

Sinclair QL retro gaming

Sinclair QL retro gaming

For the most recent updates I have use the QL2K emulator. I have also tried the Dart Game on the SMSQmultor (colours set to QL mode) and it appears to work OK.

OL Emulators

There are several available for the original QL as well as its later spin offs. You can download these and run them on PC's, Desktops Laptops and Tablets under the Windows, Mac or Linux operating systems. Then there are the additional ROM's and toolkit extensions and an extensive number of useful programs all with plenty of helpful documentation available.

Check out Dilwyn's web site below for downloads, helpful information and links to other suppliers of QL software and documentation.

http://www.dilwyn.me.uk/ Updated: 07.09.2015

QBITS Darts

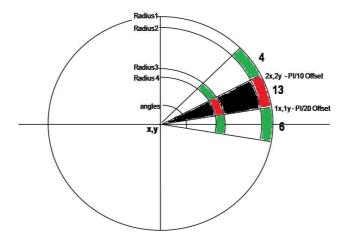
Maths generally I was not half bad at, but Trigonometry always gave me nightmares. So when I set out on this project in the nineteen eighties I knew for me it was going to be problematic. If you going to write a computer simulation of the game of darts a dart board has to be the starting point.

So starting with this Dartboard, it has twenty segments numbered one to twenty with sub-section on each for scoring doubles and trebles plus the centre bull's-eyes with an outer ring of 25 points and an inner circle of 50 points. Looking back over some of my rough calculations for the QBITS Game revealed a surprising reality.

Yes the Dartboard is a circle divided up into segments of 360 degrees. Yet another way to look at this is that the circumference is divided up into sections as well. My early calculations reminded me that a circle's circumference is $2\pi r$, and using division of π would make the task of calculating the Dartboard segments a lot simpler with QL Graphics.

QBITS Darts Concepts

The most common of Dart board Games is no doubt 301, where two people or teams compete. You must start out and finish on a double. So that was my primary aim, to give more options it was simple to add 501. Then to be a little more ambitious perhaps add the Clock game where you have to throw a double for each number 1 to 20 in sequence and then finish with the 25 and a bull's eye 50.


The main calculations would be drawing the board itself and then the positioning of a dart throw and what score it might generate. This had to take into account the doubles and trebles it could produce.

OBITS Dartboard

Starting with the centre of a circle gives the primary coordinates x,y, then the sides of the segment requires two straight lines so a LINE from x,y TO 1x,1y and another LINE from x,y TO 2x,2y between then is drawn the ARC 1x,1y To 2x,2y and its radial angle. The cleaver bit is calculating where to draw the LINE and what the angle of ARC is.

Splitting the dartboard circle into quadrants, with zero degrees set in the east., north as 90 degrees, west 180 degrees and so on, the first segment of our Dartboard would number 6 which is half above and half below the horizontal zero line.

 $2\pi r$, being the circles circumference πr is half or zero to 180 degrees. Divide π by 10 this gives 18 degrees. Therefore the segment 6 is 9 degrees above and 9 degrees below the horizontal. So if we start at zero add $\pi/20$ this provides an Offset to begin our drawing of the Dartboard segments. We add $\pi/10$ to this to give our second offset. These are angles, which with the radius COS and SIN we can calculate 1x,1y and 2x,2y coordinates.

Using the FILL and INK commands we can draw a coloured segment and by reducing the radius and change of colour create the Double and Treble section of a dartboard segment. By adding multiples of $\pi/10$ to the angle we progress around the board. Last but not least a couple of FILLed CIRCLES for the 25 and 50 at the centre.

QBITS Dartboard Numbers

I worked out a rough position using pixel coordinates and fine tunes it mostly by trial error. This built up an array of individual number and there x,y coordinates for use with the CURSOR command. Then it was simple to store them as DATA Array for use with a FOR loop.

