Input/Output on the QL

A QL program uses I/O by accessing the Qdos. The IOSS in turn accesses the
device driver for the appropriate device. The device driver is a piece of code
which can perform low-level I/O routines for a particular device: that device may
correspond to a piece of hardware, such as a serial port, or it may be some
notional device occupying a piece of memory, such as a pipe, which is a
communication channel between jobs.

QL I/O is performed through the IOSS using an I/O channel. The applications
program opens a channel by passing a device name to the IOSS, which
returns a channel/D. The IOSS and the built-in device drivers have the ability
to recognize qualifiers appended to the actual name of the device which can
direct the open operation in particular ways, such as identifying a file name, or
selecting some hardware option. The program then uses the channellD to
identify to the IOSS which channel it wishes to access when performing read
or write operations on it. It can also close the channel, passing the channel lD
to the IOSS. There may be several channels open which use the same device
driver, such as multiple screen windows, or Microdrive files. For this reason, all
the built-in drivers are re-entrant, as must be the user-defined drivers if they
are to have the same capability.

The QL ROM contains drivers for several devices such as screen windows,
serial ports, pipes, microdrives, and so on. The user can add his own device
drivers for pieces of add-on hardware, or simply for additional functions with
the existing hardware.

Note that a channel lD is not the same thing as a SuperBASIC channel number
(denoted by #expression): the latter is the index of an entry in the SuperBASIC

channel table which includes a channel lD. See sections 18.4 and 18.7 for
details of the channel table.

25

5.1 Serial I/O

All device drivers have, at the very least, the capability to perform serial I/O:
that is, the operations of reading bytes, writing bytes, and testing for pending
input. Serial I/O is completely byte-oriented - unlike many operating systems
there is no inbuilt record structure, which means that the user is free to
superpose his own record maintenance in whatever form he wishes. I/O which
is purely serial is completely redirectable: when different devices are being
used, the device name passed to the channel open trap is the only thing that
changes.

The IOSS supports one control character only, this being the newline

character, which is ASCII 10 ($0A). Whilst this has the disadvantage

that one cannot directly store files of graphics commands which can be
retrieved by a simple copy, it does have the advantage that files containing
arbitrary sequences of bytes cannot do irretrievable damage to the system by
being copied to a device for which they were not intended. The serial driver has
the option of supporting ASCII 13 as a newline, and ASCII 26 (CTRL -Z) as an
end of file marker.

All serial I/O calls support a time-out feature, which may be zero (return
immediately), indefinite (wait until the operation is complete), or finite (wait
until the operation is complete, or for a set time, whichever is the sooner).
This last feature makes it very easy to write code which, for example, puts
up a menu only if the user hesitates.

The IOSS supports the following calls for serial I/O:

IO.OPEN opens a channel
IO.CLOSE closes a channel
IO.PEND tests for pending input
IO.FBYTE fetches a single byte
IO.FLlNE fetches a line of bytes terminated by newline (ASCII 10)

IO.FSTRG fetches a string of bytes
IO.SBYTE sends a single byte
IO.SSTRG sends a string of bytes

The fetch and send traps have several special meanings when used in
conjunction with screen or console channels: for a more detailed
description of these, see section 15.0 on I/O Traps.

For the fetch byte and fetch string traps, characters read from the
keyboard are not echoed in the associated window, and cursor
handling is left to the applications program.

26

5.2 File I/O

Qdos files appear to the applications program as arrays of bytes on a physical

device, with an associated file pointer which gives the "current position" in a
file. A file also has a header, which is normally 64 bytes long containing
information about the file such as its name, length, etc. Further details
concerning the format of the file header are given in section 7.0 on Directory
Device Drivers.

The open call to a file system device supports several modes: old (exclusive),
old (shared), or new (exclusive). New (overwrite) mode has a slot allocated in
the open keys, but is not currently supported for Microdrives. In addition, a
special open key indicates that it is desired to open the directory of the medium
for reading rather than a particular file; the directory cannot be explicitly written,
but is maintained by the device driver when open calls and deletions are made.

Qdos supports a system of slaving, whereby 512-byte blocks of data are
buffered in the free memory area (see section 4.0): all unused memory being
taken for this area. The filing system may return from a write operation when
that operation has only been performed on the slave block concerned; Qdos
will later force the system to convert that slave block into a true copy of the
data on the physical device. As a result of this mechanism, add-on filing
devices normally support 512- byte logical blocks: however this blocking
system is transparent to the applications program. A single slave block table is
shared by all the directory drivers which want to use it to improve their
performance.

In addition to the serial I/O operations described above, Qdos supports the
following operations for file-system devices:

IO.FORMT
IO.DELET
FS.CHECK
FS.FLUSH
FS.POSAB
FS.POSRE
FS.MDINF
FS.HEADS
FS.HEADR
FS.LOAD
FS.SAVE

formats a sectored medium
deletes a file
checks all pending operations on a file
flushes buffers for a file
positions the file pointer absolutely
positions the file pointer relatively
gets information about the mounted medium
sets the file header
reads the file header
loads a file into memory
saves a file from memory

27

The FS.FLUSH and FS.CHECK command are subtly different:
FS.FLUSH ensures that all write operations are complete, whereas
FS.CHECK ensures that all write and read operations (including
prefetches) are complete.

5.3 Screen and Console I/O

The keyboard and screen devices are treated in a special way by Qdos, and
have a large number of functions in addition to those available for purely serial
I/O devices. Two types of device are supported: scr (for screen), which is a
screen window, and con (for console), which is a screen window with an
associated keyboard channel. The three channels #0, #1 and #2 which are
opened by SuperBASIC are all console channels.

5.3.1 Display Modes -

The QL has two display modes (see the Concepts manual for details). The
display mode can be set or read using the MT.DMODE trap, but
as this trap clears all screen windows, it should be used with great care. A
program can also find out whether the user selected TV or monitor
at switch-on by inspecting the value of the system variable

SV_TVMOD.

There are two main coordinate systems used for screen I/O: these are the
graphics coordinate system and the pixel coordinate system (see the Concepts
manual for details). Note that in 256-pixel mode and for several commands in
512-pixel mode, the least significant bit of a dimension in the x-direction is
ignored, so that a given pixel address refers to the same location in both
modes. Some traps refer to character coordinates: these are based on the
pixel coordinate system but are scaled by the current character spacing for the
window.

5.3.2 Window Properties and Operations -

A window is an area of screen which may be in any position on the screen,
subject to the restriction that its x-position must be an even number. A window
may be of any size that does not run off the edge or bottom of the screen,
subject to the same restriction. Windows may overlap, but the system does not
store or retrieve the area of overlap, it being the user's responsibility to ensure
that any information is not lost or garbled.

28

Each window will have its own particular set of characteristics: a border width,
a border colour, a paper colour, a strip colour, an ink colour, a cursor position,
a cursor increment, a flag which says whether the cursor is suppressed, a pair
of font pointers, information about newline treatment, and graphics information.
Details of the window definition block are given in the section 15.0.

The special traps for dealing with windows are as follows:

SD.PXENQ
SD.CHENQ
SD.BORDR
SD.WDEF
SD.CURE
SD.CURS
SD.SCROL
SD.SCRTP
SD.SCRBT
SD.PAN
SD.PANLN
SD.PANRT
SD.CLEAR
SD.CLRTP
SD.CLRBT
SD.CLRLN
SD.CLRRT
SD.RECOL
SD.SETPA
SD.SETST
SD.SETIN
SD.FILL
SD.SETMD

returns window information in pixel coordinates
returns window information in character coordinates
sets the border width and colour
redefines a window
enables the cursor
suppresses the cursor
scrolls a whole window
scrolls the top part of a window
scrolls the bottom part of a window
pans a whole window
pans the line the cursor is on
pans the right-hand end of the line the cursor is on
clears a whole window
clears the top part of a window
clears the bottom part of a window
clears the line the cursor is on
clears the right-hand end of the line the cursor is on
recolours a window
sets the paper colour
sets the strip colour
sets the ink colour
fills a rectangular block in a window
sets the character writing or plotting mode

5.3.3 Screen Character Output Operations-

Newline characters receive slightly different treatment when bytes are being
sent to a screen or console channel rather than to any other
device. In addition to being caused by a newline character, a newline is
automatically inserted when the cursor reaches the right-hand side of

the window; when this happens during an IO.SBYTE trap, the error code
ERR.OR (for out of range) is also returned.

29

If the cursor is suppressed, the newline is held pending. It can be cleared
by any call to position the cursor, or activated by any of the following
events:

sending another byte or string;

changing the character size;
activating the cursor; requesting
the cursor position.

This feature allows the right-hand character squares to be used
without generating stray blank lines.

The following additional operations apply to screen character output:

SD.FOUNT
SD.SETFL
SD.SETUL

SD.SETSZ

sets or resets the character fount

sets or resets hardware flash (256-pixel mode only)

sets or resets underlining

sets the character size and spacing

5.3.4 Graphics Operations-

The QL can perform line, arc or ellipse drawing on a window basis in

 scaled coordinates. It also provides a primitive area flood routine. The traps
are as follows:

SD.POINT
SD.LlNE
SD.ARC
SD.ELlPS
SD.SCALE
SD.GCUR

SD.FLOOD

draws a point
draws a line
draws an arc
draws an ellipse
sets the scale
moves the graphics cursor

set or reset area filling

5.3.5 Special Properties of Console Channels-
For the console device, the IO.FLlNE trap behaves in a particular fashion:
the characters typed are echoed in the console window, and the left and right
cursor keys (with or without CTRL) are used to edit the line in the standard
way. In addition, the cursor is automatically enabled.

An additional trap, IO.EDLlN, is provided for console channels, which invokes
the line editor on a pre-defined string. The line-editor may be exited by typing
ENTER, or by typing either the cursor-up or the cursor-down character.

30

The user can temporarily suspend screen output to a console channel by
typing the freeze screen character (CTRL-F5). Output is resumed when any
character is typed, but the character is ignored for all other purposes. If a
non-indefinite time-out has been set for the suspended operation, it may
return non-complete if the screen is frozen past the time-out period.

5.3.6 Special Keyboard Functions-

Several console channels may be open at the same time. If they are used by
different jobs, it may be that more than one console channel is expecting input
at a given time. When this occurs, the user may cycle round the list of console
channels currently expecting input by typing the change queue character on
the keyboard. The cursor in the console window to which keyboard input is
currently directed will flash if it is enabled. Any enabled cursors in other
windows will be steady.

The change queue character is normally CTRL-C (ASCII 3). It can be
changed by modifying the system variable SV_CQCH.

The keyboard maintains a type-ahead queue of seven characters in the

8049 processor which controls it. In addition to this, there may be

more type-ahead in the queue for each console channel.

The keyboard auto-repeats on all keys except the keyboard change queue
character, CTRL-Space (the SuperBASIC break) or CTRL-F5 (the freeze
screen character). However, auto-repeat will not occur unless the type-ahead
queue for the console channel to which input is currently directed is empty. The
delay before auto-repetition begins is held in the system variable SV_ARDEL,
and the interval between repetitions is held in SV_ARFRQ (both in multiples of
1/50th or 1/6Oth of a second). These can be altered by a program.

When CAPSLOCK is pressed, the system will jump to a user-supplied
routine whose absolute address is held in the system variable SV_CSUB if
the value of this is non-zero. This routine should restore all registers to their
initial state before returning.

5.3.7 Extended Operations-

A special trap SD.EXTOP is provided to allow a program to invoke a user-
supplied routine using the same environment that is passed to the routines in
the screen driver. See the description in section 15.0 (I/O Traps) for a more
detailed discussion of this trap.

31

6.0 QDOS Device Drivers

A user-supplied Qdos device driver is a collection of routines which allow an
applications program to perform IOSS functions on a user- supplied device in
the same way as such functions are performed on the devices built into the
system. As these routines are linked into the system's lists in front of the
corresponding system routines, they may be used to replace the system
routines. At the very least, the device driver contains a set of routines for
opening a channel, closing a channel, and performing serial I/O on that
channel: these routines are called via the IOSS as part of the job that is

performing the I/O. The driver may also include one or more tasks, that is,

routines performed asynchronously with the calling job, usually under
interrupt.

Such tasks, which are known as the physical layer of the device driver,
normally communicate with the rest of the device driver, which is known as
the access layer, using asynchronous queues. These queues are usually
polled by the task at regular intervals, either on every occasion the scheduler
is entered, or on every 50/60 Hz polling interrupt.

Drivers for file system devices use a slightly different, and more general,

mechanism: this is described in section 7.0.

Both drivers and tasks are linked in to lists provided by the operating
system. The following traps are used to add and remove items from

those lists:

MT.LXINT
MT.LPOLL
MT.LSCHD
MT.LlOD
MT.LDD

links in an external interrupt service task
links in a 50/60 Hz polling service task links
in a scheduler loop task
links in a device driver to the 110 system
links in a directory device driver to the file system

MT.RXINT, MT.RPOLL, MT.RSCHD, MT.RIOD and MT.RDD remove these
links.

The QL provides several utility routines which are useful for various
actions commonly performed in device drivers, such as decoding a

device name, performing queue operations, etc.

32

6.1 Device Driver Memory Allocation

Device drivers allocate memory in two areas: the device driver definition block
and the channel definition block. The device driver definition block belongs to the
driver itself, and is allocated by the code which sets up the driver when it is
initialised and linked into the various lists. The channel definition block belongs to
each I/O channel, and is allocated by the driver itself when a channel is opened.
Various parts of the channel definition block are thereafter used by the lOSS for
its own purposes.

In theory, the access layer can allocate space on the heap at other times: in
practice this is not usually required. The whole system can be made re-entrant
to allow several channels to be open with the same device driver and the
same device driver definition block, but with different channel definition blocks.

Note that the system will certainly crash if the area of a channel definition
block is deallocated and used for something else before the channel is
closed, or if the area of a device driver definition block is deallocated and
used for something else before the device driver is removed from the
system's lists, for example if the device driver definition block is in a transient
program which is force-removed. This possibility can be obviated by
allocating the block in the common heap with a job number of zero, or by
allocating it in the resident procedure area.

Tasks must not allocate or release memory: this must be done for
them by the access layer, or by the device driver initialisation code.

6.2 Device Driver Initialisation

The code to initialise a device driver must first allocate the space for the device
driver definition block, usually by allocating some space in the resident
procedure area, although any of the normal allocation mechanisms may be
used.

The device driver definition block will normally have the following
structure, assuming that A3 has been made to point to it:

33

$00(A3)
$04(A3)
$08(A3)
$0C(A3)
$10(A3)
$14(A3)
$18(A3)
$1C(A3)
$20(A3)
$24(A3)
$28(A3)

Link to next external interrupt routine
Address of external interrupt routine
Link to next poll interrupt routine
Address of poll interrupt routine
Link to next scheduler loop routine
Address of scheduler loop routine
Link to access layer of next device driver
Address of input/output routine
Address of channel open routine
Address of channel close routine

Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and I/O
routines, together with those of any of the routines for tasks that it will be
employing. It should also fill in any preset data required in the remainder of the
workspace.

Finally, the link routines described above should be called to include the
driver in the operating system's lists.

Note that the structure of the first 24 bytes of the device driver definition
block is not mandatory; however, it is desirable from the point of view of
consistency that it be kept the same. The comments in later sections
about the base of the device driver definition block being passed to the
driver are only valid if the above structure has been used.

6.3 Physical Layer

The physical layer tasks are normally the ones which perform actual I/O
under interrupt or polled control. They usually take data out of queues or
put data into queues, the other end of such queues being maintained by the
access layer.

When the operating system calls one of the tasks in the physical layer, it
passes the task a standard set of values in some of the registers. These
values are as follows:

D3 Number of 50/60Hz interrupts since last scheduler call

(scheduler loop only)

A3 Pointer to base of device driver definition block

A6 Pointer to system variables

A7 Supervisor stack - routines may use up to 64 bytes

34

6.3.1 External Interrupt Tasks-

An external interrupt task must check its own hardware to determine whether
the interrupt was for itself or for some other driver. It may also need to clear the
source of the interrupt at that point. If the interrupt was not for itself, it should
return.

6.3.2 Polling Interrupt Tasks-

Polling interrupt tasks should only be used when critical timing operations are
required. In common with the external interrupt tasks, they can interrupt
atomic operations in the rest of the system, such as access layer calls to the
same driver, so they should be used with great care.

6.3.3 Scheduler Loop Tasks-

Calls from the scheduler loop do not interrupt atomic tasks. This means that
operations such as allocating or releasing memory can be performed safely.
Note that it is quite common for the same routine to be included both in the
scheduler loop and in the external interrupt list.

Scheduler loop tasks are called at around 50/60Hz when the machine is
busy, and more frequently if the machine is idle.

All physical layer calls return with RTS. D0 to D7 and A0 to A6 inclusive may
be smashed.

6.4 The Access Layer

The access layer consists of three routines: the channel open, the channel
close, and the Input/Output routine. These routines are called for the
appropriate driver by the IOSS in response to a user's trap instruction. In the
case of the channel open, the routine is called in turn for each device driver in
the machine until a driver's open routine returns correctly to indicate that it has
recognised the device name. Due to this mechanism, an incorrect open routine
may crash the whole system when an open to any device is attempted,
whereas the other routines are only invoked in response to the particular
device being used.

For all access layer calls, the values of A3, A6 and A7 are the same as) for
the physical layer. The other registers have different meanings, as described
below in the sections for the individual types of call.

All access layer calls return using RTS.

35

6.4.1 The Channel Open Routine-

When the channel open routine is called via the lOSS, the following
registers are set in addition to A3, A6 and A7 which are as described
above:

A0 address of the device name

D3 access code as defined in the IO.OPEN trap

The open routine should perform the following operations:

First, decode the name; the utility IO.NAME, which is described in section
16.0, will normally be used for this purpose. Return with ERR.NF in D0 if
the name was not recognised by this driver, or with ERR.BN if the name
was recognised, but some of the additional information was incorrect in
value or format.

Then, if the device cannot be shared, check whether the device is in

use and prevent another channel from being opened to it. If the device is in
use, return ERR.IU.

Finally, allocate some space for the channel definition block. Any buffers or
working area required for each channel are normally allocated in the
common heap. Return with ERR.OM if there was not enough memory to do
this.

On return from the open routine, the following should be set:

A0 address of channel definition block
A7 stackpointer returned to its value at entry

D0 error return code (zero for a successful open)

The remaining registers may be smashed.

6.4.2 The Channel Close Routine-

When this routine is entered, in addition to the usual values of A3, A6 and A7,
AO points to the base of the channel definition block.

The function of the close routine is simply to release the memory taken up by
the channel definition block and to ensure that everything in the device driver
definition block is tidy.

36

Under some circumstances, it may not be possible to close the channel
immediately because there are bytes waiting to be transmitted by the physical
layer. In this case, the physical layer must contain a scheduler loop task, and
the close routine should set a flag for the physical layer to complete the
release of the memory on the next invocation of that task in which it is
possible to do so. When this happens, it is usually necessary to build in a
special mechanism to cope with the undesirable event of a program closing a
channel to a particular device, and then re-opening it immediately only to
receive an "in use" error because the closed channel has not yet been
cleared.

The close routine should return with zero in D0, as it is assumed that a close
routine cannot fail. Only registers D0 to D3 and A0 to A3 may be smashed.

6.4.3 The Input/Output Routine -

The I/O routine is called once when an I/O call is made, and then, unless
the time-out was set to zero, on every subsequent scheduler loop until the
operation is complete or the time-out has expired.

In addition to the usual values of A3, A6 and A7, the following
registers are set:

D0 The trap code passed to the lOSS (0 in top three bytes)

D1 Additional information as defined in the trap calls in section 15.0

D2 Additional information as defined in the trap calls in section 15.0

D3 Zero on the first entry for a given trap call, -1 thereafter

A0 Base of channel definition block

A1 Additional information as defined in the trap calls in section 15.0

A2 Additional information as defined in the trap calls in section 15.0

The I/O routine should return ERR.NC (not complete) if it cannot complete
the operation immediately. If a string operation has been partially
completed, the values in D1 and A1 (number of bytes transferred and buffer
pointer) should be set appropriately so that the operation can continue on
the next try. D0 should be zero on return if the operation has been
completed correctly. Registers D2 to D7 may be smashed.

37

Since most of the code for handling serial I/O is common to all device drivers, the I/O
routine usually calls one of the utility routines IO.SERQ or IO.SERIO (which are

described in section 16.0). IO.SERQ assumes that the only function ofthe access layer
is to move bytes in and out of a pair of queues pointed to by fixed positions in the
channel definition block, while IO.SERIO assumes that the operations required of it can
all be made up out of three primitive routines for sending one byte, fetching one byte,
and checking for pending input, such routines being supplied by the writer of the device
driver.

Note that channels are assumed to be bidirectional; it is the responsibility of the I/O
routine to trap an operation in a direction that is not allowed.

Note also that output operations which appear to the user as complete have merely
completed the access layer call correctly: there being no general way in which the user
can ascertain whether the physical layer has in fact completed the operation.

38

7.0 Directory Device Drivers

Drivers for devices which have a directory and form part of the filing
system have a somewhat extended set of functions. For directory device
drivers, there are three blocks in which memory is allocated, rather than
two: these are the directory driver linkage block, the physical definition
block and the channel definition block.

There is one directory driver linkage block for each directory driver: it is an
extended form ofthe device driver definition block as found in a non-directory
device driver. The block contains information about how to use the driver,
together with the links in the operating system's lists.

Each directory driver may control up to 8 drives (numbered 1 to 8). Each
drive has one physical definition block: this contains the drive number
and information about the medium.

For each I/O channel that is open, there is an open channel definition
block.

The file system is assumed to be composed of 512-byte blocks: thus a

byte within a file is addressed by the lOSS by a block number and a byte
number within that block. It is of course possible to have a different physical
block size, but the mapping ofthe lOSS structure onto the physical structure
will be less convenient.

Each file is assumed to have a 64-byte header (the logical beginning of file is
set to byte 64, not byte zero). This header should be formatted as follows:

$00
$04

$05
$06
$0E

$34
$38
$3C

long
byte

byte

8 bytes

2+36 bytes
long

long
long

file length

file access key (not yet implemented - currently
always zero)

file type

file type-dependent information
filename
reserved for update date (not yet implemented)

reserved for reference date (not yet implemented)

reserved for backup date (not yet implemented)

The current file types allowed are: 2, which is a relocatable object file;

1, which is an executable program; 255 is a directory; and 0 which is anything
else. In the

39

case of file type 1,the first longword of type-dependent information holds
the default size of the data space for the program.

7.1 Initialisation of a Directory Driver

The initialisation routine should firstly allocate room for the directory driver
linkage block, and then write into it the information aboutthe driver routine
addresses, the length ofthe physical definition block required for each drive,
and the drive name. Note that for directory drivers, the decoding of the device
name is performed by the lOSS, not by the open routine in the device driver
as in non-directory drivers: the function of the open routine is to search for the
file name within the given drive. The linkage block may be allocated in the
resident procedure area if the driver is resident there, but will usually be in the
common heap. The system will crash if the linkage block is overwritten
without the driver being unlinked.

When this has been done, the traps MT.LXINT, MT.LPOLL,
MT.LSCHD and MT.LDD can be called to link the driver and any
associated tasks into Qdos.