QBITS Darts Throw

Here I use a form of slider for the user to judge the horizontal and then the vertical position over the Dartboard. The output from this would give an dx,dy coordinate for the Dart position with respect to the Dartboard centre coordinates x,y. The dart radius dr is calculated using Pythagoras theorem and the angle da with ACOS.

```
dr=SQRT((dy-y)^2+(dx-x)^2) dr (dart radius) da=ACOS((dx-x)/dr) da (segment angle)
```

Working out the equivalent segment and then identifying which number was taking the angle adding the first Offset and dividing this by $\pi/10$. The only problem with it is the angle reduces once passed 180 degrees, to cater for this I add a π and subtract the angle from π . Using the INTeger of the segment identified it is simply a FOR loop to read through a list until the right number is reached.

As for the Double and Treble or centre circles these can be checked against the radius values set up for the dartboard.

```
306 DATA 6,13,4,18,1,20,5,12,9,14,11,8,16,7,19,3,17,2,15,10,6,25,50
```

```
308 DEFine PROCedure dnum
309 RESTORE 306
310 IF dy<y:da=PI+(PI-da)
311 dt = INT((da+PI/20)/(PI/10))+1
                                        dt (dart throw)
312 FOR seg=1 TO dt:READ num
313 \, dm = 1
                                        dm (dart score multiplier)
314 IF dr>r1 THEN dm=0
                                        outside of board
315 IF dr<=r1 AND dr>r2:dm=2
                                        doubles
316 IF dr<=r3 AND dr>r4:dm=3
                                        trebles
                                        25 points (c1 - radius)
317 IF dr<=c1 :num=25
                                        50 points (c2 –radius)
318 IF dr<c2 :num=25:dm=2
319 END DEFine
```

QBITS Darts Intro

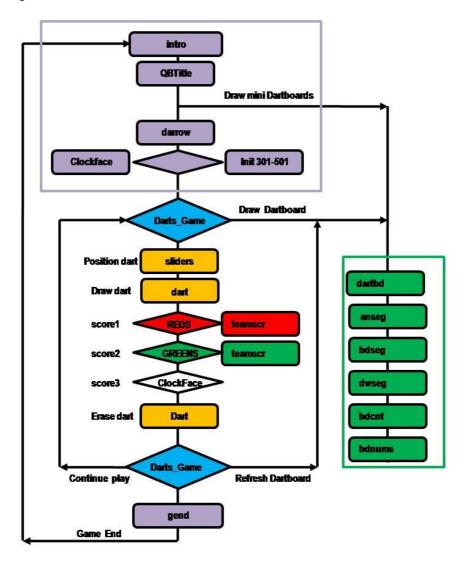
The intro screen states a simple review of the options available and a means by which a choice can be made. The graphics were an add on, the arrow a simple use of CIRCLE, LINE, FILL and INK commands. Having the Procedures in place to draw the Dartboard just required a window resizing and positioning.

QBITS Darts Options

For the 301 and 501 options Red and Green teams, or players, can play against each other, the first to finish is the winner. The Clock-face option is for a single player to complete in as few throws as possible.

QBITS Darts End of Game

At End of Game the board is scrolled up with results displayed, which includes the number of Darts thrown to finish. Other consideration were to add a top scorer sheet and I may add that later.


QBITS Darts Performance

Running with the QL2K and SMSQemulaor's the drawing and redrawing of the Dartboard etc is acceptable. In the original concept there was a consideration to redraw only the segment where Darts had been thrown. However, this would also require the segments either side of the number thrown, especially if near the centre. If the coverage was wide spread then nine segments or almost half the board would need redrawing.

The nearest I can judge the speed on a basic QL would be running QBITS Darts on the Qemulator with original QL settings - the speed is not great. If you have the opportunity to compile the program this would no doubt help.

For the Game in play there are some adjustments that can be made such as the slider speed (sp) - see the opening lines of the programming code.