The format of the directory driver linkage block is as follows (assuming that
A3 has been made to point to it):

$00(A3) link to next external interrupt routine

$04(A3) address of external interrupt routine

$08(A3) link to next 50/60 Hz interrupt routine

$0C(A3) address of 50/60 Hz interrupt routine

$10(A3) link to next scheduler loop routine

$14(A3) address of scheduler loop routine

$18(A3) link to access layer of next directory driver

$1C(A3) address of input/output routine

$20(A3) address of channel open routine

$24(A3) address of channel close routine

$28(A3) address of entry for forced slaving

$2C(A3) reserved

$30(A3) reserved

$34(A3) address of entry to format medium

$38(A3) length of physical definition block

$3C(A3) word-length of drive name characters of drive name

(e.g. MDV)

Note that a directory driver must have at least 40 bytes of RAM for the
linkage block.

40

7.2 Access Layer

The access layer of a directory driver contains five routines: the channel

open/file delete routine, the close routine, the I/O routine, the forced

slaving routine and the format routine.

For all directory device driver access layer calls (including open), A0 points
to the base of the channel definition block when each routine is called.
However, the format of the block is somewhat different:

The first $18 bytes are reserved for the lOSS.

$18(A0) FS_NEXT long
$1C(A0) FS_ACCES byte

$10(A0) FS_DRIVE byte
$1E(A0) FS_FILNR word
$20(A0) FS_NBLOK word
$22(A0) FS_NBYTE word
$24(A0) FS_EBLOK word

$26(A0) FS_EBYTE word
$28(A0) FS_CBLOK long

$2C(A0) FS_FNAME 2+36 bytes
$58(A0) FS_SPARE 72 bytes

link to next file system channel
access mode (03 on open call,
-ve on delete)
drive ID
number of file on drive
block number containing next byte
next byte from block
block number containing byte
after EOF
byte after EOF
pointer to slave block table for
current slave block which may
hold current/next byte
file name
spare

A1 points to the physical definition block, which is formatted as follows:

The first $10 bytes are reserved for the lOSS.

$10(A1) FS_DRIVR long

$14(A1) FS_DRIVN byte
$16(A1) FS_MNAME 2+10 bytes
$22(A1) FS_FILES byte

pointer to access layer link for
driver
drive number
medium name
number of files open on this
medium

41

7.2.1 The Channel Open/File Delete Routine-

The function of the open routine depends on the access mode. This may have
been passed to the lOSS in D3 if the open routine was called as a result of an
IO.OPEN trap, or it may be a negative number, which would be the case if the
routine has been entered as a result of an IO.DELET trap.

In order to understand the open routine, it is necessary first to understand the way
in which Qdos handles device names. When a device name is passed to the lOSS
as a result of an open or delete call, the lOSS looks for a match in its lists of device
drivers and directory device drivers. The matching mechanism for non-directory
device drivers is defined within the open routine for that driver. The matching
mechanism for directory device drivers is as follows. The first characters of the
name are checked against the drive name in the directory driver linkage block
(which is put there when the driver is initialised), and these are expected to be
followed by a drive number between 1 and 8, followed by an underscore, followed
usually by the filename. If a match is found, the file system looks to see if there is a
physical definition block for that drive already in existence. If there is not, a physical
definition block is created in the system's table of physical definition blocks (the
drive ID in the channel definition block is an index to this table). Note that the file
system has no knowledge of whether a drive is actually connected, and will set up
the definition block regardless.

The lOSS then checks to see if this is the second or subsequent open to a shared
file: if this is the case it generates the complete channel definition block itself,
setting FS_NBYTE to $40, and copies the remaining information from the channel
definition block for the first open. The directory driver's open routine is not called.
Otherwise, the lOSS calls the open routine, passing it the file name in the channel
definition block.

On entry to the open routine, the following registers are set:

A0 base of channel definition block
A1 base of physical definition block

A3 base of directory driver linkage block

A6 base of system variables

42

The channel and physical definition blocks are all set to zero except for the
following, which are filled in by the lOSS:

FS_NEXT
FS_ACCES
FS_DRIVE
FS_FNAME
FS_DRIVR
FS_FILES

link to next file system channel
access mode
drive ID
file name
pointer to directory driver access layer

number of files open on this drive (maintained by lOSS)

In the case of a device with removable media, the open routine should find
out the name of the medium and install it in FS_MNAME. It should also look
at the access mode to find out which operation is required. If the required
operation is delete, it should perform that operation and return, but if the
required operation is another sort of open, then it should fill in the
appropriate portions of the channel definition block, namely FS_FILNR,
FS_EBLOK, FS_EBYTE, FS_NBLOK and FS_NBYTE. FS_CBLOK is a
pointer to the slave block table which may be filled in as an indication to the
I/O routine that the block it is looking for may be slaved there. The I/O
routine must check this however, normally by searching the slave) table.

The lOSS will free the channel definition block on exit from the open routine
if the action was a delete or if the open routine returns an error key in D0.

The maintenance ofthe directory structure of the medium is the responsibility
of the open and close routines - the lOSS plays no part in this. Equally, the
open routine is responsible for understanding the meaning of the access
mode and reacting accordingly.

The open routine may smash registers D1 to D7 and A1 to A5 inclusive
before returning. D0 isthe error key, and the remaining registers should be
preserved.

7.2.2 The Channel Close Routine-
As far as the lOSS is concerned, this routine behaves in the same way as
for a non-directory device driver. It is of course necessary for the close
routine to maintain the directory structure of the medium, so its operation
will normally be rather more complicated.

43

The close routine for a directory device driver has two additional functions: it
must unlink the channel from the list of files open, and must decrement the
FS_FILES field in the physical definition block, which gives the number of
files open on the medium. Suitable code for performing these operations and
ending the close routine isas follows:

*get address of physical definition bLock into A2

MOVEQ #O,DO top three bytes must be be

clear

MOVE.B FS_DRIVE(AO),DO get the drive ID

LSL.B #2,DO convert it to a table

 offset

LEA.L SV

_FSDEF(A6),A2

getbaseofPDBtable

MOVE.L (A2,DO.W),A2 get address from

* now decrement the file count

SUBQ.B #1,FS_FILES(A2)

*now unlink the file

LEA FS_NEXT(A0),A0

LEA SV_FSLST(A6),A1

(base+offset)

get address of link pointer

…and pointer to start of

linked list

MOVE.W

JSR

LEA

UT.UNLNK,A4

(A4)

-FS.NEXT(A0),A0

routine to unlink an item

restore A0 to base of

channel def

MOVE.W MM.RECHP,A4

JMP (A4)

routine to release

channel def space

call it, and exit from the

close

The close routine must also initiate the process of tidying up any slave blocks
remaining for that channel. It need not force the slave blocks to be made into
true copies itself, but it must be guaranteed that the copying will happen
without further intervention by the calling program.

7.2.3. The Input/Output Routine _
This routine also appears to the IOSS to be identical for both directory and
non-directory device drivers, though once again the routine is usually rather
more complex for most normal file system devices. The main difference is
that the I/O routine for a random access file system device must take into
account the current block and position as provided by the IOSS, since these
may have been updated by the IOSS as a result of a file pointer positioning
trap.

44

7.3 Slaving

The area of memory between SV_FREE and SV_BASIC is used by the

filing system as temporary storage for file slave blocks and for the slave

block table. A slave block is a block of 512 bytes of data. The slave block table
is a table of 8 entries whose start point is held in the system variable
SV_BTBAS and whose top is held in the system variable SV_BITOP; the
system variable SV_BTPNT points to the most recently allocated slave block
table entry. The address of a slave block, relative to the base of system
variables, is equal to 512/8 times the offset of the corresponding entry in the
slave block table from the beginning of that table.

Currently, only the first byte of each slave block table entry is used by Qdos
itself: the remaining bytes are available for use by the driver. This byte is
divided into two four-bit nibbles. The most significant nibble contains the drive
identifier (0 ..15), and the least significant nibble is a code indicating the status
of the block. The byte is formatted as follows:

$00 unavailable to filing system

$01 empty block

$x3 block is true representation of file

$x7 block is updated, awaiting write

$x9 block is awaiting read

$xB block is awaiting verify

x is the drive ID for this file

For Microdrives, the remaining space in each slave block table entry is laid
out as follows:

BT_PRIOR
BT_SECTR
BT_FILNR
BT_BLOCK

01 byte
02 word
04 word
06 word

available for slaving algorithms
physical sector number*2
file number
block number within the file

It is left to the device driver to decide what the slave blocks are used for but it
must be prepared to release a slave block if requested to do so by the memory
manager. This is done by calling the driver's forced slaving routine with the
following parameters:

A1 points to the base of the offending slave block

A2 points to the physical definition block

A3 points to the base of the directory driver linkage block

45

Registers D0 to D3 and A0 to A4 inclusive may be smashed. There may not be
an error return to this routine.

Typically the slave blocks are used to buffer data being written to a device,
the actual writing being carried out by an asynchronous task.

Searching for an empty slave block involves performing a linear search
through the slave"block table, usually starting from SV_BTPNT or SV_BTBAS.
The status of each entry in the table must be checked and only those blocks
which are empty or true representations should be taken. When a new block is
allocated SV_BTPNT should be updated to point to the allocated block.
Allocating slave blocks is a form of memory allocation and should only be
carried out by access layer or scheduler loop calls.

This position in memory of a slave block which corresponds to a slave block
table entry may be calculated using the following code:

MOVE.L A4,DO A4 is pointer to slave

block table entry

*

*form offset into slave block table, gives

*slave block no.*8; entries are 8 bytes wide in table

*

 SUB.L SV_BTBAS(A6),D0

 LSL.L #6,D0 multiply by 64 (8*64=512)

 MOVE.L D0,A5

 ADD.L A6,A5 add offset to system

 variable base

 * A5 now has base address of slave block

7.3.1 The Format Routine

This routine is to a large extent independent of the other routines. It is called
with the drive number in D1, a pointer to the medium name in A1, and a
pointer to the directory driver linkage block in A3.

It should return the error code in D0, the number of good sectors in D1 and
the total number of sectors in D2. Registers D3 to D7 and A0 to A5 inclusive
may be smashed.

46

8.0 Built-in Device Drivers

The following devices are built in to the QL ROM:

CON_wXhaxXy_k Console I/O

window area "w" by "h" pixels, top left hand corner at

pixel position "x", “y”

keyboard type-ahead buffer length "k" characters.

The size and position are defined in terms of pixels on a
512 x256 display map (position 256x128 is the centre of
the screen in both display modes).
Default CON_448x180a32x16_128

SCR_wXhaxXy Screen output

window definition is as for CON.
Default SCR 448x180a32x16

SERnpz RS232 serial I/O

port "n",
"p" indicates parity: E,O,M,S for even, odd, mark or space parity,
"z" indicates protocol: R indicates raw data,

Z or C indicates that ctrl-Z is used as an EOF marker,

C indicates that ASCII 13 is to be exchanged with
ASCII 10.

Default SER1R no parity.

NETI_nn Serial network output
 link from node "nn"

NETO_nn Serial network input
 link to node"nn"

PIPE_n Job connection and synchronisation

if "n" given it is an output pipe of length n bytes,

otherwise it is an input pipe connected to the channel lD
passed in D3.

MDVn_name Microdrive file

MDV1 refers to Microdrive "1".

Within device names, no distinction is made between upper and lower case
letters.

47

9.0 Interfacing to SuperBASIC

When writing SuperBASIC procedures or functions in machine code, there are
several things that an applications programmer may want to do: he may wish to
look at or modify the information held in SuperBASIC variables and arrays, he
may wish to access or modify the SuperBASIC list of I/O channels, and he may
wish to reserve and use space on the arithmetic stack. He will also, of course,
wish to access the list of parameters passed to the routine and return values
either to those parameters or in a function return. In order to do this, it is

necessary to understand the data structures used by the interpreter and
to emulate the interpreter's techniques for manipulating them.

9.1 Memory Organisation within the
SuperBASIC Area

The SuperBASIC area contains twelve distinct areas:

the job header,

the SuperBASIC work area,
the name table,
the name list,

the variable values area,
the channel table,

the arithmetic stack,
the token list,

the line number table,
the program file,
the return list,
the buffer.

There are also various other stacks used by the interpreter.

The job header is located at the bottom of the SuperBASIC area, and looks just
like any other job header (see section 18.5). Immediately above this is the
SuperBASIC work area; this is an area of fixed storage used for the working
variables of the interpreter. Included in these working variables are pointers to
the other areas: the interpreter can not only shuffle these areas around, but may
ask Qdos to change the size of the whole SuperBASIC area.

48

Bytes 7-4 Bytes 3-2 Bytes 1-0 Type

Value pointer

Value pointer

Value pointer

Ptr to RI stack

Ptr to RI stack

Ptr to RI stack

Value pointer

Value pointer

Value pointer

Value pointer

Value pointer

Value pointer

Value pointer

Line no in msw

Line no in msw

Line no in msw

Line no in msw

Value pointer

Value pointer

Abs. address

Abs. address

Name pointer

Name pointer

Name pointer
-1

-1

-1

Name pointer

Name pointer

Name pointer
-1

Name pointer

Name pointer

Name pointer

Name pointer

Name pointer

Name pointer

Name pointer

Name pointer

Name pointer

Name pointer

Name painter

$0001

$0002

$0003

$0101

$0102

$0103

$0201

$0202

$0203

$0300

$0301

$0302

$0303

$0402

$0501

$0502

$0503

$0602

$0702

$0800

$0900

Unset string

Unset floating point number

Unset integer

String expression

Floating point expression

Integer expression

String

Floating point number

Integer

Substring

String array

Floating point array

Integer array

SuperBASIC procedure

SuperBASIC string function

SuperBASIC f.p. function

SuperBASIC integer function

REPeat loop index

FOR loop index

Machine code procedure

Machine code function

The organisation of this area is shown in section 18.3. Throughout normal
operation of the interpreter, A6 points to the base of the SuperBASIC work
area, the whole of which may move between instructions, with a corresponding
change in A6. All the pointers are, of course, relative to A6, so that their values
need not be changed when the SuperBASIC area is moved.

The name table, the name list and the variable values area are required by the
applications programmer in order to access and/or modify SuperBASIC
variables and parameters. The channel table is required in order to access
SuperBASIC I/O channels, and the arithmetic stack (usually abbreviated to RI
stack) is a convenient area in which to reserve storage, and is also where
parameters are passed. The remaining areas are not described in this
document.

9.2 The Name Table

All variables, procedure names, parameters and even expressions are
handled through the name table. This is a regular table of eight byte entries,
but the entries hold different information according to the type of entry.

The entries may be as follows:

49

Byte 0 of the name table has an additional usage during parameter
passing: see section 9.8.

The Name pointer is a pointer to an entry in the name list (see the
following section). A name pointer of -1 indicates a nameless item
such as the value of an expression; any other negative pointer indicates a
pointer to another entry in the name table of which this entry is a copy.

The Value pointer is a pointer to an entry in the variable values area (see
section 9.4). A value pointer of -1 indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets
from the base of each area. For the RI stack, the base is at the high
address; for the others it is at the bottom.

Note that functions written in SuperBASIC are typed according to whether
the name ends in % ,$ or neither. Functions written in machine code, in
common with procedures written in SuperBASIC or machine code, have no
type.

The entries for expressions and substrings are for use within the expression
evaluator: the applications programmer would not normally use them.

9.3 Name List

The names in the name list are stored as a byte character count
followed by the characters of the name. Note that this format is different
from all other uses of strings in Qdos in which a word character count is
used.

9.4 Variable Values Area

This area is a heap in which the values are stored. The format for each type
of data item is given in the following sections.

I

50

Hex String

0004 41424344 "ABeD"
0003 414243xx "ABC"
0000 ""

9.5 Storage Formats

9.5.1. Integer Storage

An integer is a 16-bit two's complement word.

9.5.2 Floating Point Storage

A floating point number is stored as a two-byte exponent followed by a four-
byte mantissa.

The most significant four bits of the exponent are zero, whilst the remaining
twelve bits are an offset from -$800. The mantissa is two's complement and

fractional, with bit 31 of the mantissa representing -1, and bit 30 of the

mantissa representing +1/2. There are no implicit bits in the mantissa, so
either bit 31 or bit 30 will be set for a normalized number, except in the
special case of zero.

The value of the number is thus mantissa*2 to the power (exponent -
$800). If the mantissa is viewed as two's complement absolute (as opposed

to fractional), the value of the number is given by: mantissa *2 to the

power (exponent-$81F). The $1 F corresponds to 31 decimal the length of
the mantissa minus one.

Examples of floating point storage are as follows:

Hex Decimal

0804

0801

07FF

07FF

0800

0000

50000000

40000000

40000000

80000000

80000000

00000000

10.00

1.00

0.25

 -0.50

 -1.00

0.00

9.5.3 String Storage

A string is stored as a word character count, followed by the characters of the
string. The string storage always takes a multiple of two bytes.
Examples are as follows:

51

9.5.4 Array Storage

An array descriptor has a header which consists of a longword offset of the
array values from the base of the variable value area, followed by the number
of dimensions (word), followed by a pair of words for each dimension. The first
word is the maximum index, the second word is the index multiplier for this
dimension.

The storage of floating point and integer arrays is entirely regular. A floating
point array takes 6 bytes per element, an integer array 2 bytes per element.

A string array is stored as an array of characters; except that the zeroth
element of the final dimension is a word containing the string length. The final
dimension defines the maximum length of the string. This is always rounded
up to the nearest even number.

A substring is the result of internal slicing operations; this is a regular array
of characters; the base of the indexing is one rather than zero.

Examples of Floating Point Storage

Floating point variables (in hex)

0000 0000 0000

0801 4000 0000

0800 8000 0000

0804 5000 0000

0.0

1.0

 -1.0

10.0

Floating point arrays

base,2,3,3,2,1 DIM A(3,2)

Examples of String Storage (Numbers are in decimal)
String variable

4;65,66,67,68 "ABCD"

String array

base,2,3,12,10,1 DIM A$(3,10)

4;65,66,67,68,x,x,x,x,x,x "ABCD"

9;49,50,51,52,53,54,55,56,57,x "123456789"

O;x,x,x,x,x,x,x,x,x,x

1;32,x,x,x,x,x,x,x,x,x,

Substring array

base, 1,3,1

65,66,67

""

""

A$(0,1 TO 3) as above

"ABC"

52

9.6 Code Restrictions

There is a simple set of rules for writing procedures in machine code for

SuperBASIC.

1. As the SuperBASIC program area is liable to move at any time while the
execution is in user mode, all refererences to this area must be indexed by A6
or A7. A6 and A7 must never be saved, used in arithmetic or address
calculations, and must never be altered, except by pushing or popping the A7
stack. In extreme circumstances it is possible to enter supervisor mode (Trap
#0) to make the following action atomic. If this is done, A6 and User stack
pointer must not be saved or manipulated before entering supervisor mode,
and they must be restored before exiting.
2. Not more than 128 bytes must be used on the user stack.

3. D0 must be returned as an error code (long).

4. D1 to D7 and A0 to A5 inclusive may be treated as volatile.

9.7 Linking in New Procedures and
Functions

New SuperBASIC procedures and functions written in machine code may be

linked into the name table using the vectored routine BP.lNIT (see section

16.0). When the procedures and functions are in a ROM in the suitable

format (see section 11.4), BP.INIT is called automatically. If the procedures

and functions are to be stored in RAM, they should be loaded into the
resident procedure area as, once added, they may not be removed except by
re-booting the machine. It is usually convenient to load the code for calling

BP.INIT to make the linkage into the same area, although this is not
necessary.

9.8 Parameter Passing

The SuperBASIC interpreter passes parameters using a substitution

mechanism, which operates as follows. The interpreter first evaluates

any of the parameters that are expressions. A new entry is then created at the
top of the name table for each actual parameter. In the case of a procedure or
function written in SuperBASIC, this is followed by a null entry for any formal
parameter that is missing from the actual

53

parameter list. The interpreter then swaps the new name table entries with
the old name table entries corresponding to the actual parameters. In the
case of a procedure or function written in machine code, the code is then
called with A3 pointing to the name table entry for the first parameter in the
list, and A5 pointing to the last ((A5-A3)/8 is the number of parameters).

If a local statement is encountered, the entry in the name table is copied to
a new position at the top of the table, and an empty entry put in its place.

At the end of a SuperBASIC procedure or function, the parameter entries are
copied back and local variables are removed. The parameter entries in the
name table together with any temporary storage in the variable value table are
then removed for all procedures and functions.

Byte 0 of the name table entry for a parameter has an additional meaning to
that associated with a normal name table entry. The bottom four bits have
the usual indication of type (0=null, 1=string etc.), but the top four bits are
used to indicate the separator that was present after the parameter in the

actual parameter list, together with information as to whether the actual

parameter was preceded by a hash (#).

Thus the format of byte 0 is as follows:

h sss tttt

type: 0=null, 1=string, 2=floating point, 3=integer

type of following separator: 0=none, 1=comma,

2=semi-colon, 3=backslash, 4=exclamation mark,

5=TO

1 if the parameter was preceded by hash, otherwise 0

9.9 Getting the Values of Actual Parameters

For the purpose of using scalar (as opposed to array) parameters locally in the
same way as "call by value" parameters in other high-level languages, it is
expedient to use one of a set of four vectored routines which place the values
of actual parameters on the arithmetic stack. Each routine assumes that all the
parameters will be of the same type. It is passed the values of A3 and A5
which point to the name table entries for the parameters; it returns the number
of parameters fetched

54

in the least significant word of D3, and the values themselves in order on the
arithmetic stack with the first parameter at the top (lowest address) of the
stack. These routines smash the separator flags. They are as follows:
CA.GTINT gets 16-bit integers, CA.GTFP gets floating point numbers,
CA.GTSTR gets strings, and CA.GTLIN gets floating point numbers but
converts them to 32-bit long integers.

These routines may still be used when processing parameters of mixed type
or when wishing to inspect the separators. To begin with, the values of A3 and
A5 should be saved; then, for each parameter in succession, the separator
flags are inspected, and the appropriate routine is called with A3 pointing to
the parameter and A5 equal to A3+8, thus getting one parameter.

These routines smash D1, D2, D4, D6, A0 and A2. The error codes are
returned in D0 and the condition codes.

A special technique is provided for use in those routines in which it is
necessary for the user to be able to type in a string without quotes, as it's
required for SuperBASIC commands involving device names. Firstly, the name
is inspected to see if it is a valid set string variable. If it is, the string is fetched
using CA.GTSTR; if it is not, the parameter's name itself is fetched from the
name list, and converted to string form by changing its word count from byte to
word, realigning the string if necessary. If a string is to be input without quotes,
it must of course follow the rules for SuperBASIC names, as described in the
Concepts manual.

9.10 The Arithmetic Stack Returned Values

The top of the arithmetic stack is usually pointed to by A1. Space may be
allocated on the stack by calling the vectored routine BV.CHRIX: the number
of bytes required is given in D0.L; D0 to 03 are smashed by the call. Since
both the stack within the SuperBASIC area and the SuperBASIC area itself
may move during a call, the stack pointer should be saved in BV_RIP(A6)
before the call, and restored from BV_RIP(A6) after the call has been
completed. The routine ensures that the restored value will be correct.

The vectored routines for getting parameters reserve their own space on the
arithmetic stack.

55

The arithmetic stack is automatically tidied up both after procedures, and
after errors in functions. To make a good return from a function, the
returned value should be at the top (lowest address) of the stack with
nothing below it (that is with both (A6,A1.L) and BV_RIP(A6) pointing to it)
when the routine is exited. The type of the returned value should be in D4 (1
=string, 2=floating point number, 3=integer). Since SuperBASIC has no long
integer type, long integers must be converted to floating point before
returning.

Values can also be returned to parameters or, indeed, global variables, by
putting the value on the arithmetic stack in the same way, pointing A3 to the
appropriate name table entry and calling the vectored routine BP.LET. D0 is
an error return, and D1, D2, D3, A0, A1 and A2 are smashed. If the actual
parameter was an expression, no error will be given, but the value returned
will be lost. The type of the returned parameter is determined by the name
table entry, and the information on the arithmetic stack must be in the correct
form.

Note that strings must be aligned on the arithmetic stack so that the character
count is on a word boundary. All entries on the stack must be a multiple of two
bytes long, so that a string of odd length has one byte at the end which
contains no information.

9.11 The Channel Table

A channel number (#n) is an index to an entry in the SuperBASIC channel
table. This is a table of items which are each of length CH.LENCH (currently
$28) bytes. The base of the table is at BV_CHBAS(A6), and the top is at
BV_CHP(A6); thus the base of the entry for channel #n is given by:

(n*CH.LENCH+BV_CHBAS(A6)) (A6)

The format of each table entry is as follows:

$00 long the channellD

$04 float current graphics cursor (x)

$0A float current graphics cursor (y)

$10 float turtle angle (degrees)

$16 byte pen status

$20 word character position on line for PRINT and INPUT

$22 word WIDTH of page

If a channel entry is off the top of the channel table, or if the channel

ID is negative, there is no channel open to that # number.

56

Add-on ROM

(Up to 128 kbytes)

Add-on peripherals

(8 slots of up to

16 kbytes each)

Add-on RAM
(Up to 512 kbytes)

On-board user RAM

(96 kbytes)

Screen RAM
(32 kbytes)

On-board I/O
(Partially decoded)

Plug-in ROM cartridge

(16 kbytes)

On-board ROM

(48 kbytes)

10.0 Hardware-related Programming

10.1 Memory Map

The 68008 has one megabyte of address space. Although an unexpanded QL uses
only the bottom 256 kbytes of this, the allocation for the remainder is determined and
should be adhered to when designing add-on hardware. This is how it is made up:

$FFFFF ______________

$EOOOO _______________

$C0000 ___________

$40000 ___________

$28000 ___________

$20000 ___________

$10000 ___________

$0C000 ___________

$00000 ___________

The registers in the on-board I/O area are partially decoded: the details of this
decode may vary according to different versions of the QL hardware - some
versions will recognise any address in the entire area.

57

Address

(Hex)
Function

(Read)
Function

(Write)

$18023

$18022

$18021

$18020

$18003

$18002

$18001

$18000

Microdrive data (track 2)

Microdrive data (track 1)

Interrupt/lPC link status

Microdrive/RS-232-C status

Real-time clock byte 3

Real-time clock byte 2

Real-time clock byte 1

Real-time clock byte 0

Display control

Microdrive/RS-232-C data

Interrupt control

Microdrive control

IPC link control

Transmit control

Real-time clock step

Real-time clock reset

However, the address map normally used is the same for all QLs:

The display control registers are in the ZX8301 "Master chip", and the others
are in the ZX8302 "Peripheral chip". The details of the QL hardware are
rather obscure, and it is strongly recommended that these registers should
not be used by applications programs, and should only be accessed via
Qdos traps or vectored routines.

10.2 Display Control

The display format in memory is explained below: this format is specific to the
QL and may change on future Sinclair products. It is, therefore, strongly

advised that screen output be performed using only the standard screen driver,

together with the MT.DMODE trap.

In 512-pixel mode, two bits per pixel are used, and the GREEN and BLUE
signals are tied together, giving a choice of four colours: black, white, green
and red. On a monochrome screen, this will translate as a four level greyscale.

In 256-pixel mode, four bits per pixel are used: one bit each for Red, Green and
Blue, and one bit for flashing. The flash bit operates as a toggle: when set for the
first time, it freezes the background colour at the value set by R, G and B, and
starts flashing at the next bit in the line; when set for the second time, it stops
flashing. Flashing is always cleared at the beginning of a raster line.

58

Addressing for display memory starts at the bottom of dynamic RAM and
progresses in the order of the raster scan - from left to right and from top to
bottom of the picture. Each word in display memory is formatted as follows:

High byte (A0=0)

D7 D6 D5 D4 D3 D2 D1 D0

G7 G6 G5 G4 G3 G2 G1 G0

G3 F3 G2 F2 G1 F1 G0 F0

Low Byte (A0=1) Mode

D7 D6 D5 D4 D3 D2 D1 D0

R7 R6 R5 R4 R3 R2 R1 R0 512-pixel

R3 B3 R2 B2 R1 B1 R0 B0 256-pixel

R, G, Band F in the above refer to Red, Green, Blue and Flash. The
numbering is such that a binary word appears written as it will appear on the
display: ie R0 is the value of Red for the rightmost pixel, that is the last pixel
to be shifted out onto the raster.

10.3 Display Control Register

This is a write-only register, which is at $18063 in the QL .

One of its bits is available through the Qdos MT.DMODE trap: bit 3,

which is 0 for 512-pixel mode and 1 for 256-pixel mode.

The other two bits of the display control register are not supported by Qdos,
these being bit 1 of the display control register, which can be used to blank
the display completely, and bit 7, which can be used to switch the base of
screen memory from $20000 to $28000. Future versions of Qdos may allow
the system variables to be initialised at $30000 to take advantage of this dual-
screen feature: the present version does not.

Bits 0,2,4,5 and 6 of the display control register should never be set to
anything other than zero, as they are reserved and may have unpredictable
results in future versions of the QL hardware.

10.4 Keyboard and Sound Control

The keyboard and loudspeaker are controlled by the QL 's second processor,
which is an 8049 single-chip microcomputer: this is known in the QL as the
Intelligent Peripheral Controller or IPC. The MT.IPCOM trap provides a set of
commands that the CPU can send to the IPC over the serial link that connects
them. This trap is discussed in greater detail in section 13.0.

59

When the keyboard is accessed via the console driver, the usual functions of
debounce and conversion to ASCII are performed, in addition to the
functions described in section 15.0. The other way of accessing the
keyboard is to use the MT.lPCOM trap to monitor the instantaneous state of
the keys directly: this is the only way of detecting multiple key presses
(necessary for joystick input), or of detecting the state of the SHIFT, CTRL
and ALT keys when no other key has been depressed. See the SuperBASIC
Keywords entry on the KEYROW function for an example of the use of this
technique.

The same trap, with different parameters, is used for sound generation.

10.5 Serial I/O

The QL's serial I/O should only be accessed via the serial driver, except for
setting the baud rate, which is performed by the MT.BAUD trap. The only
other function that can safely be performed by the user independently of the
operating system is the checking of the transmit handshake lines (DTR on
channel 1 and CTS on channel 2), which can be looked at by monitoring bits 4
and 5 of the microdrive status register respectively. Note that if the connector
is rewired to use these pins as data lines, this function could be used to
perform RS-232-C reception entirely in software, which would make it possible
to perform XON-XOFF handshaking or split baud rate operation.

10.6 Real-time Clock

The QL's real-time clock is a 32-bit seconds counter. The three traps
MT.RCLCK, MT.SCLCK and MT.ACLCK are used to read, set and adjust
the clock. The vectored routines CN.DATE and CN.DAY are used to
convert the time obtained to a string.

10.7 Network

This should not be accessed other than by the built-in device driver.

60

10.8 Microdrives

Normally, these should not be accessed other than by the built-in device driver.
However, it is possible to write routines to access microdrive sectors directly in
order to perform such functions as fast medium-to-medium copying or recovery
of data from a damaged medium.

There are four vectored routines provided for this purpose: MD.READ,
MD.WRITE, MD.VERIN and MD.SECTR. Use of these routines requires a
detailed understanding of the microdrive hardware and format, and is
probably beyond the scope of most users.

However, to use these routines the following code example shows how a
microdrive is selected or de-selected. In later versions of the operating
system it will be a vectored entry.

sys_wser

move.b dO,-(sp)

wait

subq.w #1,sv_timo(aO)

blt.s set.mode

move.w #(2OOOO*15-82)/36,dO

delay1

dbra dO,delay1

bra.s wait

set_mode

clr.w sv_timo(aO)

and.b #pc.notmd,sv_tmode(aO)

move.b (sp)+,dO

or.b dO,sv_tmode(aO)

and.b #OFFh-pc.maskt,sv_pcint(aO)

exit

move.b sv_tmode(aO),pc_tctrel

rts

sys_rser

;save operation

;decrement timeout

;done?

;time= 18*n+42 cycles

;delay

;repeat until
timeout expires

;clear wait

;not RS232

;either mdv or net

;disable transmit

interrupt

;set pc

bclr

or.b

bra.s

md_desel

 moveq

 moveq

 bra.s

#pc..serb,sv_tmode(aO)

#pc.maskt,sv_pcint(aO)

exit

#pc.desel,d2

#7,d1

sedes

;set RS232 mode

;enable transmit

interrupt

;clock in deselect bit first

;deselect all

61

\

md_selec

moveq #pc.selec,d2

subq.w #1,d1

 sedes

clk_loop

move.b d2,(a3)

moveq #(18*15-40)/4,d0

ror.l d0,d0

bclr #pc..sclk,d2

move.b d2,(a3)

moveq #(18*15-40)/4,d0

ror.l d0,d0

moveq #pc.desel,d2

dbra d1,clk_loop

;clock in select bit first

;and clock it through n

;times

;clock high

;time=2*n+20 cycles

;clock low

;... clocks d2.0 into first

;drive

;time=2*n+ 20 cycles

;clock high - deselect bit

;next

rts

drive

bsr.s startup

bsr.s wind_dwn

rts

; Routine to start up a microdrive.

; NB: RETURNS IN SUPERVISOR MODE (if d3 = 1

to 8)

; d1

; d2

; d3 number of microdrive

; a0

; a3

d1 smashed
d2 smashed
d3 preserved
a0 SV_BASE

a3 mdctrl (= 18020h)

; errors:

; OR: microdrive out of range

startup

cmp.l

blt.s

cmp

 bgt.s

move.l

moveq

trap

#1,d3

ill_drve

#8,d3

ill_drve

(sp)+,a3

#mt.inf,d0

#1

;Iegal microdrive?

;jump if not

;Iegal microdrive?

;jump if not

;a3=return address

;select MT.INF

;a0= 'to system

;variables
 trap #0

move.l a3,-(sp)

moveq #10h,d0

bsr sys_wser

;supervisor mode

;'return' (geddit?) the

;return address

;microdrive mode

;wait for RS232 to

;complete

62

or

move.l

#0700h,sr

d3,d1

;shut out rest of world
;d1 is microdrive to be
;started

move.l #mdctrl,a3 ;a3= "control register
 bsr md_selec ;start it up
 moveq #0,d0 ;no problems
 rts

ill_drve

 ;return

moveq #-4,d0 ;error=out of range

rts

Routine to wind down (al!!) microdrives
N.B. MUST BE CALLED IN SUPERVISOR MODE

; d1 d1 smashed

; d2 d2 smashed

; a0 a0 SV_BASE

; a3 a3 ^instruction after

call to here(!!)
wind_dwn

moveq #mt.inf,d0 ;select MT.INF

trap #1 ;a0= ^to system

;variables
move.l #mdctrl,a3 ;a3= ^control register

bsr.s md_desel ;wind it down

 bsr sys_rser ;re-enable RS232
move.l (sp)+,a3 ;a3=return address

move #0,sr ;interrupts off

move.l a3,-(sp) ;'return' (it's a killer!)

;return addr.
rts ;return

63

11.0 Adding Peripheral Cards
to the QL

Peripheral cards may be plugged into the expansion connector on the left-
hand side of the QL , or into one of the connectors in the QL expansion
module: a unit which allows several add-on cards to be connected to the QL
in parallel. The QL expansion module consists of a power supply and a card
cage containing a specially wired backplane. The backplane is connected to
the QL via a ribbon cable and buffer card.

There are two general categories of peripheral card for the QL : pure add-
on memory cards, and other peripheral cards.

It is intended that only one pure add-on RAM card be plugged into the machine
at anyone time. It is allocated the address area between $40000 and $BFFFF;
the add-on memory should be contiguous from $40000 upwards. This allows
for an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 128 kbytes, which is
allocated the addresses $E0000 to $FFFFF.

Other peripheral cards contain electronics for the devices being added, a
small ROM containing the drivers for the devices being added together with a
code allowing the QL to detect that the card is present, and a 4-bit comparator
which is used to select the card as explained below.

Note that the convention adopted in this document for an active low signal is to
append the letter "L" to the end of the signal name, as in DTACKL, VPAL etc.
This takes the place of the overbar indication used in the data sheets from
most vendors.

11.1 Expansion Connector

The expansion connector allows extra peripherals to be plugged into the QL.
Details of the connections available at the connector may be found in the QL
Concepts manual.

64

The connector inside both the QL and the expansion module is a 64- way
male DIN-41612 indirect edge connector, as found on standard Eurocard
modules. The connector on each add-on card should be the inverse version
of this.

The VIN supply is in the region of +9V DC: the trough never falling below 7V.
Up to 500 mA may be drawn from this to power the card.

No add-on card should load any pin on the edge connector by more than two
LSTTL loads. All add-on card data bus output drivers should be a 74LS245
or equivalent, in terms of drive ability, and being tri-state.

When the expansion module is connected, RESETCPUL is held low until
power is applied to the expansion module. Switching off the expansion
module also forces RESETCPUL low.

11.2 CPU Interface

The CPU interface is totally memory-mapped onto the 68008's bus, control
of the bus for use with the video display controller being obtained by using
the DTACKL signal to arbitrate the bus. Memory access is entirely
controlled by DSL, with ASL left unused. ASL should not be used to gate
any add-on hardware.

An unexpanded QL does not look at address lines A19 and A18. In
peripheral cards which are to be added to the QL, it is necessary for each
card to disable the circuitry on the QL itself when that peripheral card
recognises its own address.This is achieved by pulling signal DSMCL high
before DSL goes low including buffering times. This is done typically by
using a fast NPN switching transistor (such as an MPS2369) connected as
an emitter follower with the emitter connected to DSMCL, the collector to
+5V and the base to a logic Signal. Note that the timing for this operation is
the most critical in most hardware interfaces to the QL, especially when the
necessary signals have been buffered.

Add-on cards must supply DTACKL or VPAL as required, to notify the

CPU that they have recognised their address.

All 68008 signals are available both on the expansion connector and in the
expansion module to allow expansion to include coprocessors or other
peripherals.

The following signals are outputs only: A0-A19, RDWL, ASL, DSL, BGL,
CLKCPU, E, RED, BLUE, GREEN, CSYNCL, VSYNCH, ROMOEH, FC0-2 ,
RESETCPUL.

65

The following lines are inputs only, and should only be driven from open
collector outputs: DTACKL, BRL, VPAL, IPL0L, IPL1L, BERRL, EXTINTL,
DBGL.

The data bus, D0-D7, is bidirectional.

When using the QL expansion module, the data bus buffers in the module
are enabled whenever A18 or A19 is high, or if the Data Bus Grab Signal
(DBGL) is asserted by any add-on card on pin 25A of the edge connector.
If DBGL is to be used, it should be driven by an open collector buffer.

The EXTINTL pin may be used to generate a level 2 external interrupt,
which can be linked to a user task (see section 6.3). Note thatthe EXTINTL
pin must not be negated until the Qdos start-up mechanism is complete, or
there is a risk of the system hanging up.

11.3 Peripheral Card Addressing

Peripheral cards (other than pure add-on memory cards) are allocated the
address space between $C0000H and $DFFFFH. Each peripheral card,
when selected, must disable DSMCL and assert VPAL or DTACKL as
required, for its own use. This address space is split into eight slots of
16 kbytes each; each peripheral card should normally take only one block
if a full set of eight peripheral cards is to be allowed to operate
concurrently.

There is a set of four select lines, SP0-SP3, appearing on the edge
connector. The first card in the QL expansion module, or a single card
directly plugged into the QL, receives a value of zero on these four lines.
Each slot in the expansion module has a value one different from that in the
other slots: this means that each card isallocated 16 kbytes of address
space. The card select logic compares the values on A17-A14 against the
number coming in on the select lines in order to determine whether that
card is selected. For the card to be selected it must be the case that
A14=SP0, A15=SP1, A16=SP2 and A17=SP3.

If there is a ROM containing device drivers for the peripheral card, it should
sit in the bottom addresses of the 16 kbyte block. The format of the lowest
part of this ROM is specified in the next section.

I '

66

11.4 Add-on Card ROMs

When the machine is booted, the operating system checks for plug-in

ROM drivers by looking forthe characteristic longword flag $4AFB0001 at
the base of each location in which a ROM might be present. The beginning
of a plug-in ROM should be in the following format:

00 $4AFB0001 (flag to indicate ROM is present)

04 pointer to list of BASIC procedures and functions

06 pointer to initialisation routine
08 string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero
then there will be no attempt to link routines into SuperBASIC.

The list of BASIC procedures and functions is in the form used by BP.lNIT (see
section 16.0).

At start-up the machine will link in the additional BASIC procedures from the
ROM, then call the initialisation routine (in user mode) which must not
modify A6, and finally must restore A0 (the initial window ID), and A3, the
pointer to the ROM, on exit. Up to 128 bytes may be used on the user stack.

The description should be in the form of a character count (word) followed
by the ASCII characters of the device description(s) ending with the
newline character (ASCII 10). It is recommended that the number of
characters should be limited to 36.

All code for device drivers must be position independent, since the
addresses of the ROM and the devices on the card will be dependent upon
the position at which it has been plugged into the QL expansion module.
This allows multiple copies of the same add-on card to be used
simultaneously.

67

12.0 Non-English QLs

There are three areas in which non-English QLs may differ from English

QLs: the video, the keyboard, and the character set for serial
communications.

The version codes for non-English QL s are adjusted appropriately to
contain a character identifying the country. In the version code returned by
MT.lNF, this character replaces the decimal point; in the string returned by
the SuperBASIC VER$ function, the character is added on at the end,
producing a string three characters long for non-English QLs.

12.1 Video

This is different for countries where the television system is NTSC, which
permits the use of fewer raster lines than PAL. In QLs for such countries, the
following options are the defaults:

For monitor operation, a 50Hz 624-line non-interlaced system is used; this is
the same system as is used on the English QL. The full 512x256 pixel display
is available, and the default windows and character size are the same as for
the monitor mode on an English QL .

For TV operation, a 60Hz 524-line non-interlaced system is used in which the
number of raster lines available is limited to 192. In order to ease the task of
software conversion, an alternate display font is provided which allows a 6x8
character square instead of the usual 6x10. This ensures approximately the
same number of visible rows of text on both PAL and NTSC QL s, at the cost
of true descenders and reduced vertical spacing. The default windows and
graphics scaling for TV operation are different from those of the English QL .

It is to be expected that a different version of any applications software (or at
least different options) will be required for NTSC operation on domestic
televisions.

68

12.2 Non-English-language Keyboards

The keyboard layout for most European countries will be different from the
English layout. This difference should be largely transparent to applications
software, since the "QL ASCII" codes contain all the characters necessary for
the European countries in question, and the codes generated are independent
of the keyboard layout and hence of the actual key depressions required to
generate them.

However, there are a few subtleties, the following being the most obvious:

1. A program which draws pictures of keys in certain places will certainly
produce an incorrect drawing if the location of those keys has changed between
countries.

2. The keyrow function (or MT.IPCOM trap) refers to the physical position of the
keys, not to their logical meaning. For example, a test on an English QL for the
letter "0" using keyrow will turn into a test for the letter "A" on a French QL which
has an AZERTY keyboard.

3. An instruction to "hit any key" will not be strictly accurate for a country which
employs non-spacing diacriticals, where the keypress of an accent character
does not generate a code until the character to be accented is pressed. The
length of the type-ahead buffer in the IPC will be apparently reduced in such
cases.

12.3 Character Set

The English character set is available in all countries. However, in non-English
countries, the character set for serial communications may (optionally) be
translated into a "local" character set, this being chosen by the Sinclair
distributor for that country as being a commonly used interface standard. A
further option allows the user to specify his own translation table, since it is
anticipated that a number of countries will have several standards (i.e., no
standards at all).

69

12.4 Special Alphabets

Languages with non-Roman alphabets, such as Hebrew, Greek, Thai, Arabic,
etc., require special treatment. No general scheme has been devised for making
software transportable to these countries, and the implementation means will be
specific to each country.

13.0 Manager Traps

The special trap #0 is used to enter supervisor mode. The user should store
the status register somewhere before calling this trap, so that he can return to
user mode by restoring it to its previous value.

TRAP #1 D0=$15 MT.ACLCK

Adjust the clock

Call parameters Return parameters

D1.L adjustment in seconds

D2

D3

AO
A1

A2

A3

D1.L time in seconds

D2 ???
D3 ???
AO ???

A 1 preserved

A2 preserved

A3 preserved

As setting the clock takes a significant time, no adjustment is made if a call is
made to adjust the clock and D1 =0.

Time starts at 00:00 1 January 1961.

70

TRAP #1 D0=$A

Activate a job

Call parameters

D1.L job ID

D2.B priority (0 to 127)
D3.W timeout (0 or -1) AO

A1

A2

A3

Error returns:

NJ job does not exist

NC job already active

MT.ACTIV

Return parameters

D1.L job ID

D2 preserved

D3 preserved

A0 base of job ctrl area

A1 preserved

A2 preserved

A3 preserved if D3 =0

This activates a job in the transient area. Execution commences at the start
address defined when the job was created.

If the timeout is zero then the execution of the current job continues, otherwise
the current job will be suspended until the job activated has

completed. The trap will then return with the error code from that job.

71

TRAP #1 D0=$16

 Allocate BASIC program area

MT.ALBAS

Call parameters

D1.L number of bytes required

D2

D3

A0
A1

A2

A3

A6 base address

A7 user stack pointer

Error returns:

OM out of memory

Return parameters

D1.L nr. bytes allocated

D2 ???
D3 ???
A0 ???
A1 ???
A2 ???
A3 ???

A6 new base address

A7 new stack pointer

72

TRAP#1 D0=$18

Allocate common heap area

Call parameters

D1.L nr. bytes required

D2.L owner job ID

D3

A0
A1
A2

A3

Error returns:

OM out of memory

NJ job does not exist

MT.ALCHP

Return parameters

D1.L nr. bytes allocated

D2 ???

D3 ???

A0 base address of area

A1 ???
A2 ???
A3 ???

This trap is a specific example of the general heap allocation mechanism
described in section 2.1.4 and accessible using MT.ALLOC.

73

Trap #1 D0=$C MT.ALLOC

 Allocate an area in a heap

Call parameters Return parameters

D1.L length required D1.L length allocated
D2 D2 ???
D3 D3 ???
A0 ptr to ptr to free space A0 base of area allocated

A1 A1 ???
A2 A2 ???
A3 A3 ???

A6 base address A6 preserved

Error returns:

OM no free space large enough

Two trap entries are provided for user heap management where this is required
to be atomic. A6 is used as a base address for both this call and for
MT.LNKFR so that A0 (and A1) is an address relative to A6.

See section 2.1.4 for details of the heap mechanism.

74

TRAP #1 D0=$E MT.ALRES

Allocate resident procedure area

Call parameters

D1.L number of bytes reqd.