QBITS Darts Flowchart

- 100 REMark QBDarts (QBITS 01 2017)
- 101:
- 102 DIM str\$(6,60),dxy(6), clk(22)
- 103 sp=1:REMark sp 0-1-2-3 etc changes Sliders speed
- 104 MODE 4:intro

106 **DEFine PROCedure intro**

- 107 ch=1:WINDOW#ch,512,256,0,0:PAPER#ch,0:CLS#ch
- 108 WINDOW#ch.480.208.16.8
- 109 INK#ch,7:QBTitle:INK#ch,4
- 110 str(1)=" This is the Darts Game of 301 or 501"
- 111 str\$(2)=" where you must start and end on a double"
- 112 str\$(3)=" Plus Clock-face 1-20 doubles ending with 25 and 50"
- 113 str\$(4)="To aim your Dart use the horizontal and vertical Sliders"
- 114 str\$(5)=" Use keys Alt (Horizontal) & Ctrl (Vertical) to freeze"
- 115 str\$(6)=" Select Game (3) 301 or (5) 501 or (C) Clock"
- 116 FOR lp=1 TO 5:AT#ch,lp+1,11:PRINT str\$(lp)
- 117 INK#ch,7:AT#ch,9,11:PRINT str\$(6)
- 118 WINDOW#ch,120,80,18,12:dartbd:WINDOW#ch,120,80,382,12:dartbd
- 119 WINDOW#ch,480,208,16,8:**darrow**:pcol=0
- 120 REPeat key
- 121 k=CODE(INKEY\$(-1))
- 122 IF k=51:score1=301:score=301:score2=301:EXIT key
- 123 IF k=53:score1=501:score=501:score2=501:EXIT key
- 124 IF k=67 OR k=99 :pcol=7:EXIT key
- 125 END REPeat key
- 126 ch=1:CLS#ch
- 127 IF pcol=7:Clockface:ELSE init
- 128 Darts Game
- 129 END DEFine

131 DEFine PROCedure gend

- 132 ch=3:PAUSE 20
- 133 FOR up=1 TO 50:SCROLL#ch,-4:PAUSE 1
- 134 CLS#4:CLS#5:ch=1:INK#ch,7:QBTitle
- 135 IF pcol=2:shots=shot1:win\$=' REDS ':mes\$='Winning Team'
- 136 IF pcol=4:shots=shot2:win\$=' GREENS ':mes\$='Winning Team'
- 137 IF pcol=7:shots=shot3:win\$='Complete':mes\$=' Clock-face '
- 138 CSIZE#ch,2,1:INK#ch,pcol
- 139 CURSOR#ch,164,60 :PRINT#ch,mes\$
- 140 CURSOR#ch,188,90 :PRINT#ch,win\$
- 141 CSIZE#ch.1.0:INK#ch.7
- 142 CURSOR#ch,136,130:PRINT#ch,'Number of Darts thrown ';shots
- 143 PAUSE 500:intro
- 144 END DEFine

146 DEFine PROCedure OBTitle

- 147 OVER#ch.1
- 148 CSIZE#ch,2,1:CURSOR#ch,170,10:PRINT "QBITS DARTS"
- 149 CSIZE#ch,2,1:CURSOR#ch,171,11:PRINT "OBITS DARTS"
- 150 CSIZE#ch,0,1:CURSOR#ch,172,24:PRINT "============="
- 151 OVER#ch.0
- 152 END DEFine

154 DEFine PROCedure init

- 155 ch=3:OPEN#ch,scr_290x200a110x6:BORDER#ch,1,7
- 156 ch=4:OPEN#ch,scr 90x200a8x6 :BORDER#ch,1,2
- 157 CSIZE#ch.2.1:INK#ch.2:CURSOR#ch.24.10:PRINT#ch."RED"
- 158 CSIZE#ch,2,0:CURSOR#ch,18,34:PRINT#ch,"Team"
- 159 ch=5:OPEN#ch,scr_90x200a412x6 :BORDER#ch,1,4
- 160 CSIZE#ch,2,1:INK#ch,4:CURSOR#ch,10,10:PRINT#ch,"GREEN"
- 161 CSIZE#ch,2,0:CURSOR#ch,18,34:PRINT#ch,"Team"
- 162 teamscr:pcol=2
- 163 END DEFine