D2

D3

A0
A1

A2

A3

Error returns:

Return parameters

D1 ???
D2 ???
D3 ???
A0 base address of area

A1 ???
A2 ???
A3 ???

OM out of memory

NC unable to allocate (TRNSP area not empty)

This trap, in common with its partner MT.RERES (release resident
procedure area) should only be invoked when the transient program area is
empty.

75

TRAP #1 D0=$12

Set the baud rate

Call parameters

D1.W baud rate

D2

D3

A0
A1

A2

A3

BP non recognised baud rate

MT.BAUD

Return parameters

D1 ???

D2 preserved
D3 preserved
A0 preserved
A1 preserved
A2 preserved
A3 preserved

TRAP #1 D0=$1 MT.CJOB

Create a job in transient program area

Call parameters

D1.L owner job ID

D2.L length of code (bytes)
D3.L length of data space AO
A1 start address or 0

A2

A3

Error returns:

Return parameters

D1.L job ID

D2 preserved

D3 preserved

A0 base of area allocated

A1 preserved
A2 preserved
A3 preserved

OM out of memory

NJ no room in job table or D1 is not a job

76

This trap allocates space in the transient program area, and sets up a job
entry in the scheduler tables. This does not invoke the job and the only
initialisation is that two words of 0 are put on the stack. The program itself
would normally be loaded, by another job, into the space allocated, after this
system call. The stack pointer saved in the job control area points initially to
two zero words on the stack (at the highest addresses in the job's data area);
if channels are to be opened for the job, or a command string is to be passed
to the job, then this can be done before the job is activated.

If D1 is negative, the new job is independent, otherwise it is owned by the
calling job.

TRAP #1 D0=$10 MT.DMODE

Set or read the display mode

Call parameters Return parameters

D1.B key -1 read mode D1.B display mode

0 mode is 4 colour
8 mode is 8 colour

D2.B key -1 read display D2.B display type

0 monitor

1 625-line TV

2 525 line TV

D3 D3 preserved
A1 A0 preserved
A1 A1 preserved
A2 A2 preserved
A3 A3 preserved

A4 ???

This call is used to set or read the current display mode. It is treated as a
manager trap as it affects all the displayed windows. If a call is made to set the
screen mode, then all the windows on the screen are cleared and the character
sizes may be adjusted. Obviously, there are serious risks involved in calling this
trap to set the mode when there are jobs in the machine accessing the screen.

77

TRAP #1 D0=$6 MT.FREE

Find largest contiguous free space that may be allocated in
the transient program area

Call parameters Return parameters

D1 D1.L length of space found

D2 D2 ???

D3 D3 ???

AO AO ???

A1 A1 ???

A2 A2 ???

A3 A3 ???

TRAP #1 D0=$5 MT.FRJOB

Force remove job from transient program area

Call parameters Return parameters

D1.L job ID
D2
D3.L error code

A0

A1

A2

A3

D1 ???
D2 ???
D3 ???
A0 ???
A1 ???
A2 ???
A3 ???

Error returns:

NJ job does not exist

This inactivates a complete job tree and deletes all jobs in it. If D1 is a
negative word then the job is the current job.

78

Neither of the traps MT.FRJOB or MT.RJOB to remove jobs can remove job
0.

Neither of these traps are guaranteed atomic.

If there is a job waiting on completion of any job removed, this is released
with 00 set to the error code (see MT.ACTIV D0=$A).

TRAP #1 D0=$0 MT.lNF

System information

Call parameters Return parameters

D1 D1.L current job 10

D2 D2.L ASCII version (n.nn)

D3 D3 preserved

A0 A0 pointer to system vars

A1 A1 preserved
A2 A2 preserved
A3 A3 preserved

79

TRAP #1 D0=$11 MT.lPCOM

Send a command to the IPC

Call parameters Return parameters

D1

D2

D3

A0

A1

A2

A3 pointer to command

D1.B return parameter

D2 preserved

D3 preserved

D5 ???
D7 ???

A0 preserved
A1 preserved
A2 preserved
A3 preserved

This trap sends a command to the IPC.

A command sent to the IPC is a nibble followed by a stream of nibbles or bytes
being the parameters of the command; some information may then be returned
from the IPC. The command format for MT.lPCOM is a header describing the
command to be sent, followed by the parameters to be sent, followed by a byte
indicating whether a reply is expected. The IPC communication is completely
unprotected and the command must not contain any errors or else the entire
machine will hang up. IPC communications is a very slow process and excessive
use of the IPC, for example: polling all rows of the keyboard - the cursor keys
have been organised to all be in one row, will cause very high processor
overheads.

The command format allows 0, 4 or 8 bits to be transferred from each byte in
the parameter block. This is encoded in 2 bits:

00 send least significant 4 bits

01 send nothing

10 send all 8 bits

11 send nothing.

80

The complete command format is:

1 byte

1 byte

1 long word

n bytes

1 byte

the IPC command nibble in the LS 4 bits; the
number of parameter bytes to follow; containing
the codes for the amount of each parameter byte
to be sent in reverse order: bits 1,0 the amount of
the first byte to send bits 3,2 the amount of the
second byte etc.:
the parameter bytes

length of reply encoded in bits 1,0.

Most of the IPC commands are for use by the operating system and any
attempt by application programs to use these is liable to cause loss of data
or worse. There are three commands for the IPC which may be used by
applications programs:

$9 read a row of the keyboard, 1 parameter

4 bits the row number

8 bits reply

$A initiate sound, 8 parameters

8 bits pitch 1

8 bits pitch2

16 bits interval between steps

16 bits duration

4 bits step in pitch

4 bits wrap

4 bits randomness of step

4 bits fuzziness
no reply

$B kill sound, no parameters, no reply.

81

TRAP #1 D0=$2 MTJINF

Information on a job

Call parameters Return parameters

D1.L job 10

D2.L job at top of tree

D3

A0
A1
A2

A3

Error returns:

D1.L next job in tree

D2.L owner job

D3.L MSB -ve if suspended

LSB priority

A0 base address of job

A1 ???

A2 preserved

A3 preserved

NJ job does not exist

This trap returns the status of a job.

This trap may be used to check the status of a tree of jobs. On each call
02 should be the 10 of the job at the top of the tree; to scan a complete tree
the trap is made with 01 being the return value of the previous call. When
the tree has been completely scanned 01 is returned equal to zero.

MT.LDD See the entry for MT.LXINT for details.

MT.LlOD See the entry for MT.LXINT for details.

82

Trap #1 D0=$0 MT.LNKFR

Link a free space (back) into a heap

Call parameters Return parameters

D1.L

length to link in

D1 ???

D2 D2 ???

D3 D3 ???

A0 base of new space A0 ???

A1 ptr to ptr to free space A1 ???

A2 A2 ???

A3

A6

base address

A3

A6
???
preserved

A6 is used as a base address for this call and for MT.ALLOC so that A0 (and
A1) is an address relative to A6.

MT.LPOLL See the entry for MT.LXINT for details.
MT.LSCHD See the entry for MT.LXINT for details.

83

TRAP#1 D0=$1A

D0=$1C

D0=$1E

D0=$20

D0=$22

MT.LXINT

MT.LPOLL
MT.LSCHD

MT.LlOD
MT.LDD

Link an external interrupt service routine

a polling 50/60 Hz service routine

a scheduler loop task
an I/O device driver
or a directory device driver into the operating system

Call parameters Return parameters

D1

D2

D3

A0 address of link

A1

A2

A3

D1 preserved

D2 preserved

D3 preserved
A0 preserved
A1 ???
A2 preserved

A3 preserved

84

TRAP #1 D0=$B MT.PRIOR

Change job priority

Call parameters Return parameters

D1.L job ID

D2. B priority (0 to 127)

D3

A0
A1
A2

A3

D1.L job ID

D2 preserved

D3 preserved

A0 base of job ctrl area

A1 preserved
A2 preserved
A3 preserved

Error returns:

NJ job does not exist

This call is used to change the priority of a job. If D1 is a negative word it will
change the priority of the current job. Setting the priority to 0 will cause
inactivation. This call re-enters the scheduler and so a job setting its own priority
to zero will be immediately inactivated.

TRAP #1 D0=$13 MT.RCLCK

Read the clock

Call parameters Return parameters

D1 D1. L time in seconds

D2 D2 ???

D3 D3 preserved

A0 A0 ???

A1 A1 preserved

A2 A2 preserved

A3 A3 preserved

85

A0 base of area to be freed A0 ???

A1 A1 ???

A2 A2 ???

A3 A3 ???

MT.RDD See the entry for MT.RXINT for details.

TRAP #1 D0=$17

Release BASIC program area

MT.REBAS

Call parameters Return parameters

D1.L nr. of bytes to release
D2
D3
A0
A1
A2
A3
A6 base address
A7 user stack pointer

TRAP #1 D0=$19

Release common heap area

D1.L nr. bytes released
D2 ???
D3 ???
A0 ???
A1 ???
A2 ???
A3 ???
A6 new base address
A7 new stack pointer

MT.RECHP

Call parameters Return parameters

D1 D1 ???
D2 D2 ???
D3 D3 ???

86

TRAP #1 D0=$9 MT.RELJB

Release a job

Call parameters Return parameters

D1.L job ID

D2

D3

A0
A1

A2

A3

D1.L job ID

D2 preserved

D3 preserved

A0 base of job ctrl area

A1 preserved

A2 preserved

A3 preserved

Error returns:

NJ not a valid job ID

After this call all jobs are rescheduled.

The activity of jobs can be controlled by activation or by modification of the
priority levels. A job at priority level 0 is inactive, at any other priority level it
is active.

87

TRAP #1 D0=$F MT.RERES

Release resident procedure area

Call parameters Return parameters

D1 D1 ???
D2 D2 ???

D3 D3 ???
A0 A0 ???
A1 A1 ???
A2 A2 ???
A3 A3 ???

Error returns:

NC unable to release (TRNSP area not empty)

This trap, in common with its partner, MT.ALRES (allocate resident
procedure area), should only be invoked when the transient program area is
empty.

MT.RIOD See the entry for MT.RXINT for details.

88

TRAP#1 D0=$4 MT.RJOB

Remove job from transient program area

Call parameters Return parameters

D1.L job10

D2

D3.L error code

AO

A1

A2

A3

D1 ???

D2 ???
D3 ???
A0 ???
A1 ???
A2 ???
A3 ???

Error returns:

NJ job does not exist

NC job not inactive

This trap removes a job (and its subsidiaries) from the transient program
area. Only inactive jobs may be removed.

MT.RPOLL See the entry for MT.RXINT for details.
MT.RSCHD See the entry for MT.RXINT for details.

89

TRAP #1 D0=$1B

D0=$1D
D0=$1F
D0=$21

 D0=$23

MT.RXINT
MT.RPOLL
MT.RSCHD
MT.RIOD
MT.RDD

Remove an external interrupt service routine a
polling 50/60 Hz service routine

a scheduler loop task
an IO device driver

or a directory device driver from the operating
system

Call parameters Return parameters

D1

D2

D3

A0 address of link

A1

A2

A3

D1 preserved
D2 preserved
D3 preserved
A0 preserved
A1 ???
A2 preserved

A3 preserved

90

TRAP #1 D0=$14 MT.SCLCK

Set the clock

Call parameters Return parameters

D1.L time in seconds
D2

D3

A0

A1

A2

A3

D1.L time in seconds
D2 ???

D3 ???
A0 ???

A1 preserved

A2 preserved

A3 preserved

91

TRAP #1 D0=$8 MT.SUSJB

Suspend a job

Call parameters Return parameters

D1.L job ID
D2
D3.W timeout period

A0

A1 address of flag byte

A2

A3

D1.L job ID

D2 preserved

D3 preserved

A0 base of job ctrl area

A1 preserved
A2 preserved
A3 preserved

Error returns:

NJ not a valid job ID

A job may be suspended for an indefinite period, or until a given time has
elapsed. The timeout period is up to ($7FFF times the frame time).

If the job ID is a negative word, then the current job is suspended. The flag
byte is cleared when the job is released. If there is no flag byte, then A 1
should be o. If the timeout period is specified as -1, then the suspension is
indefinite; no other negative value should be used. If the job is already
suspended, the suspension will be reset. All jobs are rescheduled.

92

TRAP #1 D0=$7 MT.TRAPV

Set the per-job pointer to trap vectors

Call parameters Return parameters

D1.L job ID
D2

D3

A0

A1 pointer to table

A2

A3

D1.L job ID

D2 preserved
D3 preserved
A0 base of job

A1 ???
A2 preserved

A3 preserved

Note: When a routine in the table is entered as a result of an exception, the
CPU is in supervisor mode. The routine should return with an RTE command
(not RTS). Any registers used must be saved and restored.

93

14.0 I/O Management Traps

TRAP #2 D0=$2

Close a channel

Call parameters

D1

D2

D3

A0 channel lD

A1

A2

A3

Error returns:

NO channel is not open

IO.CLOSE

Return parameters

D1 preserved
D2 preserved
D3 preserved
A0 ???
A1
 ??
?

A2 preserved

A3 preserved

94

TRAP #2 D0=$4 IO.DELET

Delete a file

Call parameters Return parameters

D1.L job ID (as file open!!) D1 ???

D2 D2 preserved

D3 D3 ???

A0 address of channel name A0 ???

A1 A1 ???

A2 A2 preserved

A3 A3 preserved

Error returns:

NO not opened -too many channels open

OM out of memory

NF file or device not found

 BN bad file or device name

95

TRAP #2 D0=$3

 Format a sectored medium

Call parameters

D1

D2

D3

A0 ptr to medium name

A1

A2

A3

Error returns:

OM out of memory

NF drive not found

IU drive in use
 FF format failed

IO.FORMT

Return parameters

D1.W number of good sectors

D2.W total nr of sectors

D3 preserved

A0 ???

A1 ???

A2 preserved

A3 preserved

The medium name is in the form of a character count (word) followed by the
ASCII characters of the drive name, the drive number, underscore then up to
10 characters for the medium name. For example, MDV1_November.

96

TRAP #2 D0=$1 IO.OPEN

Open a channel

Call parameters Return parameters

D1.L job ID D1 job ID

D2 D2 preserved

D3.L code D3 preserved
0 old (exclusive) file or device

1 old (shared) file

2 new (exclusive) file

3 new (overwrite) file

4 open directory

A0 address of channel name A0 channel lD

A1 A1

A2 A2

A3 A3

???
preserved
preserved

Error returns:

NO not opened - too many channels open

NJ job does not exist

OM out of memory

NF file or device not found

EX file already exists

IU file or device in use

BN bad file or device name

97

If the job ID is passed as a negative word (for example -1) then the channel
will be associated with the current job.

The file or device name should be a string of ASCII characters. This string is
preceded by a character count (word), the pointer should point to this word (on
a word boundary).

The error return "BN" indicates that the name of the device has been
recognised but that the additional information is incorrect, for example
CON_512y240.

The code is usually ignored for access to any non-shared device: in practice,
this is anything other than a file store. If the error code is non- zero then no
channel has been opened.

Note that New (overwrite) is not currently supported for Microdrive files.

98

15.0 I/O Traps

TRAP#3 D0=$40 FS.CHECK

Check all pending operations on a file

Call parameters

D1

D2

D3.W timeout
A0 channel lD
A1

A2

A3

Error returns:

NC not complete

NO channel not open

Return parameters

D1 ???

D2 preserved

D3. L preserved
A0 preserved
A1 ???

A2 preserved

A3 preserved

This trap is used to check whether all of the pending operations have
completed.

99

TRAP #3 D0=$41 FS.FLUSH

Flush buffers for this file

Call parameters Return parameters

D1 D1 ???

D2 D2 preserved

D3.W timeout D3.L preserved

A0 channel ID A0 preserved

A1 A1 ???

A2 A2 preserved

A3 A3 preserved

Error returns:

NC not complete

NO channel not open

When a write operation to a file is complete, the data written may still be in the

slave blocks rather than on the file. For further details please see Section 5.2

on File I/O. This call may be used to check that a file is in a known state.

100

 TRAP #3 D0=$47

Read file header

Call parameters

D1

D2.W buffer length

D3.W timeout

A0 channel lD

A1 base of read buffer

A2

A3

Error returns:

NC not complete

NO channel not open

BO buffer overflow

FS.HEADR

Return parameters

D1.W length of header read

D2 preserved

D3.L preserved

A0 preserved

A1 top of read buffer

A2 preserved

A3 preserved

The read header call is provided so that a job can allocate the space for a load

call as well as determining the characteristics of a file. The buffer provided

must be at least 14 bytes long. In the case of a trap to a pure serial device,

then the length of the header returned in D1 will be spurious.

The file pointer is such that position zero is the first byte after the header.

Thus block boundaries on standard directory driver files are at positions

512*n-64.

101

TRAP#3 D0=$46

Set file header

Call parameters

D1

D2

D3.W timeout

A0 channellO

A1 base of header def

A2

A3

Error returns:

NC not complete

NO channel not open

FS.HEADS

Return parameters

D1.W length of header set

D2 preserved

D3.L preserved

A0 preserved

A1 end of header def

A2 preserved

A3 preserved

This call sets the first 14 bytes of the header. The length of file will normally be

overwritten by the filing system. When a header is sent over a pure serial

device, then the 14 bytes of the header are preceded by a byte $FF.

102

TRAP #3 D0=$48

Load file into memory

Call parameters

D1

D2.L length of file

D3.W timeout

A0 channellD

A1 base address for load

A2

A3

Error returns:

NO channel not open

FS.LOAD

Return parameters

D1 ???

D2 preserved

D3. L preserved

A0 preserved

A1 top address after load

A2 preserved

A3 preserved

Files may be loaded into memory in their entirety with the file load trap. If the
transient program area is used for this, a trap # 1 must have been invoked to
reserve the space before the file load trap is invoked.

D3 should be set to -1 before both this trap, and FS.SAVE, and the base
address in A1 must be even.

103

TRAP#3 D0=$45

 Get information about medium

FS.MDINF

Call parameters

D1

D2

D3.W timeout

A0 channel ID

A1 ptr to 10 byte buffer

A2

A3

Error returns:

Return parameters

D1.L empty/good sectors

D2 preserved

D3.L preserved

A0 preserved

A1 end of medium name

A2 ???

A3 ???

NC not complete

NO channel not open

The name of the medium, its capacity, and the available space may be
obtained for a file or directory that is open.

The medium name is 10 bytes long and left justified. Any remaining bytes
are filled with the space character ($20).

The number of empty sectors is in the most significant word (msw) of
D1, the total available on the medium is in the least significant word
(lsw).

A sector is 512 bytes.

104

TRAP#3 D0=$42

Position file pointer absolute

Call parameters

D1.L file position

D2

D3.W timeout

A0 channel lO

A1

A2

A3

Error returns:

NC not complete

NO channel not open

EF end of file

FS.POSAB

Return parameters

D1.L new file position

D2 preserved
D3.L preserved
A0 preserved
A1 ???

A2 preserved

A3 preserved

105

TRAP #3 DO=$43

Position file pointer relative

Call parameters

D1.L offset to file pointer

D2

D3.W timeout

A0 channel lD
A1

A2

A3

Error returns:

NC not complete

NO channel not open

EF end of file

FS.POSRE

Return parameters

D1.L new file position

D2 preserved
D3 preserved
A0 preserved
A1 ???
A2 preserved

A3 preserved

If a file positioning trap returns an off file limits error, then the pointer is set to

the nearest limit, this being 0 or end of file. The relative file positioning may, of

course, be used to read the current file position.

106

TRAP#3 D0=$49

Save file from memory

Call parameters

Return parameters

FS.SAVE

D1

D2.L length of file

D3.W timeout

A0 channel lO

A1 base address of fiIe

A2

A3

Error returns:

NO channel not open

OF drive full

D1 ???

D2 preserved

D3.L preserved

A0 preserved

A1 top address of file

A2 preserved

A3 preserved

In common with FS.LOAD, D3 should be set to -1 before this trap, and the

base address in A1 must be even.

107

TRAP #3 D0=$4 IO.EDLIN

Edit a line of characters (console driver only)

Call parameters

D1 cursor/line length

D2.W length of buffer

D3.W timeout

A0 channel ID

A1 pointer to end of line

A2

A3

Error returns:

NC not complete

NO channel not open

 BO buffer overflow

Return parameters

D1 cursor/line length

D2 preserved

D3 preserved

A0 preserved

A1 pointer to end of line

A2 preserved

A3 preserved

This is similar to the fetch line trap, except that the pointer A 1 is always to the

end of the line, D1 contains the current cursor position in the msw and the

length of the line in the Isw and the line (from the current cursor position) is

written out to the console when the call is made. The line should not have a

terminating character when the trap is made, but the terminating character will

be included in the character count on return. Enter (ASCII 10), up cursor or

down cursor are all acceptable terminating characters.

108

TRAP#3 D0=$1

Fetch a byte

Call parameters

D1

D2

D3.W timeout

A0 channel lD

A1

A2

A3

Error returns:

NC not complete

NO channel not open
EF end of file

IO.FBYTE

Return parameters

D1.B byte fetched

D2.L preserved

D3.L preserved
A0 preserved
A1 ???

A2 preserved

A3 preserved

109

TRAP #3 DO=$2 or 3 IO.FLlNE
IO.FSTRG

D0=$2

D0=$3

IO.FLlNE fetch a line of characters terminated

by ASCII <LF> ($A)

IO.FSTRG fetch a string of bytes

Call parameters Return parameters

D1

D2.W length of buffer

D3.W timeout

A0 channel lD

A1 base of buffer

A2

A3

D1.W nr. of bytes fetched

D2.W preserved

D3.L preserved

A0 preserved

A1 updated ptr to buffer

A2 preserved

A3 preserved

Error returns:

NC not complete

NO channel not open

EF end of file

B0 buffer overflow (fetch line only)

The character count of a fetch a line trap includes the linefeed character
if found.

IO.FSTRG See the entry for IO.FLlNE for details.

110

TRAP #3 D0=$0

Check for pending input

Call parameters

D1

D2

D3. W timeout

A0 channel lD

A1

A2

A3

Error returns:

Return parameters

D1 ???

D2.L preserved

D3.L preserved

A0 preserved

A1 ???

A2 preserved

A3 preserved

IO.PEND

NC not complete (no pending input)

NO channel not open

 EF end of file

This trap is used to check for pending input on a channel. It does not read

any data or modify the input channel in any way. This only works on the

console device if D3=0 and the keyboard queue is already connected to the

console.

111

TRAP #3 D0=$5

 Send a byte

Call parameters

D1.B byte to be sent

D2

D3.W timeout

AO channellD

A1

A2

A3

Error returns:

NC not complete

NO channel not open

DF drive full
OR off window/paper etc

IO.SBYTE

Return parameters

D1 ???

D2.L preserved

D3.L preserved

AO preserved

A1 ???

A2 preserved

A3 preserved

112

TRAP#3 D0=$7

Send a string of bytes

Call parameters

D1

D2.W nr of bytes to be sent

D3.W timeout

A0 channel ID
A1 base of buffer

A2

A3

Error returns:

NC not complete

NO channel not open

OF drive full

IO.SSTRG

Return parameters

D1.W nr. of bytes sent

D2.W preserved

D3.L preserved

A0 preserved

A1 updated ptr to buffer

A2 preserved

A3 preserved

Please refer to section 5.3.5 for details of the special treatment afforded to
newlines on the console or screen device.
SD.ARC See the entry for SD.POINT for details.

113

TRAP #3 D0=$C

 Set the border width and colour

SD.BORDR

Call parameters Return parameters

D1.B colour
D2.W width
D3.W timeout
A0 channel lD
A1
A2

Error returns:

D1

D2.L
D3.L
A0
A1

A2

 ???
preserved
preserved
preserved
preserved
preserved

NC not complete

NO channel not open

This call redefines the border of a window. By default this is of no width. The
width of the border is doubled on the vertical edges. The border is inside the
window limits. All subsequent screen traps (except this one) use the reduced
window size for defining cursor position and window limits.

As a special case, the colour $80 defines a transparent border so that the
border contents are not altered by the trap.

If the call changes the width of the border, then the cursor is reset to the
home position (top left hand corner).

SD.CHENQ See the entry for SD.PXENQ for details.

114

TRAP #3 D0=$20 to 24

Clear part or all of a window

SD.CLEAR
SD.CLRBT
SD.CLRLN
SD.CLRRT
SD.CLRTP

D0=$20
D0=$21
D0=$22
D0=$23
D0=$24

Call parameters

D1
D2
D3.W timeout
A0 channellD
A1
A2

Error returns:

SD.CLEAR
SD.CLRTP
SD.CLRBT
SD.CLRLN
SD.CLRRT

clear all of window
clear top of window
clear bottom of window
clear cursor line
clear right hand end of cursor line

Return parameters

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

NC not complete
NO channel not open

The clear window traps can clear all or part of a window. To clear a part of
a window the cursor is used as a reference. The clear operation consists of
overwriting all the pixels in the designated area with paper colour.

The division between the top of the window and the bottom of the window
is the cursor line. The cursor line is in neither the top nor the bottom ofthe
window.

115

The cursor line is the whole height of the current character fount (either 10 or
20 rows). The right hand end includes the character at the current cursor
position.

SO.CLRBT See the entry for SO.CLEAR for details.
SO.CLRLN See the entry for SO.CLEAR for details.
SO.CLRRT See the entry for SO.CLEAR for details.
SO.CLRTP See the entry for SO.CLEAR for details.

TRAP #3 D0=$E SD.CURE

Enable the cursor

Call parameters Return parameters

D1

D2

D3.W timeout

A0 channel lD

A1

A2

D1 ???

D2.L preserved

D3.L preserved

A0 preserved

A1 ???

A2 preserved

Error returns:

NC not complete

NO channel not open

The cursor is automatically enabled when a read line or edit line trap is

issued to a console window.

116

TRAP #3 D0=$F SO.CURS

Suppress the cursor

Call parameters Return parameters

D1
D2
D3.W timeout
A0 channellD
A1
A2

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete
NO channel not open

The calls to suppress or enable the cursor do not return an error if the cursor
is already suppressed or enabled (respectively), as they merely ensure that
the cursor is in the desired state.

SD.ELlPS See the entry for SD.POINT for details.

.

117

TRAP #3 D0=$9 SD.EXTOP

 Call an extended operation

Call parameters Return parameters

D1 parameter
D2 parameter
D3.W timeout
A0 channel lD
A1 parameter
A2 start address of routine

D1 parameter
D2 preserved
D3.L preserved
A0 preserved
A1 parameter
A2 preserved

Error returns:

NC not complete
NO channel not open

and anything from the operation routine

This trap invokes an externally supplied routine as if it were part of the
standard screen driver. D1, D2 and A1 are passed to the routine, while only
D1 and A1 are returned. The code within the routine is executed in supervisor
mode with A0 pointing to the channel definition block (see Section 7.2) and A6
pointing to the system variables as for standard device drivers.

118

TRAP #3 DO=$2E SO.FILL

Fill rectangular block in window

Call parameters Return parameters

D1.B colour
D2
D3.W timeout
A0 channel ID
A1 base of block definition
A2

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete
NO channel not open
OR block falls outside window

This trap fills a rectangular block of a window with the current ink colour,

taking into account the mode set by SD.SETMD.

The block definition is in the same form as the window definition. It is 4 words

long: width, height, X origin and Y origin. The origin is referred to the window

origin.

This is a fast way of drawing horizontal or vertical lines.

119

TRAP #3 D0=$35

Turn area flood on and off

Call parameters

SD.FLOOD

Return parameters

D1.L key 0=end flood D1 ???

1= start or restart flood

D2
D3.W timeout
A0 channel ID
A1
A2
A3

Error returns:

NC not complete

NO channel not open

D2 preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved
A3 preserved

120

TRAP #3 D0=$25 SD.FOUNT

Set or reset the fount

Call parameters Return parameters

D1
D2
D3.W timeout
A0 channel ID
A1 base of fount

A2 base of second fount

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete

NO channel not open

The character fount is a 5x9 array of pixels in a 6x1 0 rectangle. A default
fount and a second fount are built into the ROM, although alternative founts
may be selected.

If the fount address is given as zero the default fount will be used.

The structure of the fount assumes that up to a certain value characters are
invalid (default $1E), from the next value (default $1F) a known number of
characters are valid (default $61). Thus the structure is as follows:

$00 lowest valid character (byte)

$01 number of valid characters-1 (byte)

$02 to $0A 9 bytes of pixels for the first valid character

$08 to $13 etc.

Each byte of pixels has the pixels in bit 6 to bit 2 (inclusive) of the byte. The
top row of any character is implicitly blank.

If a character, which is to be written, is found to be invalid in the first fount, it
is written using the second fount. If it is also invalid in the second fount, then
the lowest valid character of the second fount is used.

121

The default fount extends from $20 to $7F.

SD.GCUR See the entry for SD.POINT for details.

SD.LINE See the entry for SD.POINT for details.

SD.NCOL See the entry for SD.POS for details.

SD.NL See the entry for SD.POS for details.

SD.NROW See the entry for SD.POS for details.

TRAP #3 D0=$1B, 1E and 1F SD.PAN
SO.PANLN
SO.PANRT

Pan part or all of a window

D0=$1B
D0=$1E
D0=$1F

SD.PAN
SD.PANLN
SD.PANRT

pan all of window
pan cursor line
pan right hand end of cursor line

Call parameters Return parameters

D1.W distance to pan
D2
D3.W timeout
A0 channel lD
A1
A2

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete
NO channel not open

122

The whole of a window, or the whole of the cursor line, or the right hand end of
the cursor line may be panned by any number of pixels to the right or to the
left. A positive distance implies that the pixels will move to the right. The space
left behind will be filled with paper colour.

The cursor line is the whole height of the current character fount
(either 10 or 20 rows). The right hand end includes the character at the current
cursor position.

S0.PANLN See the entry for SD.PAN for details.
S0.PANRT See the entry for SD.PAN for details.
S0.PCOL See the entry for SD.POS for details.

TRAP #3 D0=$17 SD.PIXP

Position cursor using pixel coordinates

Call parameters Return parameters

D1.W X-coordinate

D2.W V-coordinate

D3.W timeout

A0 channel lD

A1

A2

D1 ???

D2.L preserved

D3.L preserved

A0 preserved

A1 ???

A2 preserved

Error returns:

NC not complete

NO channel not open

OR off window

The cursor position is the top left hand corner of the next character rectangle
referred to the top left hand corner of the window. This trap clears the pending
newline in the window.

123

TRAP #3 D0=$30

D0=$31

D0=$32

D0=$33

D0=$34

D0=$36

SD.POINT

SD.LlNE

SD.ARC

SD.ELlPS

SD.SCALE

SD.GCUR

SD.POINT
SD.ARC

SD.ELlPS
SD.GCUR

SD.LINE

SD.SCALE

Plot a point, line, arc, ellipse, set scale or graphics cursor position.

Expects parameters on the arithmetic stack pointed to by (A1)

Call parameters

D1
D2
D3.W timeout
A0 channel lD
A1 arithmetic stack pointer
A2

Error returns:

NC not complete
NO channel not open

Return parameters

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

These four traps draw various lines and arcs in the window. Any point on
these lines which falls outside the window will not be plotted.

The format of the parameters required is as follows:

SO.POINT $00(A1)

$06(A1)

SO.LINE $00(A1)
$06(A1)

 $0C(A1)
$12(A1)

y-coordinate
x-coordinate

y-coord of finish of line x-
coord of finish of line y-
coord of start of line
x-coord of start of line

124

SD.ARC $00(A1) angle subtended by arc
$06(A1) y-coord of finish of line
$0C(A1) x-coord of finish of line
$12(A1) y-coord of start of line
$18(A1) x-coord of start of line

SD.ELlPS $00(A1) rotation angle

$06(A1) radius of ellipse
$0C(A1) eccentricity of ellipse
$12(A1) y-coord of centre
$18(A1) x-coord of centre

SD.SCALE $00(A1) y position of bottom line of window

$06(A1) x position of left hand pixel of window
$0C(A1) length of Y axis (height of window)

SD.GCUR $00(A1) graphics x-coordinate

$06(A1) graphics y-coordinate
$0C(A1) pixel offset to right
$12(A1) pixel offset down

For all the graphics traps, the parameters on the A1 stack are floating point,
and coordinates are referred to an arbitrary origin (default is 0,0) with an
arbitrary scale (default is height of window = 100 units).

The calling program must allocate at least 240 bytes on the A1 stack.

125

TRAP #3 D0=$10 to 16

 Cursor positioning by character intervals

SD.POS
SD.NCOL

SD.NL
SD.NROW

D0=$10 SD.POS
D0=$11 SD.TAB
D0=$12 SD.Nl
D0=$13 SD.PCOl
D0=$14 SD.NCOl
D0=$15 SD.PROW
D0=$16 SD.NROW

absolute position
tabulate
newline
previous column
next column
previous row next
row

SD.PCOl
SD.PROW

SD.TAB

Call parameters Return parameters

D1.W column number (D0=10,11)
D2.W row number (D0=10)
D3.W timeout
A0 channel ID
A1

 A2

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete
NO channel not open
OR position would be out of window

In the case of an error return, the cursor position is not changed. The cursor
position is the top left hand corner of the next character rectangle referred to
the top left hand corner of the window. These traps clear the pending
newline in the window.

SD.PROW Seethe entry for SO.POS for details.

126

TRAP #3 D0=$A or B SD.PXENQ
SD.CHENQ

Return the current window size and cursor position

D0=$A
D0=$B

SD.PXENQ enquiry in pixel coordinates

SD.CHENQ enquiry in character coordinates

Call parameters Return parameters

D1

D2

D3.W timeout

A0 channel 10

A1 base of enquiry block

A2

D1 preserved

D2 preserved

D3.L preserved

A0 preserved
A1 ???

A2 preserved

Error returns:

NC not complete

NO channel not open

The window size (X,Y) and cursor position (X,Y) are put into a 4 word

enquiry block. The top left hand corner of the window is cursor position 0,0.

These traps activate the newline if pending in the window.

127

TRAP#3 D0=$26 SD.RECOL

Recolour a window

Call parameters Return parameters

D1
D2
D3.W timeout
A0 channel lD
A1 pointer to colour list
A2

D1 ???
D2.L preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete
NO channel not open

A window may be recoloured without changing the information in it. This
allows the same sort of effects as resetting the attributes of an attribute
based screen, but it is very much slower.

The colour list is 8 bytes long and should contain the new colours required for
each of the 8 colours in the window. Each of the new colours must be in the
range 0 to 7. For 4 colour mode, only bytes 0,2,4 and 6 need to be filled in.

SD.SCALE See the entry for SD.POINT for details.

SD.SCRBT See the entry for SD.SCROL for details.

128

TRAP #3 D0=$18 to 1A SD.SCROL
 SO.SCRBT

Scroll part or all of a window

D0=$18 SD.SCROL
D0=$19 SD.SCRTP
D0=$1A SD.SCRBT

Call parameters

D1.W distance to scroll

D2

D3. W timeout

A0 channel lD
A1
A2

Error returns:

NC not complete

NO channel not open

SO.SCRTP

scroll all of window scroll

top of window scroll

bottom of window

Return parameters

D1 ???

D2.L preserved

D3.L preserved

A0 preserved

A1 ???

A2 preserved

Part or all of a window may be scrolled; for partial scrolling the cursor is used as
a reference. These traps cause pixels to be transferred from one row to
another. Vacated rows of pixels are filled with paper colour. A positive scroll
distance implies that the pixels in the window will be moved in a positive
direction, ie, downwards.The space left behind will be filled with paper colour.

The division between the top of the window and the bottom of the window is
the cursor line. The cursor line is included in neither the top nor the bottom of
the window. The cursor is not moved.

SD.SCRTP See the entry for SD.SCROL for details.

129

TRAP #3 D0=$2A and 2B SD.SETFL
 SD.SETUL
 Set flash and underscore

DO=$2A SD.SETFL set flash

DO=$2B SD.SETUL set underscore

Call parameters Return parameters

D1.B 0 attribute off D1 ???

else attribute on

D2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel lD A0 preserved
A1 A1 ???
A2 A2 preserved

Error returns:

 NC not complete

NO channel not open

SD.SETIN See the entry for SD.SETPA for details.

130

TRAP #3 D0=$2C SD.SETMD

Set the character writing or plotting mode

 Call parameters Return parameters
D1.W mode D1 ???

-1 ink is exclusive ored into the background
0 character background is strip colour

1 character background is transparent
0 or 1 plotting is in ink colour

D2

D3.W timeout

A0 channel ID

A1

A2

Error returns:

NC not complete

NO channel not open

D2.L preserved

D3.L preserved

A0 preserved

A1 ???

A2 preserved

131

TRAP #3 D0=$27 to 29 SO.SETPA
SO.SETIN

Set screen colours

DO=$27 SD.SETPA
DO=$28 SD.SETST

DO=$29 SD.SETIN

set paper colour
set strip colour
set ink colour

SO.SETST

Call parameters Return parameters

D1.B colour

D2

D3.W timeout

A0 channel lD
A1

A2

D1 preserved
D2 preserved
D3.L preserved
A0 preserved
A1 ???
A2 preserved

Error returns:

NC not complete

NO channel not open

The screen driver uses three colours. There is the background colour of a
window: referred to as paper colour; this is the colour which is used by the
scroll, pan and clear operations. There is the colour which is used by the
character generator to provide a highlighting background for individual
characters or words: referred to as strip colour. Finally, there is the colour used
for writing characters and drawing graphics: referred to as ink colour.

SO.SETST See the entry for SO.SETPA for details.

132

TRAP#3 D0=$20

Set character size and spacing

Call parameters

D1.W character width/spacing

0 single width, 6 pixel spacing

1 single width, 8 pixel spacing

2 double width, 12 pixel spacing

3 double width, 16 pixel spacing

D2.W character height/spacing

1 single height, 10 pixel spacing

1 double height, 20 pixel spacing

D3.W timeout

A0 channel ID

A1

A2

Error returns:

NC not complete

NO channel not open

SD.SETST

Return parameters

D1 ???

D2.L preserved

D3.L preserved
A0 preserved
A1 ???

A2 preserved

The character generator supports two widths and two heights of character. In 8

colour mode, only the double width characters may be used. In addition the

spacing between characters is entirely flexible, but for simplicity of use only two

additional spacings are supported directly: these are 8 pixel and 16 pixel, in

single and double width respectively.

Calls with D1=0 or 1 in 8 colour mode will operate as though a call had

been made with D1 equal to 2 or 3.

SD.SETUL See the entry for SD.SETFL for details.

SD.TAB See the entry for SD.POS for details.

133

TRAP #3 D0=$0

Redefine a window

Call parameters

D1.B border colour

D2.W border width

D3.W timeout

A0 channel lD

A1 base of window block

A2

Error returns:

SD.WDEF

Return parameters

D1 ???

D2.L preserved

D3.L preserved

A0 preserved

A1 ???

A2 preserved

NC not complete

NO channel not open

OR window does not fit on page

This call redefines the shape or position of a window: the contents are not

moved or modified, but the cursor is repositioned at the top left hand corner of

the new window. The window block is 4 words long and is the width, height, X

origin and Y origin.

134

16.0 Vectored Routines

Vector $110 BP.INIT

All addresses passed to this routine must be relative to A6.

BP.lNIT is used to link in a list of procedures and functions to be added to the
SuperBASIC name table. Once added, the functions can be called from
SuperBASIC in the same way as the procedures and functions built into the
ROM.

On entry, A1 should point to a table in the following form:

word approximate number of procedures (see below)

for each procedure

(word pointer to routine - here

(byte length of name of procedure

(characters

word 0

word approximate number of functions (see below)

for each function

(word pointer to routine - here
(byte length of name of function
(characters

word 0

The "approximate number" of procedures or functions is used to reserve
internal table space. It should be exactly equal to the number
of procedures or functions unless the average length of the procedure

or function names exceeds 7, in which case it should be:

(total number of characters + number of functions or procedures + 7) /8

135

The pointers to the routines are relative to the address of the pointer
(e.g. DC.W ENTRY- *)

All registers except A 1, and D2 are preserved by BP.INIT and no more than

48 bytes are used on the user stack.

Vector $120 BP.LET

All addresses passed to this routine must be relative to A6.

BP.LET assigns a value to be associated with an entry in the SuperBASIC
name table. On entry, (A6,A3) should point to the name table entry, and
(A6,A1) should point to the value to be assigned (see section 9.5 for details of
the storage format for the various types of data). A1 and A3 should be on
word boundaries.

The type of the entity to be assigned (and hence its length) is determined by the
type in the name table entry.

On exit, D0 is an error code, and D1, D2, D3, A0, A 1 and A2 are smashed.

Vector $11A BV.CHRIX

All addresses passed to this routine must be relative to A6.

BV.CHRIX is used to reserve space on the arithmetic stack (A6,A1). On

entry, the number of bytes required should be in D1.L: D0 to D3 are

smashed.

Since not only the stack but the whole SuperBASIC area may move during

the call, the arithmetic stack pointer should be saved in BV_RIP(A6),

whence it should be retrieved after the call has been completed.

136

CA.GTFP See the entry for CA.GTINT for details.

Vector $112

$114

$116

$118

CA.GTINT
CA.GTFP

CA.GTSTR

CA.GTLlN

All addresses passed to these routines must be relative to A6.

These routines are used to get the values of actual parameters to
SuperBASIC procedures or functions onto the arithmetic stack. Each routine
assumes that all the parameters will be of the same type, as follows:

CA.GTINT
CA.GTFP
CA.GTSTR
CA.GTLlN

16-bit integer
floating point
string
floating point: convert to 32-bit long integer

On entry, (A6,A3) points to the name table entry for the first parameter in
the list, and (A6,A5) points to the entry for the last.

The number of parameters fetched is returned in the least significant word
of D3. The values themselves are returned in order on the arithmetic stack
(A6,A 1) with the first parameter at the top (lowest address) of the stack.

These routines smash D1, D2, D4, D6, A0 and A2. D0, and also the
condition codes, give the error code. The separator flags in the name table
entries are also smashed.

CA.GTLlN See the entry for CA.GTINT for details.

CA.GTSTR See the entry for CA.GTINT for details.

CN.BTOIB See the entry for CN.DTOF for details.

137

CN.BTOIL See the entry for CN.DTOF for details.

CN.BTOIW See the entry for CN.DTOF for details.

Vector $EC CN.DATE get date and time

$EE CN.DAY get day of week

CN.DATE
CN.DAY

Call parameters Return parameters

D1.L date (internal value)

D2

D3

A0

A1 pointer to stack

A2

A3

D1 preserved

D2 preserved

D3 preserved

A0 preserved

A1 pointer to stack

A2 preserved

A3 preserved

All addresses passed to these routines must be relative to A6.

There are two date conversion routines: CN.DATE returns the date in the form
yyyy mmm dd hh:mm:ss, CN.DAY returns a three letter day of the week. The
result is put on the A 1 stack in string format. At least 22 bytes are required by
CN.DATE and at least 6 bytes by CN.DAY. CN.DAY See the entry for
CN.DATE for details.

138

Vector $100 CN.DTOF floating point

$102 CN.DTOI integer

&$104 CN.BTOIB binary (byte)

&$106 CN.BTOIW binary (word)

&$108 CN.BTOlL binary (long)

&$10A CN.HTOIB hex (byte)

&$10C CN.HTOIW hex (word)

&$10E CN.HTOlL hex (long)

CN.DTOF
CN.BTOlL

 CN.BTOIW

 CN.DTOI

CN.HTOIB

CN.HTOlL

CN.HTOIW

Call parameters Return parameters

D1 D1 ???
D2 D2 ???
D3
D7 0 or ptr to end buffer
A0 pointer to buffer
A1 pointer to stack
A2
A3

D3 ???
D7 preserved
A0 pointer to buffer
A1 pointer to stack
A2 ???
A3 ???

Error returns:

XP error in conversion (eg 1..0 as floating pt.

or no digits or too many hex or binary digits)

All addresses passed to these routines must be relative to A6.
Utilities marked & are non-functioning in V1.03 and earlier.
These routines convert from ASCII characters in a buffer (pointed to by

A0) to a value on the stack (pointed to by A1).

The hex and binary conversions from ASCII to number, always put a

long word on the A1 stack. A1 is set to point to the least significant

byte or less significant word for the byte and word conversions.

The decimal conversions may use up to about 30 bytes on the A1 stack.

139

If there is an error then A0 and A1 are both unchanged. Otherwise, on return,
A1 points to the return value (floating point, long word, word or byte) and AO
points to the next character in the buffer.

CN.DTOI See the entry for CN.DTOF for details.

Vector $F0 CN.FTOD floating point CN.FTOD

 $F2 CN.ITOD integer CN.ITOBB
 $F4 CN.ITOBB binary (byte) CN.ITOBL
 $F6 CN.ITOBW binary (word) CN.ITOBW
 $F8 CN.ITOBL binary (long) CN.ITOD
 $FA CN.ITOHB hex (byte) CN.ITOHB
 $FC CN.ITOHW hex (word) CN.ITOHL
 $FF CN.ITOHL hex (long) CN.ITOHW

Call parameters Return parameters

 D0 ???
D1 D1 ???
D2 D2 ???
D3 D3 ???
A0 pointer to buffer A0 pointer to buffer
A1 pointer to stack A1 pointer to stack
A2 A2 ???
A3 A3 ???

All addresses passed to these routines must be relative to A6.

These routines convert a value on the stack (pointed to by A1) to a set of
ASCII characters in a buffer (pointed to by A0).

CN.HTOIB See the entry for CN.DTOF for details.
CN.HTOIL See the entry for CN.DTOF for details.
CN.HTOIW See the entry for CN.DTOF for details.
CN.lTOBB See the entry for CN.FTOD for details.

140

CN.lTOBL See the entry for CN.FTOD for details.
CN.ITOBW See the entry for CN.FTOD for details.
CN.ITOD See the entry for CN.FTOD for details.
CN.ITOHB See the entry for CN.FTOD for details.
CN.lTOHL See the entry for CN.FTOD for details.
CN.ITOHW See the entry for CN.FTOD for details.

Vector $122

Decode a device name

Call parameters

D1

D2

D3

A0 pointer to name

A1

A2

A3 pointer to parameters

Error returns:

IO.NAME

Return parameters

D1 ???
D2 ???
D3 ???

A0 preserved

A1 ???

A2 ???

A3 preserved

ERR.NF not recognised

ERR.BN name recognised - but bad parameters

This routine parses a device name. Given a device name and a description
of the syntax of the name to be checked against and for the possible
parameters to be appended to it, the routine determines·) whether the name
is recognised, and extracts the parameters if it is. The device name is formed
using four components:

141

Name

Separator

Number

Code

ASCII characters, normally letters. Case is ignored.

Single ASCII character. Case is ignored.

Decimal number in the range 0 to 32767

One of a list of ASCII characters

On entry to the routine, AO must point to the device name (which is in the
usual Qdos string format), A3 must point to an area of memory which is
sufficient to hold the decoded parameter values, and A6 must point to the base
of system variables. The device description starts 6 bytes after the call, and is
in the following format:

word number of characters in the device name to be checked for words
 the characters of the device name to be checked for
word number of parameters
For each parameter, one of the following options:

byte space, byte separator, word default value (numeric with
separator)
word negative number, word default value (numeric with no
separator)
word positive number of possible codes, bytes for the ASCII
codes

Note that all letters must be in upper case.

For each numeric parameter value in the description, the utility will return
either the value given in the device name, or the default. For each list of codes
in the description the utility will return the position of the code in the list, or
zero.

Examples:

The CON description is:

DC.W

DC.W

DC.W

DC.W

 DC.W

3,'CON'

5

'_',448,'X',180

'A',32,'X',16

‘_',128

console

five parameters

window size

window position

keyboard queue length

142

Device name Parameters

 CON 448,180,0,0,128
 CON_256 256,180,0,0,128
 con_60 448,180,0,0,60
 cona0x12 448,180,0,12,128
 con_256x64a64x128_20 256,64,64,128,20

The SER description is:

DC.W 3,'SER'
DC.W 4
DC.W -1,1
DC.W 4,'OEMS'
DC.W 2,'IH'
DC.W 3.’RZC’

RS232 serial device
four parameters
port number (default 1)
parity (odd/even/mark/space)
ignore/use handshaking
Raw/use CTRLZ/use CR

Device name Parameters

SER

SERE

ser2miZ

1,0,0,0

1,1,0,0

2,3,1,2

If the name is not matched, the routine returns immediately after the call with

ERR.NF in D0. If the name is matched but the additional information is

incorrect, it returns 2 bytes after the call with ERR.BN in D0. If a match is

found, it returns 4 bytes after the call with D0=0.

IO.QEOF See the entry for IO.QSET for details.

IO.QIN See the entry for IO.QSET for details.

IO.QOUT See the entry for IO.QSET for details.

143

Vector $DC IO.QSET set up a queue

$DE IO.QTEST test status of queue
 $E0 IO.QIN put byte into queue

$E2 IO.QOUT extract byte from queue

IO.QSET
IO.QEOF

IO.QIN
 IO.QUOT

$E4 IO.QEOF put end of file marker into queue IO.QTEST

Call parameters

D1.L queue length or data

D2

D3

A0
A1
A2 pointer to queue

A3

Return parameters

D1 data

D2 preserved/free space

D3 preserved
A0 preserved
A1 preserved
A2 preserved
A3 modified by QIN, QOUT,

QTEST,QSET

Error returns:

 ERR.NC queue is full (QIN) or empty (QOUT, QTEST)

ERR.EF end of file reached (QOUT, QTEST)

The data length should be less than 32767

IO.QTEST See the entry for IO.QSET for details.

IO.SERIO See the entry for IO.SERQ for details.

144

Vector $E8 IO.SERQ direct queue handling

$EA IO.SERIO general IO handling

IO.SERQ
IO.SERIO

Call parameters Return parameters

D1 standard IOSS value

D2 standard IOSS value

D3 standard IOSS value

A0 standard IOSS value

A1 standard IOSS value

A2

A3

D1 standard IOSS value

D2 standard IOSS value

D3 ???

A0 preserved

A1 standard IOSS value

A2 ???

A3 ???

Error returns:

ERR.BP undefined action

or errors returned from supplied routines

These routines must be called from supervisor mode, with A6 pointing to
the base of system variables. It may not be called from a task which
services an interrupt.

IO.SERQ is a direct queue handling routine. When the channel definition
block is set up for simple serial I/O then the 7th and 8th long words should
be set to point to the queues for input and output respectively. If either input
or output is prohibited, then the corresponding pointer should be zero.

IO.SERQ should be called with standard 1055 values in D0, D1, D2,
D3,A0 and A1.

For serial I/O where the operations for byte input and output are not so
simple, the routine IO.SERIO may be called. The call instruction should be
followed by three long words, these being the entry addresses for

testing for pending input, (next byte in D1)

fetch byte, (byte in D1)

send byte. (byte in D1)

145

The use of absolute addresses for these may prove awkward; so the entry to

this routine is best included in the physical definition block for the driver:

at $28(A3) or similar or

387800E8 MOVE.W $E8,A4 DC. L TEST

4E94 JSR (A4) DC. L FETCH

DC.L TEST DC. L SEND

DC.L FETCH 4E75 RTS

DC.L SEND

4E75 RTS

invoked by or

JSR $28(A3) PEA $28(A3)

MOVE.W $E8,A4

 JMP (A4)

For the calls to the three service routines D0 should be returned as the error
code, D1 to D3 and A1 to A3 inclusive are volatile.

Both of these calls treat actions 0,1,2,3,5 and 7, the header set and read
actions and load and save: for undefined actions they return ERR.BP.

146

Vector $124 MD.READ

$126 MD.WRITE

$128 MD.VERIN

$12A MD.SECTR

read a sector
write a sector
verify a sector

read a sector header

 MD.READ
MD.SECTR

MD.VERIN

 MD.WRITE

Call parameters

D1
D2
D7
A0
A1 pointer to start of bufr
A2
A3 $18020

Error returns:

MD.WRITE
MD.READ, MD.VERIN

MD.SECTR

Return parameters

D1 file nr (read/verify)
D2 block nr (read/verify)
D7 sector nr (read headr)
A0 ???
A1 pointer to end of bufr
A2 ???
A3 $18020

none
normal - failed
return+2 OK
normal - bad medium
return+2 - bad sector header
return +4 - OK

The microdrive support routines are vectored to simplify the writing of file
recovery programs. On entry A3 must point to the microdrive control register,
and the interrupts must be disabled. All registers except A3 and A6 are treated
as volatile.

These routines do not set D0 on return but have multiple returns.

Before calling MD.WRITE the stack pointer must point to a word: the file
number and the block number of the sector to be written are in the high and
low byte respectively.

147

These vectors point to $4000 bytes before the actual entry point. The
following code may be used:

MOVE.W aa.aaaa,An

JSR $4000(An)

MD.SECTR See the entry for MD.READ for details.

MD.VERIN See the entry for MD.READ for details.

MD.WRITE See the entry for MD.READ for details.

Vector $C0 MM.ALCHP

Allocate common heap area

Call parameters Return parameters

D1.L space required
D2
D3
A0
A1
A2
A3

D1.L space allocated
D2 ???
D3 ???
A0 base of area allocated
A1 ???

A2 ???

A3 ???

Error returns:

OM out of memory

148

This routine must be called from supervisor mode, with A6 pointing to the
base of system variables. It may not be called from a task which services an
interrupt.

The space requested must include room for the heap entry header. For
simple heap entries this is 16 bytes long, for IOSS channels this is 24 bytes
long.

The address of the heap area is the base of the area allocated, not the base
of the area which may be used (contrast with trap #1 D0= $18 and $19).

The area allocated is cleared to zero.

Vector $D8 MM.ALLOC

Allocate an area in a heap

Call parameters Return parameters

D1.L length required
D2
D3
A0 ptr to ptr to free space
A1
A2
A3

D1.L length allocated
D2 ???
D3 ???
A0 base of area allocated
A1 ???
A2 ???
A3 ???

Error returns:

OM no free space large enough

See section 4.1 for details of the heap allocation mechanism.

149

Vector $DA MM.LNKFR

Link a free space (back) into a heap

Call parameters

D1.L length to link in
D2
D3
A0 base of new space
A1 ptr to ptr to free space
A2
A3

Return parameters

D1 ???
D2 ???
D3 ???
A0 ???
A1 ???
A2 ???
A3 ???

Vector $C2

Release common heap space

MM.RECHP

Call parameters

D1

D2

D3

A0 base of area to release

A1

A2

A3

Return parameters

D1 ???

D2 ???

D3 ???

A0 ???

A1 ???

A2 ???

A3 ???

This routine must be called from supervisor mode, with A6 pointing to

the base of system variables. It may not be called from a task which

services an interrupt. See entry for MM.ALCHP

150

Vector $11C RI.EXEC executes an operation RI.EXEC
$11E RI.EXECB executes a list of operations RI.EXECB

Call parameters Return parameters

D0.W operation (RI.EXEC)

D1

D2

D3

A0

A1 pointer to arith stack

A2

A3 ptr to operation list

A4 ptr to base of var area

D0 error code

D1 preserved

D2 preserved

D3 preserved

A0 preserved

A1 updated

A2 preserved

A3 preserved

A4 preserved

Error returns:

OV arithmetic overflow

All addresses passed to these routines must be relative to A6. The arithmetic
package is available for general use through two vectors: the first executes a
single operation; the second executes a list of operations.

The package operates on floating point numbers on a downward stack
pointed to by (A6,A1.L). lt operates on the top of the stack (TOS) which is
pointed to by (A6,A1.L), and the next on stack (NOS) at 6(A6,A1.L).

See section 9.5 for details of the floating point format.

The interpreter takes two types of operation codes. The first is a true arithmetic
operation with an operation code between $02 and $30 inclusive, the second is
a negative code between $FFFF and $FF31 inclusive: this indicates a load or
store operation of a floating point number to or from the location given by the
calculation (A6.L +A4.L +opcode$FFFE). lf bit 0 of the opcode is clear the
operation is a load (A1 decremented by 6, creating a new TOS), if it is set the
operation is a store (A1 incremented by 6, NOS- ->TOS)

151

For RI.EXEC the operation code should be passed asa word. For

RI.EXECB the operation codes are in a table of bytes pointed to by A3. The

table isterminated by a zero byte.

Note: for the function EXP, D7 should be set to zero or an erroneous

value will be returned.

The operation codes for the interpreter are asfollows:

CODE function change to A1

$02 RI.NINT
$04 RI.INT
$06 RI.NLlNT
$08 RI.FLOAT
$OA RI.ADD
$OC RI.SUB
$OE RI.MULT
$10 RI.DIV
$12 RI.ABS
$14 RI.NEG
$16 RI.DUP
$18 RI.COS
$1A RI.SIN
$1C RI.TAN
$1E RI.COT
$20 RI.ASIN
$22 RI.ACOS
$24 RI.ATAN
$26 RI.ACOT
$28 RI.SQRT
$2A RI.LN
$2C RI.LOG10
$2E RI.EXP
$30 RI.POWFP

nearest integer to TOS +4
truncate TOS to integer +4
nearest long integer to TOS +2
integerTOS to floating point -4
add TOS to NOS +6
subtract TOS from NOS +6
multiply TOS by NOS +6
divide TOS into NOS +6
positive value of TOS 0
negate TOS 0
duplicate TOS -6
cosine
sine
tangent
cotangent
arcsine
arccosine
arctangent
arccotangent
square root
natural logarithm
logarithm to base 10
exponential
NOS to the power of TOS + 6

)
)
)
)
)
) change TOS only
) A1 unchanged
)
)
)
)
)

UT.COM See the entry fer UT.WINDW for details.

152

Vector $E6

Compare two strings

Call parameters

D0.B comparison type

D1

D2

D3

A0 base of string 0 wrt A6

A1 base of string 1 wrt A6

A2

A3

A6 base address register

Return parameters

D1.L -1, 0, or +1

01 preserved

02 preserved

03 preserved

AO preserved

A 1 preserved

A2 preserved

A3 preserved

A6 preserved

UT.CSTR

All addresses passed to this routine must be relative to A6.
D0 (and the status register) is set negative if the string at (A6,A0) is less than
the string at (A6,A 1) etc.

UT.ERRO
UT.ERR

Vector $CA UT.ERRO

$CC UT.ERR

Call parameters

D0.1 error code

D1

D2

D3

A0 channel ID (UT.ERR only)

A1

A2

A3

write error message to channel 0

write error message to given

channel

Return parameters

D0.1 preserved

D1 preserved

D2 preserved

D3 preserved

A0 preserved

A1 preserved

A2 preserved

A3 preserved

153

These routines must be called from user mode.

These routines exist for writing simple messages to a channel. They are

 basic error message handlers which write a standard or device driver
supplied error message to either the command channel 0, or else to a

defined channel.

UT.LINK
UT.UNLINK

Vector $02 UT.LINK
$04 UT.UNLNK

link an item into a list
unlink an item from a list

Call parameters Return parameters

D1
D2
D3

 A0 base of item (un)linked
A1 pointer to previous item
A2
A3

D1 preserved
D2 preserved
D3 preserved
A0 preserved
A1 updated
A2 preserved
A3 preserved

These two routines are provided for handling linked lists.

These routines are passed the base address of the item to be linked or
unlinked, and a pointer which points to either the pointer to the first item in
the list, or to an item in the list.

When an item is linked in, it will be linked in at the start of the list, or, if the
pointer was to an item in the list, after that item.

When an item is removed, the pointer may point to the pointer to the

 first item in the list, or to any item in the list before the item to be
removed.

When starting a new list, the pointer to the first item in the list must be zero.

154

Each item in the list must have 4 bytes reserved at the start for the link pointer.

Vector $CE UT.MINT

Convert an integer to ASCII and send it to the

defined channel

Call parameters

D1.W integer value
D2
D3
A0 channellD
A1
A2
A3

Error returns:

All the usual IO

Return parameters

D1 ???
D2 ???
D3 ???
A0 preserved
A1 ???
A2 preserved
A3 preserved

This routine ought usually to be called from user mode.

155

Vector $D0 UT.MTEXT

Send a message to a channel

Call parameters Return parameters

D1 D1 ???

D2 D2 ???
D3

A0 channellD

A1 base of message

A2

A3

D3 ???

A0 preserved
A1 ???
A2 preserved

A3 preserved

Error returns:

All the usual IO

This routine ought usually to be called from user mode.

The above routines (UT.MINT and UT.MTEXT) are provided to write parts
of more complex messages to a defined channel.

The message is in the form of a text string: number of characters (word)
followed by the characters in ASCII. If a new line is required at the end of the
message, this should be included in the message. If the channel is 0 then D3
will be returned 0, otherwise D3 will be returned -1. In version V1.03 and
earlier, DO is set to the error return but is not tested so the condition codes
will not be correct. As a special concession, interrupt servers and other
supervisor mode routines can call these routines with A0=0. If the command
channel is in use, they will attempt to use channel 1. This operation is not
recommended, but it does seem to work!

UT.SCR See the entry for UT.WINDW for details.

UT.UNLNK See the entry for UT.LlNK for details.

156

 UT.WINDW
Vector $C4 UT.WINDW

$C6 UT.CON

$C8 UT.SCR

set up a window using a
supplied name
set up console window
set up screen window

 UT.CON
UT.SCR

Call parameters Return parameters

D1 D1 ???
D2 D2 ???
D3 D3 ???
A0 ptr to name (WINDW only) A0 channel ID
A1 ptr to parameter block A1 ???
A2 A2 ???
A3 A3 ???

Error returns:

BN bad device name (WINDW only)

OM out of memory

NO out of channels

OR window is off-screen

The above three routines, which must be called in user mode, set up console
or screen windows using a parameter list which follows the call statement. In
the first case, the window is opened using a name which has been supplied,
a block of parameters defining the border, and the paper, strip and ink
colours. The window is set up and cleared for use.

The second and third routines define the window using an additional block
of four words.

157

The parameter block is as follows:

$00 border colour (byte)

$01 border width (byte)

$02 paper/strip colour (byte)

$03 ink colour (byte)

$04 width (word))

$06 height (word))

$08 X origin (word))

$0A Y origin (word))

not required for UT.WINDW

17.0 Qdos System Standards

In order to make best use of the third-party work, both software and
hardware, currently going on on the QL, a number of Sinclair standards
have been produced.

1. Floppy disc standard - This covers the physical layout, formatting,
directory structure and disk handling of floppy disks under Qdos.

2. Relocatable object file standard - To allow the linking of separately
compiled modules, potentially written in different languages.

These standards are available on application to Sinclair Research at the
address in the introduction.

158

18.0 Qdos Keys

The following sections contain keys for various features of Qdos. These
keys provide a definition for several of the data structures within Qdos.

18.1 Error Keys

The following keys indicate error messages already defined in the system.

A positive error code istaken as an address of a user-supplied error

message. See the Concepts manual for a fuller description ofthe way in

which these are used by the procedures built into SuperBASIC.

ERR.NC
ERR.NJ
ERR.OM
ERR.OR
ERR.BO
ERR.NO
ERR.NF
ERR.EX
ERR.IU
ERR.EF
ERR.DF
ERR.BN
ERR.TE
ERR.FF
ERR.BP
ERR.FE
ERR.XP
ERR.OV
ERR.NI
ERR.RO
ERR.BL

-1 operation not complete
-2 not a valid job
-3 out of memory
-4 out of range
-5 buffer overflow
-6 channel not open
-7 file or device not found
-8 file already exists
-9 file or device in use
-10 end of file
-11 drive full
-12 bad device name
-13 transmission error
-14 format failed
-15 bad parameter
-16 file error
-17 error in expression
-18 arithmetic overflow
-19 not implemented (yet)
-20 read only
-21 bad line (syntax error in BASIC)

159

18.2 System Variables

 The following list gives the offset of each system variable from the base
 of the system variables (whose position can be found using the MT.lNF

trap), together with the length of the variable.

SV_IDENT $00 word identification word

The following variables are the pointers which define the current state of the
Qdos memory map.

SV_CHEAP $04 long base of common heap area
SV_CHPFR $08 long first free space in common heap area
SV_FREE $0C long base of free area
SV_BASIC $10 long base of basic area
SV_TRNSP $14 long base of transient program area
SV_TRNFR $18 long first free space in transient program area
SV_RESPR $1C long base of resident procedure area
SV_RAMT $20 long top of ram (+1)

 SV_RAND $2E word random number
SV_POLLM $30 word count of poll interupts missed
SV_TVMOD $32 byte 0 if not TV display
SV_SCRST $33 byte screen status (0= active)
SV_MCSTA $34 byte current value of display control register
SV_PClNT $35 byte current value of interrupt control/mask register

SV_NETNR $37 byte network station number

The following system variables are pointers to the list of tasks and drivers.

SV_I2LST
SV_PLlST
SV_SHLST
SV_DRLST
SV_DDLST

$38 long
$3C long
$40 long
$44 long
$48 long

pointer to list of interrupt 2 drivers
pointer to list of polled tasks
pointer to list of scheduler tasks
pointer to list of device drivers
pointer to list of directory device drivers

SV_KEYQ $4C long
SV_TRAPV $50 long

pointer to a keyboard queue
pointer to the trap redirection table

160

SV_CAPS
SV_ARBUF

$88
$8A

word
word

caps lock
autorepeat

buffer

SV_ARDEL
SV_ARFRQ

$8C
$8E

word
word

autorepeat
autorepeat

delay
1/freq

SV_ARCNT $90 word autorepeat count

SV_CQCH $92 word keyboard change queue character code

SV_SOUND $96 word sound status

SV_SER1C $98 long receive channel 1 queue address

SV_SER2C $9C long receive channel 2 queue address

SV_TMODE $AO byte ZX8302 transmit mode (includes

 baudrate)

SV_CSUB
SV_TIMO
SV_TIMOV

$A2
$A6
$A8

long
word
word

subroutine to jump to on CAPSLOCK
timeout for switching transmit mode
value of switching timeout (two

 characters)

SV_FSTAT $AA word flashing cursor status

The following system variables are pointers to the resource management tables.
The slave block tables have 8 byte entries, whilst the others have 4 byte entries.

SV_BTPNT $54 long pointer to most recent slave block entry
SV_BTBAS $58 long pointer to base of slave block table
SV_BTTOP $5C long pointer to top of slave block table

SV_JBTAG $60 word current value of job tag
SV_JBMAX $62 word highest current job number
SV_JBPNT $64 long pointer to current job table entry
SV_JBBAS $68 long pointer to base of job table
SV_JBTOP $6C long pointer to top of job table

SV_CHTAG $70 word current value of channel tag
SV_CHMAX $72 word highest current channel number
SV_CHPNT $74 long pointer to last channel checked
SV_CHBAS $78 long pointer to base of channel table
SV_CHTOP $7C long pointer to top of channel table

The following variables contain information about how to treat the keyboard, and
about other aspects of the IPC and serial port communications. SV_CAPS,
SV_ARDEL, SV_ARFRQ and SV_CSUB can safely be poked.

161

 SV_MDRUN $EE byte which drive is running?

SV_MDCNT $EF byte microdrive run-up run-down counter

SV_MDDID $F0 8 bytes drive ID*4 of each microdrive

 SV_MDSTA $F8 8 bytes status 0=no pending ops

 SV_FSDEF $100 16*long pointers to file system physical definition

 SV_FSLST $140 long pointer to list offile channel definitions

The following area, between $180 and $480 is reserved for the supervisor

stack. There is no explicit stack protection in the code, although the stack

should be of sufficient size for most normal purposes.

18.3 SuperBASIC Variables

Note that the system variable SV_BASIC points to the bottom of the
SuperBASIC area, where its job header, which is $68 bytes long, is located.
The value of A6 used during the interpreter points to the address
immediately above the job header, which contains a set of variables
formatted as shown in this table.

 The first part of the area holds the pointers to the various areas of
memory used by the interpreter: it defines the partitioning of
SuperBASIC's own area of memory.

BV_START 0 start of pointers

BV_BFBAS

$00 long buffer base
BV_BFP $04 long buffer running pointer
BV_TKBAS $08 long token list
BV_TKP $OC long
BV_PFBAS $10 long program file
BV_PFP $14 long
BV_NTBAS

BV_NTP
$18

$1C
long

long
name table

BV_NLBAS $20 long name list
BV_NLP $24 long
BV_VVBAS

BV_VVP

$28

$2C
long

long
variable values

BV_CHBAS $30 long channel table
BV_CHP $34 long
BV_RTBAS $38 long return table

162

BV_BTP

BV_BTBAS

BV_TGP

$48

$4C

$50

long

long

long

backtrack

temporary

stack during parsing

graph stack during parsing

BV_TGBAS $54 long
BV_RIP

BV_RIBAS
$58

$5C
long

long
arithmetic stack

BV_SSP $60 long system stack (real one!)
BV_SSBAS $64 long

BV_ENDPT

$64

end of pointers

BV_LlNUM

BV_LENGTH

BV_STMNT

$68

$6A

$6C

word

word

byte

current line number

current length

current statement on line
BV_CONT
BV_INLIN

$6D

$6E
byte

byte
continue ($80) or stop (0) processing

processing in-line clause or not

 loop (1), other ($FF), not (0)
BV_SING

BV_INDEX
$6F

$70
byte

word
single line execution on ($FF) or off (0)

name table row of last in-line loop index

BV_VVFREE

$72

long
read

first free space in variable value table
BV_SSSAV $76 long saved sp for out/mem to go back to

BV_RAND

$80

long

random number
BV_COMCH $84 long command channel

BV_NXLlN

BV_NXSTM

BV_COMLN

BV_STOPN

BV_EDIT

BV_BRK

BV_UNRVL

$88

$8A

$86

$8C

$8E

$8F

$90

word

byte

byte

word

byte

byte

byte

which line number to start after which

statement to start after command line

saved ($FF) or not (0) which stop

number set

program has been edited ($FF) or not (0)

there has been a break (0) or not ($80)

need to unravel ($FF) or not (0)
BV_CNSTM $91 byte statement to CONTINUE from
BV_CNLNO $92 word line to CONTINUE from

BV_RTP $3C long

BV_LNBAS $40 long line number table

BV_LNP $44 long

BV_CHANGE $48 change of direction marker

163

BV_DALNO $94 word current DATA line number
BV_DASTM $96 byte current DATA statement number
BV_DAITM $97 byte next DATA item to read

BV_CNIND

$98

word

in-line loop index to CONTINUE with
BV_CNINL $9A byte in-line loop flag for CONTINUE
BV_LSANY $9B byte whether checking list ($FF) or not (0)
BV_LSBEF $9C word invisible top line
BV_LSBAS

BV_LSAFT
$9E

$AO
word

word
bottom line in window

invisible bottom line
BV_LENLN $A2 word length of window line
BV_MAXLN $A4 word max nr of window lines

 The 2 words immediately following this

 will be overwritten on changing lenln

 and maxln
BV_TOTLN $A6 word nr of window lines so far

BV_AUTO

$AA

byte

whether AUTO/EDIT on ($FF) or off (0)

BV_PRINT $AB byte print from prtok ($FF) or leave in

 buffer (0)

BV_EDLIN $AC word line number to edit next

BV_EDINC $AE word increment on edit range

BV_TKPOS

$BO

long

pos of A4 in tklist on entry to PROC

BV_PTEMP $B4 long temp pointer for GO_PROC

BV_UNDO $B8 byte undo rt stack IMMEDIATELY then redo

 procedure

BV_ARROW

$B9

byte

down ($FF) or up (01) or no (00) arrow

BV_LSFIL

$BA

word

fill window when relisting at least to here

BV_WRLNO $BC word when error line number

BV_WRSTM $BE byte when error statement

BV_WRINL $BF byte when error in-line ($FF) or not (0)

BV_WHERR $CO byte processing when error ($80) or not (0)

BV_ERROR

$C2

long

last error code

BV_ERLIN $C6 word line number of last error

BV_WVNUM $C8 word number of watched (WHEN) variables

BV_WVBAS

BV_END

$CA

$100

long base of WHEN variable table wrt WBAS

top of BV area

"

164

18.4 Offsets on BASIC Channel Definitions

The following section gives the format of an entry in the SuperBASIC
channel table, These entries can be monitored or modified by user-

defined SuperBASIC procedures which need to have a channel

attached using a '#n' construct.

CH.ID $00 channel id
CH.CCPY

CH.CCPX
$04

$0A
float

float
current cursor position, y

current cursor position, x

CH.ANGLE $10 float turtle angle
CH.PEN $16 byte pen status (up or down)
CH.CHPOS $20 word character position on line
CH.WIDTH $22 word width of line in characters
CH.SPARE $24 ..spare ..

CH.LENCH $28 length of a channel definition block

18.5 Job Header and Save Area Definitions

The location of the job table can be found by looking at the system

variables SV_IBBAS and SV_IBTOP. Each entry in the table is a longword

pointing to a block of $68 bytes in the format given here.

JB_LEN* $00 long total length of job area

JB_START $04 long start address on activation (usually 0)

JB_OWNER $08 long job ID of the owner of this job JB_HOLD

 $0C long ptr to byte to be cleared when job

released

JB_TAG* $10 word tag for this job, allocated by MT.CJOB

JB_PRIOR $12 byte current accumulated priority:

set to zero when the job is executing,

incremented on each scheduler call ifthe

job isactive but not executing

JB_PRINC $13 byte priority increment (the actual priority of

the job) set to zero if the job is inactive

SuperBASIC activates jobs at priority $20

JB_STAT* $14 word job status

0 => not suspended

>0 => numberofframe times to release

-1 => suspended

-2 => waiting for another job to finish

165

 JB_RELA6 $16 byte MSB set if next trap #2 or

addressing relative to A6

#3 has

JB_WFLAG $17 byte set if there is a job waiting

completion of this one

on

 JB_WJOB $18 long job Id of waiting job

 JB_TRAPV $1C long pointer to trap redirection vectors

 JB_00 $20 save offset of D0

 JB_01 $24 save offset of D1

 JB_02 $28 save offset of D2

 JB_03 $2C save offset of D3

 JB_04 $30 save offset of D4

 JB_05 $34 save offset of D5

 JB_06 $38 save offset of D6

 JB_07 $3C save offset of D7

 JB A0 $40 save offset of A0

 JB A1 $44 save offset of A1

 JB A2 $48 save offset of A2

 JB A3 $4C save offset of A3

 JB A4 $50 save offset of A4

 JB A5 $54 save offset of A5

 JB A6 $58 save offset of A6

 JB A7 $5C save offset of A7

 JB_USP $5C save offset of USP

 JB_SR $60 save offset of SR

 JB_PC $62 save offset of PC

 JB_ENO $68

Thus the job identified by <job-ID> starts at ((SV_JBBAS) +4 * <job-

ID>.W), and the most significant word of <job-ID> must match the tag

held at 10H on from this address (otherwise that job no longer exists). A

negative <job-ID> implies that the job no longer exists, as does a value of

<job-lD>.W which is greater than the length of the job table held in

SV_IBMAX.

Entries marked by * should not be modified. Other entries may be

modified by a trap, or may be changed directly with caution.

166

BT.UNAV 00000000B block is unavailable to file system
BT.EMPTY 00000001B block is empty
BT.RREQ 00001001B block required to be read from

microdrive
BT.TRUE 00000011B block is a true representation of file
BT.AVER 00001011B block is awaiting verify
BT.UPDT 00000111B block is updated

18.6 Memory Block Table Definitions

The following keys define the format of the start of a slave block.

BT_STAT

BT_PRIOR

BT_SECTR

BT_FILNR

BT_BLOCK

BT_END

$00 byte

$01 byte

$02 word

$04 word

$06 word

$08

drive ID/status byte - see below

block priority

sector number (Microdrive*2)

file number (Microdrive) logical

block number (Microdrive) location

The most significant 4 bits of the status byte contain the pointer to the physical

device block SV_FSDEF, the least significant are the status

codes:

Status code masks:

BT.ACTN 00001100B check for read or write request
BT.INUSE 00001110B check if a file block in use

Bits of status codes:

BT..FILE 0 1 if a file block
BT..ACCS 1 1 if contents may be accessed
BT..WREQ 2 1 if block required to be written
BT..RDVR 3 1 if block required to be read/verified

18.7 Channel Definitions

The position of a channel definition block corresponding to a given channel 10 can
be found using a similar method to that used for finding the block for a job
described in section 3.1. The relevant system variables are SV_CHBAS and
SV_CHMAX.

167

Channel definition header for all channels:

CH_LEN $00 long
CH_DRIVR $04 long
CH_OWNER $08 long
CH_RFLAG $0C long
CH_TAG $10 word
CH_STAT $12 byte

CH_ACTN $13 byte
CH_JOBWT $14 long
CH_END $18

length of definition block
address of driver
owner job
address to be set when space released
channel tag
status - 0 OK, negative waiting
-1 A1 abs, $80 A1 rel A6
stored action for waiting job ID
of job waiting on IO

Extended channel definition for plain serial queues:

CH_QIN
CH_QOUT
CH_QEND

$18 long
$1C long
$20

pointer to input queue (or zero)
pointer to output queue (or zero)

Device driver header:

CH_NEXT
CH_INOUT
CH_OPEN
CH_CLOSE

$00 long
$04 long
$08 long

$0C long

pointer to next driver entry
for input and output entry for
open

entry for close

The following are for directory devices (file system) only:

CH_SLAVE $10 long
CH_RENAM $14 long

entry for slaving blocks entry
reserved for rename

CH_FORMT $1C long entry for format medium CH_DFLEN
 $20 long length of physical definition block
CH_DRNAM $24 2+n bytes drive name

168

18.8 File System Definition Blocks

File system channel definition block format:

FS_NEXT $18 long link to next file system channel

FS_ACCES $1C byte access mode

FS_DRIVE $1D byte drive ID

FS_FILNR $1E word file number

FS_NBLOK $20 word block containing next byte

FS_NBYTE $22 word next byte in block

FS_EBLOK $24 word end of file (block)

FS_EBYTE $26 word end of file (byte in block)

FS_CBLOK $28 long pointer to table for current slave block

FS_UPDT $2C byte set if file is updated

FS_FNAME $32 2+36 file name

FS_SPARE $58 72 bytes

FS_END $A0

The common part of a physical definition block

FS_NMLEN $24 max length of file name

FS_HDLEN $40 length of file system header

FS_DRIVR $10 long pointer to driver

FS_DRIVN $14 byte drive number

FS_MNAME $16 word+10 bytes medium name

FS_FILES $22 byte number of files open

169

18.9 Screen Driver Data Block Definition

This is the format of the block handed to a screen driver operation.

SD_XMIN $18 word window top LHS
SD_YMIN $1A word
SD_XSIZE $1C word window size
SD_YSIZE $1E word
SD_BORWD $20 word border width
SD_XPOS $22 word cursor position
SD_YPOS $24 word
SD_XINC $26 word cursor increment
SD_YINC $28 word

SD_FONT $2A 2*long font addresses

SD_SCRB $32 long base address of screen

SD_PMASK $36 long paper colour mask
SD_SMASK $3A long strip colour mask
SD_IMASK $3E long ink colour mask

SD_CATTR $42 byte character attributes

SD_CURF $43 byte cursor flag 0=suppressed, >0=visible
SD_PCOLR $44 byte paper colour byte
SD_SCOLR $45 byte strip colour byte
SD_ICOLR $46 byte ink colour byte
SD_BCOLR $47 byte border colour byte

SD_NLSTA $48 byte new line status (>0 implicit, <0 explicit)

SD_FMOD $49 byte fill mode (0=off, 1=on)
SD_YORG $4A float graphics window y-origin
SD_XORG $50 float graphics window x-origin
SD_SCAL $56 float graphics scale factor
SD_FBUF $5C long pointer to fill buffer
SD_FUSE $60 long pointer to user defined fill vectors
SD_LINEL $64 word line length in bytes

SD_END $68

170

18.10 Queue Header Definitions

The following is the format of the header of a queue manipulated using

the system's built-in queue handling routines.

Q_EOFF $00 bit end of file flag (MSbit)

Q_NEXTQ $00 long link to next queue

Q_END $04 long pointer to end of queue

Q_NEXTIN
Q_NXTOUT

$08
$0C

long
long

pointer
pointer

to next location to put byte in
to next location to take byte from

Q_QUEUE $10 start of queue

18.11 Arithmetic Interpreter Operation
Codes

The following are the codes for the operations which can be performed on the
QL through the vectored routines which access the arithmetic interpreter.

RLTERM
RLNINT
RI.INT
RLNLlNT
RLFLOAT
RI.ADD
RLSUB
RLMULT
RLDIV
RLABS
RI.NEG
RLDUP
RLCOS
RLSIN
RLTAN
RLCOT
RLASIN
RLACOS
RI.ATAN
RLACOT

$00
$02
$04
$06
$08
$0A
$0C
$0E
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26

terminator byte
nearest integer to top of stack (tos)
truncate tos to integer
nearest long integer to tos
integer tos to floating point
add tos to next on stack (nos)
subtract tos from nos
multiply tos by nos
divide tos into nos
positive value of tos
negate tos
duplicate tos
cosine
sine
tangent
cotangent
arcsine
arccosine
arctangent
arccotangent

171

RDS2_CMD 7 read RS232 channel 2

RDKB_CMD 8 read keyboard

KBDR_CMD 9 keyboard direct read

INSO_CMD 10 initiate sound process

KISO_CMD 11 kill sound process

MDRS_CMD 12 Microdrive reduced sensitivity

BAUD_CMD 13 change baud rate

RAND_CMD 14 random number generator

TEST_CMD 15 test

PC_TCTRL $18002 transmit control

PC_MCTRL $18020 Microdrive control/status and IPC status

PC_IPCRD $18020 IPC read is the same

PC_IPCWR $18003 IPC write

PC_INTR $18021 interrupt control/status

RI.SQRT $28
RI.LN $2A
RI.LOG10 $2C

 RI.EXP $2E
RI.POWFP $30
RI.MAXOP $30
RI.LOAD $00
RI.STORE $01

square root
natural log
logarithm to base 10
exponential
nos to power of tos
highest valid opcode
load operation bit
store operation bit

18.12 IPC Link Commands

These can be used with the MT.IPCOM trap.

RSET_CMD 0
STAT_CMD 1
OPS1_CMD 2
OPS2_CMD 3
CLS1_CMD 4
CLS2_CMD 5

 RDS1_CMD 6

system reset
report input status
open RS232 channel 1
open RS232 channel 2
close RS232 channel
1 close RS232 channel
2 read RS232 channel
1

18.13 Hardware Keys

The following are the addresses of the registers within the QL hardware.

PC_CLOCK

$18000 real time clock in seconds (long word)

172

PC..SEL

0

Microdrive

select bit
PC..SCLK 1 Microdrive select clock bit
PC..WRIT 2 Microdrive write
PC..ERAS 3 Microdrive erase

PC..TXFL

1

Microdrive

Xmit buffer full
PC..RXRD 2 Microdrive read buffer ready
PC..GAP 3 gap
PC..DTR1 4 DTR on port 1

PC..CTS2 5 CTS on port 2

PC_TDATA $18022 transmit data
PC_TRAK1 $18022 Microdrive read track 1
PC_TRAK2 $18023 Microdrive read track 2
MC_STAT $18063 display control

The following is the format of the interrupt register.

PC.INTRG $01 gap interrupt

PC.INTRI $02 interface interrupt

PC.INTRT $04 transmit interrupt

PC.lNTRF $08 frame interrupt

PC.INTRE $10 external interrupt

PC.MASKG $20 gap mask

PC.MASKI $40 interface mask

PC.MASKT $80 transmit mask

The following is the format of the transmit control register.

PC..SERN 3 serial port number

PC..SERB 4 0=serial IO

PC..DIRO 7 direct output

PC.BMASK 00000111B baud rate mask

PC.NOTMD 11100111B all bits except mode control

PC.MDVMD 00010000B Microdrive mode

PC.NETMD 00011000B network mode

The following is the format of the Microdrive control/systems register.

173

Write masks:

PC.READ
PC.SELEC
PC.DESEL
PC.ERASE
PC.WRITE

0010B

0011B

0010B

1010B

1110B

read (or idle) Microdrive

select bit set

select bit not set

eraseon/write off

eraseand write

The following is the format of the display control register.

MC..BLNK 1 bit 1 blanks display

MC..M256 3 bit 3 sets 256 mode

MC..SCRN 7 bit 7 sets screen base

18.14 Trap Keys

This section gives a summary of all of the Qdos traps, together with their

access keys passed in DO. All keys are in hex.

18.14.1 Trap 1 Keys (Manager Traps) -
MT.INF $00 get system information
MT.CJOB $01 create a job
MT.JINF $02 get information on job
MT.RJOB $04 remove a job
MT.FRJOB $05 force remove a job
MT.FREE $06 find out how much free spacethere is
MT.TRAPV $07 set pointer to trap redirection vectors
MT.SUSJB $08 suspend a job
MT.REL.lB $09 release a job
MT.ACTIV $0A activate a job
MT.PRIOR $0B set a job priority
MT.ALLOC $0C allocate a bit of a heap
MT.LNKFR $0D releasea bit of a heap
MT.ALRES $0E allocate resident procedure area
MT.RERES $0F releaseresident procedure area
MT.DMODE $10 set display mode
MT.IPCOM $11 send IPCcommand
MT.BAUD $12 set baud rate
MT.RCLCK $13 read clock
MT.SCLCK $14 set clock
MT.ACLCK $15 adjust clock

174

MT.ALBAS $16 allocate BASIC area
MT.REBAS $17 release BASIC area
MT.ALCHP $18 allocate space in common heap
MT.RECHP $19 release space in common heap
MT.LXINT $1A link in external interrupt handler
MT.RXINT $1B remove external interrupt

handler

MT.LPOLL $1C link in polled task
MT.RPOLL $1D remove polled task
MT.LSCHD $1E link in scheduler task
MT.RSCHD $1F remove scheduler task
MT.LlOD $20 link in IO driver
MT.RIOD $21 remove IO driver
MT.LDD $22 link in directory driver
MT.RDD $23 remove directory driver

IO.PEND $00 check for pending input
IO.FBYTE $01 fetch a byte
IO.FLlNE $02 fetch a line of bytes
IO.FSTRG $03 fetch a string of bytes
IO.EDLIN $04 edit a line
IO.SBYTE $05 send a byte
IO.SSTRG $07 send a string of bytes
SD.EXTOP $09 external operation (A3)
SD.PXENQ $0A pixel based size/position enquiry
SD.CHENQ

SD.BORDR
$0B

$0C
character based size/position enquiry

define window border

18.14.2 Trap 2 Keys (I/O Management Traps)-

IO.OPEN $01 open channel

IO.CLOSE

$02

close channel
IO.FORMT $03 format medium
IO.DELET $04 delete file
IO.OPEN D3 keys:

IO.OLD

0

open old (exclusive) file or device
IO.SHARE 1 open old (shared) file
IO.NEW 2 open new (exclusive) file
IO.OVERW 3 overwrite (or open new) file
IO.DIR 4 open directory

18.14.3 Trap 3 Keys (I/O Traps)-

175

SD.WDEF
SD.CURE
SD.CURS
SD.POS

$0D
$0E
$0F
$10

define window
enable cursor
suppress cursor
absolute position

SD.TAB $11 tab (horizontal position)

SD.NL $12 newline

SD.PCOL $13 previous column

SD.NCOL $14 next column

SD.PROW $15 previous row

SD.NROW $16 next row

SD.PIXP $17 set pixel position

SD.SCROL $18 scroll whole window

SD.SCRTP
SD.SCRBT
SD.PAN
SD.PANLN
SD.PANRT
SD.CLEAR

$19
$1A
$18
$1E
$1F
$20

scroll top of window
scroll bottom of window
pan window
pan cursor line
pan RHS of cursor line
clear whole window

SD.CLRTP $21 clear top of window

SD.CLRBT $22 clear bottom of window

SD.CLRLN $23 clear cursor line

SD.CLRRT $24 clear to right of cursor

SD.FOUNT $25 set fount addresses

SD.RECOL $26 recolour a window

SD.SETPA $27 set paper colour

SD.SETST $28 set strip colour

SD.SETIN
SD.SETFL
SD.SETUL
SD.SETMD
SD.SETSZ
SD.FILL
SD.DONL
SD.POINT

$29
$2A
$28
$2C
$2D
$2E
$2F
$30

set ink colour
set flash on/off
set underline on/off
set write mode
set character size
fill block
do pending newline
set point in window

SD.LINE $31 draw line

SD.ARC $32 draw arc

SD.EllPS $33 draw ellipse

SD.SCALE $34 set graphics scale
SD.FLOOD $35 set fill mode/vectors

SD.GCUR $36 set text cursor using graphics coords
coords

SD.ROP $37 rasterop
SD.DOT $38 points in pixel coords

176

BP.lNIT $110 add m/c procs/fns to BASIC

BP.LET $120 assign tos to variable

BV.CHRIX $11A reserve space on RI stack

CA.GTINT

$112

get word parameters to RI stack

CA.GTFP $114 get floating point numbers

CA.GTSTR $116 get strings

CA.GTLIN $118 get long integers

CN.BTOIB

$104

ASCII binary to byte

CN.BTOlL $108 ASCII binary to long

CN.BTOIW $106 ASCII binary to word

CN.DATE $EC get ASCII date and time

CN.DAY $EE get ASCII day of week

CN.DTOF $100 ASCII to floating point

CN.DTOI

CN.FTOD

$102

$F0

ASCII to integer

floating point to ASCII

CN.HTOIB $10A ASCII hex to byte

CN.HTOlL $10E ASCII hex to long

CN.HTOIW $10C ASCII hex to word

CN.lTOBB $F4 byte to ASCII binary

CN.lTOBL $F8 long to ASCII binary

CN.lTOBW $F6 word to ASCII binary

CN.lTOD $F2 word integer to ASCII

CN.lTOHB $FA byte to ASCII hex

SD.LIN $39 lines in pixel coords

FS.CHECK $40 check all pending operations

FS.FLUSH $41 flush buffers

FS.POSAB $42 position file pointer (absolute)

FS.POSRE $43 position file pointer (relative)

FS.MDINF $45 information about medium

FS.HEADS $46 set file header

FS.HEADR $47 read file header

FS.LOAD $48 load file

FS.SAVE $49 save file

18.15 List of Vectored Routines

The following is a list of the vectored routines, together with the addresses

of their associated vectors. All keys are in hex.

177

CN.ITOHL
CN.ITOHW

$FE
$FC

long to ASCII hex
word to ASCII hex

IO.NAME $122

decode a device name

IO.QSET $DC set up a queue

IO.QTEST $DE test status of queue

IO.QIN $E0 put byte into queue

IO.QOUT $E2 extract byte from queue

IO.QEOF $E4 put EOF marker into queue

IO.SERQ $E8 direct queue handling

IO.SERIO $EA general IO handling

The MD routines are indexed by $4000.

MD.READ $124 read a sector

MD.WRITE $126 write a sector

MD.VERIN
MD.SECTR

$128
$12A

verify a sector
read a sector header

MM.ALCHP
MM.ALLOC
MM.LNKFR
MM.RECHP

$CO
$D8
$DA
$C2

allocate common heap space
allocate an area in a heap
link free space back into heap
release common heap space

RI.EXEC
RI.EXECB

$11C
$11E

execute an operation
execute a list of operations

UT.CON
UT.CSTR

$C6
$E6

set up console window
compare two strings

UT.ERR $CC write error message to channel

UT.ERRO $CA write error message to channel
zero

UT.LlNK $D2 link an item into a list

UT.MINT $CE convert integer to ASCII,put on chan

UT.MTEXT $D0 send message to channel

UT.SCR $C8 set up screen window

UT.UNLNK $D4 unlink an item from a list

UT.WINDW $C4 set up window using supplied name

178

19.0 Doing Business with Sinclair

The purpose of this section is to encourage those thinking of developing
commercial software for the QL to consider offering it to Sinclair Research for
publishing, promotion and distribution. There are various options offered to
software houses, with varying degrees of Sinclair involvement and support.

The first option is that of full publication and manufacture by Sinclair,
whereby the new product is taken as a master with draft documentation,
packaged in Sinclair packaging style and sold under the Sinclair logo in all
the outlets stocking Sinclair hardware products. The software house is
thereby released completely from the tasks of production, packaging,
promotion, distribution and sale. For such a proposal to be financially viable,
Sinclair has to obtain an exclusive licence for the product on Sinclair
computers, and Sinclair will pay a percentage royalty on every unit sold. The
software house remains free, of course, to develop the software for other
computers, should it wish to do so.

The second option is for the software house to give Sinclair an exclusive
licence to distribute the product in Sinclair packaging, but to sell the product
to Sinclair as a fully packaged finished product to Sinclair specification. In this
way the software house remains responsible for production and packaging,
with Sinclair undertaking promotion, distribution and sale.

The third option is for the software house to retain responsibility for
production, packaging, promotion, distribution and sale of the product, but
allowing Sinclair to offer the product for sale in addition. This method
provides the software house with an opportunity to increase its sales, as the
product will be promoted in all Sinclair Mail Order literature. As orders are
received, they will be passed to the software house, and Sinclair will require
a percentage commission on orders generated in this way. Under this option,
Sinclair packaging is not used for the product and so it remains very much
the software house's 'own brand'.

179

Further details of the above options are given later on in this section, but

first, the procedure for offering software to Sinclair is dealt with, together

with Sinclair methods of review and appraisal.

19.1 How to offer a Product to Sinclair

When a software house offers a product to Sinclair for publication, two main
areas have to be examined.

The first of these areas is the product concept. Under this heading,
answers must be provided to such questions as:

What is the product?
What does it do?
For what type of market is it intended?

Does it exist?

If it exists:

How is it selling?
Methods of sale?

Volumes to date?

What machine does it run on?

If it does not exist:
What kind of sales are anticipated?
Based on what kind of information?
Are there any other products like it and if so which?

Obviously, some of the questions listed above assume that the product does
not already exist for the QL or any other Sinclair computer. However, if it does
run on some other computers, the second area to be examined would be
concerned with how the product might be adapted to make use of the QL's
features.

180

Specifically:

How would the product change?
What kind of pricing structure is envisaged?')
What volume of sales are expected with respect to a low-cost
computer such as the QL?
Would the target market change at all and if so, how?

Apart from considering the two areas described above, the product would need
to be reviewed by Sinclair. For such a review to take place, the software house
would need to send either:

1, The product itself, running on the QL, together with draft documentation,It

need not be finished and completely bug free, so long as it is sufficiently
complete to be able to be put out for review,

or

2, The product running on another machine, preferably on Apple II,

Macintosh or an IBM Pc.

or

3. A detailed product proposal on paper if the product exists only as a design.

Such a proposal should cover at the very least the product concept and the
proposals for the QL version of it.

19.2 Where Software Products should
be sent for Review

1. Business software or proposals should be sent to the Business

Software Editor, at the address given in the introduction to this

manual.

2. Educational software or proposals should be sent to the Educational

Software Editor, at the same address.

3. Anything that does not fall clearly into either of these two categories

(e.g., games, compilers, utilities, expert systems etc.), should be sent

to the Software Manager, at the same address.

181

19.3 How Products are reviewed and what
Sinclair are looking for

 1. Games and entertainment software

Software of this type is generally reviewed by outside reviewers,

often sixth formers. They are looking for originality, graphics,

excitement, variety and pace. The software isjudged under these

five categories. The reviewers also compare the software to other

similar products, and finally try to identify any bugs which may

require fixing together with any improvements which may be

made.

As the computer games market is both extremely competitive and

overcrowded, Sinclair can only consider absolutely top quality

products for distribution. At the same time, the QL has expanded

the range of possibilities in the context of entertainment software,

thus any new ideas for using computers at home for entertainment

and leisure activities would be reviewed with great interest.

2. Compilers and utilities

Technical products ofthis kind will be reviewed internally in the first

instance by Sinclair software engineers. They will judge the product

for its completeness, the adequacy of its documentation, the speed

at which it runs on the QL and its technical competence. In some

cases where the product is of a very specialist nature it would be put

out for review by an independent consultant.

3. Educational software

Educational products, either for school, polytechnic, university or

home use, will be reviewed internally at first, and possibly also by

Sinclair educational consultants. The following categories are of

particular interest to Sinclair:

 1. Software which caters for specific university and polytechnic

markets.

182

2. Software which provides adult home education in fields
previously uncatered for.

3. Software wh ich actually teaches rather than tests foreign

languages such as French, German or Spanish.

4. Software which teaches people how to expand their potential
for different employment markets, for example, teaching touch typing,
word processing, how to understand accounts, how to program etc.

5. Expert systems and authoring systems, especially if they have application

software running under them which can also be sold.

4. Business software

Business software will be reviewed internally unless it caters for a

specific vertical market in which case Sinclair may seek permission to

have the product reviewed in detail by an independent

consultant. When possible business packages are being considered,

both the company and the product will be examined very carefully.

Thus the following are particularly sought after:

1. Established suppliers of business products with a respected name in

the business market.

2. Products which would benefit from distribution in wider markets and

at a lower price than at present.

3. Suppliers who can, if necessary, provide any direct support

needed by their product to Sinclair customers, possibly at

additional cost.

4. A secure financial backing which will ensure that the company will

not disappear after Sinclair have launched the product, leaving no

support for it.

19.4 Contractual Options in dealing with
Sinclair Research

In the introduction to this section several possible contractual options were

described, which will now be explored in more detail.

183

1. Distribution in Sinclair packaging

Royalty contract - every software house which offers a product to

 Sinclair Research for distribution in Sinclair packaging under the
Sinclair name, will be asked to sign a Licence Agreement of the type
shown in Appendix A. This agreement allows for the grant of an exclusive
licence to Sinclair Research for the distribution and sale of the specified
software products, in return for a royalty which is normally 20% of the
selling price.

2. Distribution of finished goods

Those software houses from whom Sinclair agree to buy a complete
finished product packaged to Sinclair specifications, will be asked to sign a
second contract in addition to the software licence contract described
above. This second contract would provide for the supply and purchase of
manufactured goods on an 'at cost plus' basis. In this way, a packaging
specification would be agreed upon for the product, and Sinclair would
nominate approved suppliers of each component of that packaging. The
software house would then purchase these components from the

nominated supplier at a price previously negotiated between Sinclair and
the supplier. The cost of the product would then be passed on to Sinclair,
the software house having added a fixed margin as their handling fee for
controlling production.

3. Sinclair approved products

Under this option, the product would neither be sold in Sinclair packaging
nor would it carry the Sinclair name. It would instead be packaged in the
software house's own packaging under its own name. It would, however,
be promoted as a Sinclair endorsed product in the Sinclair catalogue.
Orders would be sent to a special PO box at Sinclair's despatching
warehouse and would then be forwarded direct to the software house for
fulfilment. Sinclair would, of course, expect to be paid a percentage
commission on orders generated in this way, which would normally be
equivalent to 15% of the retail selling price.

184

19.5 Promotion and Distribution

1. Sinclair packaged software

As might be expected, software carrying the Sinclair logo attracts the
bulk of Sinclair promotional activities. In particular, all software carrying
the Sinclair logo and name will:

1) be offered initially to all Qlub members directly, possibly at a small

discount as an introductory offer;

2) be carried in a catalogue which will be included with every QL
shipped;

3) be launched to the trade and specialist press, and included in

advertising campaigns from time to time;

4) be the subject of special promotions which will be considered for
vertical market software;

5) be offered the possibility of consideration for bundling contracts

from time to time. This can be a very lucrative way of ensuring that
the software reaches the widest possible market;

6) be offered to our local area offices and distributors all over the world,

for translation into foreign languages;

7) be similarly offered to our Boston Office for publication and
distribution in the United States.

2. Sinclair endorsed products

Where a product is not distributed in the Sinclair packaging, but is being
promoted and offered for sale through Sinclair, then it is likely to be
promoted using methods 1.) and 2.) only, though from time to time, where
appropriate, other methods of promotion and marketing will be considered.
To attract the full range of Sinclair's marketing activities a product needs to
be offered for distribution in both the Sinclair packaging and brand name.

185

19.6 Summary

Many software houses writing software for personal computers today are
concerned about the possible dilution of effort that is entailed
when a product has to be packaged, promoted, marketed and sold as
well as developed. Sinclair Research are known for their ability to obtain
media coverage and for their marketing and distribution capabilities.

In the case of the QL, Sinclair believe that software houses can be offered
distribution opportunities without equal. The Qlub will enable direct contact to
be retained with customers on a far larger scale than previously possible with
other Sinclair computers. It is proposed to use the Qlub Newsletters as a
method of informing customers of every new product launched in advance of
the general public. Small discounts will be offered which will make the product
attractive tothe customer, but will not begin to approach the kind of discounts
Sinclair would need to give should the product be offered through a distributor
or a retailer.

 It is hoped that software houses will feel that to offer software to

Sinclair in one of the ways described above will prevent many of the
problems previously associated with bringing their products onto the market
place.

186

20.0 Bibliography

1. MC68000 16/32-bit microprocessor programmer's reference manual.

Published by Prentice-Hall for Motorola. ISBN 0-13-566795-X.

Contains instruction set details for the MC68000 and MC68008,

including permissible addressing modes and bus cycle diagrams.

Some hardware detail is included, but no timing diagrams.

2. Motorola Semiconductors 16-bit microprocessors data manual -

1983.

Published by Motorola Ltd., York House, Empire Way, Wembley,

Middlesex.

Contains the hardware reference for the MC68008.

187

21.0 Index

A1 stack see arithmetic stack

access layer

of device driver 31,32,34,37

of directory drive 38-45

add-on

card ROM 66

cards 63,66

hardware 56

peripherals 56

RAM 56,63

ROM 10,56,63,66

allocation

heap 8,23,147

memory 9-10,22,31

alphabets, special 69

area flood 119

arithmetic

interpreter operation codes 170-171

stack 47,54-55,135

array storage 51

atomic actions 13

auto-repeat 30

baud 59,75,173

blocks

physical 38

slave 9,44,166

BOOT

device driver 16

file 16

border 28,113

BP.INIT 52,69,134,176

BP.LET 55,135,176

buffer 47

bus error 14

business 178-185

BV.CHRIX 22,54,135,176

CA.GTFP 54,136,176

CA.GTINT 54,136,176

CA.GTLIN 54,136,176
CA.GTSTR 54,136,176

CAPSLOCK 30

change queue character 30

channel 24

close 24,30,35-36,42-3

console

definition block 32,38,166-167

ID 17,24

number 55

open 24,30,34-35,41-42

table 47,55

superBASIC 9,164

character conversion 138,139
character set 68

change queue 30

freeze screen 30

local 68

spacing 27

character size 125,130,175

clock 59

real-time 57,59

CN.BTOIB 138,176

CN.BTOIL 138,176

CN.BTOIW 138,176

CN.DATE 59,137

CN.DAY 59,137

CN.DTOF 138,176

CN.DTOI 138,176

CN.FTOD 139,176

CN.HTOIB 138,176

CN.HTOIL 138,176

CN.HTOIW 138,176

CN.ITOBB 139,176

CN.ITOBL 139,176

188

CN.ITOBW 139,176

CN.ITOD 139,176

CN.ITOHB 139,176

CN.ITOHL 139,177

CN.ITOHW 139,177

code

initialisation 31,33

position-independent 19

restrictions 52

colour 28,74

border 28

ink 28

paper 28

strip 28

command interpreter 17

common heap 7,8

allocation 8,23,147

release 149

console 27

I/O 27-30,46

console channels 27

special properties 29-30

contracts 182-183

coordinate system

graphics 27

pixel 27

CPU interface 64-65

CTS 59

cursor 125

flashing 30

increment 28

position 28

date 137

definition block

channel 31,38,166-167

device driver 31-33

directory device

linkage 38

file system 166-167

physical 38

device 24

decoding 31,140

name 24

device driver(s) 22,24,31-37

access layer 31,32,34-37

BOOT 16

built-in 46

console 46

definition block 32

directory 38-45,60

initialisation 32-33

memory allocation 32

Microdrive 46

network 59

non-directory 39,41

physical layer 21,31,33-34

pipe 46

screen 46

serial I/O 46

serial network link 46

user defined 21

user supplied 31

directory device driver(s) 38-45

access layer 40

initialisation 38

linkage block 39

Microdrive 60

display

control 57-58

modes 27,76

RAM 56

display control register 58

distribution 183-184

draw 123

DTR 59

error

bus 14

keys 158

messages 152,158

exception processing 14-15

189

EXEC 18

EXEC_W 18

expansion 63-64

extensions, operating system 17,21

external interrupt 14,34

file

BOOT 16

header 26,38

format 26

I/O 26

pointer 26

program 47

shared 41

file delete 41-42

file system definition blocks 168

flag 28

characteristics 66

flashing 30,57,58

floating point storage 50,51

format routine 41,45

fount 120

frame interrupt 14

free memory 7,9,22-23

freeze screen character 30

FS.CHECK 26-27,98,176

FS.FLUSH 26-27,99,176

FS.HEADR 100,176

FS.HEADS101.176

FS. LOAD 102,176

FS.MDINF103,176

FS.POSAB 104,176

FS.POSRE 105,176

FS.SAVE106,176

functions 52

linking 52

superBASIC 21

graphics 29,123

coordinate system 27

operations 29

hardware 56,171-173

add-on 56

heap 23

allocation 8,23,147,149

common 7,8,9,147-149

expanding 23

linking free space into 149

mechanism 8,23

management 72-73

setting up 23

user 23

initialisation

code 31,33

device driver 32,33

directory device driver 38

Qdos 6-16,158-177

system management

tables 16

system variables 16

Input/Output (I/O) 24-30,33

36-37,42,43

console 27-30,46

file 26

queue 30

screen 27-30,46

serial 24,31,46,59,144

Input/Output sub-system 8,24,43

Integer storage 50,51

Intelligent Peripheral

Controller

8049 (IPC) 58,79

link commands 171

interfacing 47-55

interrupt

auto-vectored 13

external 13,24

frame 14

level 10,15

non-maskable 15

polling 34

traps for 14-16

190

interrupt servers 14

I/O see Input/Output

IO.CLOSE 93,174

IO.DELET 41,94,174

IO.EDLIN 29,107,174

IO.FBYTE 108,174

IO.FLINE 29,109,174

IO.FORMT 95,174

IO.FSTRG 108,174

I/O management traps 10-11,93-97

close channel 93,174

delete file 94,174

format medium 95,174

keys 174

open channel 96,174

IO.NAME 35,140,177

IO.OPEN 35,41,96,174

IO.PEND 110,174

IO.QEOF 143.177

IO.QIN 143.177

IO.QOUT 143.177

IO.QSET 143,177

IO.QTEST 143,177

IO.SBYTE 25,111,174

IO.SERIO 37,144,177

IO.SERQ 37,144,177

IOSS see Input/Output

sub-system

IO.SSTRG112.174

I/O traps 11,21,98-133

absolute position 104,125

character based size/position

enquiry 126,174

check all pending

operations 98,176

check for pending input 110,174

clear part or whole

window 114,174

define window 133,174

define window border 113,174

edit a line 107,174

enable cursor 115,175

extended operation 117,174

fetch a byte 108,174

fetch a line of bytes 109,174

fetch a string of

bytes 108,174

fill block 118,175

flush buffers 99,176

information about

medium 103,176

keys 173-176

load file 102,176

newline 125,175

next column 125,175

next row 125,175

pan part or whole

window 121,175

pixel based size/

position enquirer 104,126

plot and draw various lines and

arcs 123,175

position file pointer (absolute)

104,176

position file pointer (relative)

105,176

previous column 125,175

previous row 125,175

read file header 100,176

recoloura window 127,175

save file 106,176

scroll part or whole window

128,175

send a byte 111,174

send a string of bytes 112,174

set character size and spacing

132,175

set character size 130,175

set file header 101,176

set fill mode vectors 119,175

set flash and under-score

129,175

191

set fount addresses 120,175

set pixel position 122,175

set screen colours 131,175

set write mode 130,175

suppress cursor 116,175

tab (horizontal position) 125,175

IPC see Intelligent Peripheral

Controller

job(s)10,17-21

active 17-19

format

header 47,164-165

ID 13,18-19

inactive 17

start-up 17-19

suspended 17

table 19

tree 47,49

keyboard

auto-repeat 30

control 58

non-English language 67

special functions 30

type-ahead 30

KEYROW 40,59

line number table 47

linked lists 23,90

linking

functions 52

procedures 52

machine code

procedures 20

programming 17-21

Manager traps 11,69-92

activate a job 69,173

adjust clock 69,173

allocate a bit of a

heap 73,173

 allocate BASIC area 71,173

allocate resident procedure area

74,173

allocate space in common heap

72,173

create a job 75,173

find how much free space there is

77,173

force remove a job 77,173

get information on job 81,173

get system information 78,173

keys 173-176

link external interrupt handler

83,174

link in directory driver 83,174

link in I/O driver 83,174

link in polled task 83,174

link in schedulertask 83,174

read clock 84,173

release a bit of a heap 82,173

release a job 86,173

release BASIC area 85,174

release resident procedure area

87,173

release space in common heap

85,174

remove directory driver 89,174

remove external interrupt handler

89,174

remove I/O driver 89,174

remove job 88,173

remove polled task 89,174

remove schedulertask 89,174

send IPC command 79,173

set a job priority 84,173

set baud rate 75,173

set clock 90,173

set display mode 76,173

set pointer to trap redirection

vector 92,173

suspend a job 91,173

Master chip 57

192

MD.READ 60,146,177

MD.SECTR 12,60,146,177
MD.VERIN 60,146,177

MD.WRITE 60,146,177

medium name 42

memory

allocation 8-10,22,31

block table 166

device driver 31

free 7,9,22

map 7-10,56

organisation in superBASIC 47-48

Microdrive 46

Microdrives 24,26,46,60

Microdrive support routines 146

MM.ALCHP 22,147,177

MM.ALLOC 22,148,177

MM.LNKFR 22,149,177

MM.RECHP 22,149,177

MT.ACLCK 59,69,173

MT.ACTIV 70,173

MT.ALBAS 22,71,174

MT.ALCHP 8,22,72,174

MT.ALLOC 8,73,173

MT.ALRES 14,74,173

MT.BAUD 59,75,173

MT.CJOB 75,173

MT.DMODE 27,57,58,76,173

MT.FREE 77,173

MT.FRJOB77.173

MT.INF 8,19,67,78,173

MT.IPCOM 58,68,79,173

MT.JINF81,173

MT.LDD 31,39,83,174

MT.LIOD 31,83,174

MT.LNKFR82,173

MT.LPOLL 31,39,83,174

MT.LSCHD 31,39,83,174

MT.LXINT 31,39,83,174

MT. PRIOR 84,173

MT.RCLCK 59,84,173

MT. RDD 31,85,89,174

MT.REBAS 14,85,174

MT.RECHP 8,22,85,174,

MT.RELJB 86.173

MT.RERES 22,87,173

MT.RIOD 31,89,174

MT.RJOB 88,173

MT.RPOLL 31,89,174

MT.RSCH 031,89,174

MT.RXINT 31,89,174

MT.SCLCK 59,90,173

MT.SUSJ 691,173

MT.TRAPV 14,92,173

name

decode 31,35,39,140,177

list 48,49

pointer 49

table 48-49,53,134

network 46,59

newline 25,28

non-English 67-68

version codes

NTSC 40

on-board

RAM 56

ROM 56

operating system 6

extensions to 17,21

operations

executing lists of 151

execution of 150

ownership 178

PAL 67

pan 28,121,175

parameter passing 52-53

parameters, actual 53-54

peripheral card addressing 65

peripheral cards 63-65

193

peripheral chip 57

physical definition block 38

physical layer device driver 21,31,33-34

pipe 24,46

pixel coordinate system 27

plot 123

polling interrupt 34

priority 17,84,86

procedures 52

linking 52

SuperBASIC 17,20-21

program file 47

programming 56-62

promotion 183-184

publication 178

Qdos

initialisation 7

keys 105-

routines 10-14

queue(s) 143

asynchronous 31

handling 144

header 170

I/O 30

type-ahead 30

RAM 7,22-23

add-on 56,63

base 7

display 6,56

on-board 56

screen 56

test 16

real-time clock 57,59

recolouring 127

resident procedure area 7,9,10,20,22

restrictions on code 52

return list 47

RI.EXEC 105,150

RI.EXECB105,150

Rl stack see arithmetic stack

ROM 3,10,24 -34

add-on 10,56,63,65,66

format 46

on-board 56

plug-in 56

RS232 see serial I/O

save area 97

scheduler loop 34

screen

colour 131

I/O 27-30,46

RAM 56

screen character output operations

28

screen driver 46

datablock169

scrolling 128

SD.ARC 29.123

SD.BORDR 28,113,174

SD.CHENQ 28,126,174

SD.CLEAR 28,114,175

SD.CLRBT 28,114,175

SD.CLRLN 28,114,175

SD.CLRRT 28,114,175

SD.CLRTP 28,114,175

SD.CURE 28,115,175

SD.CURS 28,116,175

SD.ELIPS 29,123,175

SD.EXTOP 30,117,174

SD.FILL 28,118,175

SD.FLOOD 29,119,175

SD.FOUNT29,120,175

SD.GCUR 29,123,175

SD.LINE 29,123,175

SD.NCOL 125,175

SD.NL 125,175

SD.NROW 125,175

SD.PAN 28,121,175

SD.PANLN 28,121,175

194

SD.PANRT 28,121,175

SD.PCOL 125,175

SD.PIXP 122.175

SD.POINT 29,123,175

SD.POS 125,175

SD.PROW 125,175

SD.PXENQ 28,126,174

SD.RECOL 28,127,175

SD.SCALE 29,123,175

SD.SCRBT 28,128,175

SD.SCROL 28,128,175

SD.SCRTP 28,128,175

SD.SETFL 29,129,175

SD.SETIN 28,131,175

SD.SETMD 28,130,175

SD.SETPA 28,131,175

SD.SETST 28,132,175

SD.SETSZ 29,132,175

SD.SETUL 29,129,175

SD.TAB 125,175

SD.WDEF 28,133,175

serial I/O 24,31,36,46,84

device driver 46

serial network link 46

slave block 9,44,166

table 44

slaving 26,40,44-45 software

business 181

commercial 178

compilers, utilities 180

educational 180-181

entertainment 180

games 180

review of 180-181

sound control 58-59

stack

arithmetic 47,54—55

supervisor 13

user 66

start-up 6,16

job 17-19

system 16

storage 50-51

array 51

floating point 50,51

integer 50,51

string 51

substring 51

strings, comparison of 152

string storage 51

substring storage 51

SuperBASIC 7,9,10

channel table 9

format 164

data area 20

function 52

initialisation 16

interfacing 47-55

memory organisation 47-48

procedures and functions 20-21

program 9

traps 10-11

variables 7-8,161-163

work area 7,9,47

supervisor

mode 11,13,52

stack 13

suspended job 17

system

job table 19

management tables 7-8

initialisation 16

start-up 16

variables 7-8,20,159-161

base 6,159

initialisation 16

tables

channel 47,55

job 19

195

line number 47

memory block 166

name 47-49,53,78

system management 7,8,16

tasks 17,21,31

external interrupt 34

polling interrupt 34

scheduler loop 34

time-out 30,36,42

token list 47

transient program area

7,9,10,17,20,22,45

trap(s) 10-11

#0 11,13

#1 11,13

#2 11

#3 11,13

#4 11,21

errors in 11

hardware interrupts 14-15

Input/Output 11,21,98-133

Input/Output control 11,93-97

keys 173-176

manager 11,69-92

redirection 14

software error 14

SuperBASIC 11

user 14

type, name table 47,48

type-ahead queue 30

user

code 8,22

heap 22

traps 14

user stack 66

UT. CON 156,177

UT.CSTR 152.177

UT.ERR 152.177

UT.ERRO 152,177

UT.LINK 153,177

UT.MINT 154,177

UT.MTEXT 155,177

UT.SCR 156,177

UT.UNLNK 153,177

UT.WINDW 156,177

value pointer 49

variables

SuperBASIC 9,161-163

system 7,8,16,19,93-94

variable values area 47,48

vectored routines 12-13,54,134-

157,176-177

error handling 12

video 67

for monitor operation 67

for TV operation 67

windows 27-28

border 28,113

clearing 114

colour 28,127

overlap 27

position 27

properties and operations 27-28

setting up 156

size 27

ZX8301 57

ZX8302 57