165 DEFine PROCedure Clockface

- 166 ch=3:OPEN#ch,scr_290x200a110x6:BORDER#ch,1,7
- 167 ch=4:OPEN#ch,scr_90x200a8x6 :BORDER#ch,1,7
- 168 CSIZE#ch,2,0:INK#ch,7:CURSOR#ch,6,10:PRINT#ch,'Single'
- 169 INK#ch,2:FOR n=1 TO 9:clk(n)=n:AT#ch,n+2,2:PRINT#ch,n
- 170 clk(10)=10:AT#ch,12,1:PRINT#ch,10
- 171 clk(21)=25:AT#ch,14,1:PRINT#ch,25:INK#ch,7
- 172 ch=5:OPEN#ch,scr_90x200a412x6 :BORDER#ch,1,7
- 173 CSIZE#ch,2,0:INK#ch,7:CURSOR#ch,6,10:PRINT#ch,'Player'
- 174 INK#ch,4:FOR n=11 TO 20:clk(n)=n:AT#ch,n-8,1:PRINT#ch,n 175 clk(22)=50:AT#ch,14.1:PRINT#ch,50:INK#ch,7
- 176 END DEFine

178 DEFine PROCedure darrow

- 179 FILL#ch.1:INK#ch.7:LINE#ch.36.20 TO 60.21 TO 60.19 TO 36.20:FILL#ch.0
- 180 FILL#ch,1:INK#ch,144:CIRCLE#ch,68,19.5,15,.2,PI/2:FILL#ch,0
- 181 FILL#ch,1:INK#ch,7:LINE#ch,80,19 TO 80,21 TO 130,20 TO 80,19:FILL#ch,0
- 182 FILL#ch,1:INK#ch,42:LINE#ch,100,21 TO 130,26 TO 120,20 TO 130,14 TO
- 100.19:FILL#ch.0
- 183 END DEFine

```
185 DEFine PROCedure Darts Game
186 dp1=0:shot1=0:dp2=0:shot2=0:dp3=0:shot3=0:cn=1
187 ch=3:SCALE#ch,100,0,0:dartbd:bdnums
188 REPeat Darts
189 FOR p=1 TO 6 STEP 2
190 sliders:dxy(p)=dx:dxy(p+1)=dy
191 IF pcol=2
192 dp1=num*dm:shot1=shot1+1
193
      IF score1=score AND dm<>2:dp1=0
194
      IF score1-dp1=0 AND dm=2:gend:RETurn
195
      IF score1-dp1<=1 OR score1<dp1:dp1=0:EXIT p
196
      score1=score1-dp1:teamscr
197 END IF
198 IF pcol=4
199 dp2=num*dm:shot2=shot2+1
200 IF score2=score AND dm<>2:dp2=0
201 IF score2-dp2=0 AND dm=2:gend:RETurn
202
     IF score2-dp2<=1 OR score2<dp2:dp2=0:EXIT p
203
    score2=score2-dp2:teamscr
204 END IF
205 IF pcol=7
206 IF dm=2 AND num=clk(cn)
207
      IF cn> 0 AND cn<11:ch=4:AT#ch.cn+2.4:PRINT#ch.num
208
       IF cn>10 AND cn<21:ch=5:AT#ch.cn-8.4:PRINT#ch.num
209
      cn=cn+1
210 END IF
211
     IF cn=21 AND clk(cn)=num :cn=cn+1:ch=4:AT#ch,14,4:PRINT#ch,num
212 IF cn=22 AND clk(cn)=num*dm:cn=cn+1:ch=5:AT#ch,14,4:PRINT#ch,num*dm
213 shot3=shot3+1:IF cn=23:gend:RETurn
214 DND II
215 END FOR p
216 ch=3:PAUSE 20
217 FOR n=1 TO 6 STEP 2
218 dx=dxy(n):dy=dxy(n+1):dc=0:dart
219 END FOR n
220 dartbd:bdnums:dp1=0:dp2=0:dp3=0
221 IF pcol<>7:pcol=6-pcol:ELSE pcol=7
222 END REPeat Darts
223 END DEFine
```

Teams (payers) **RED** & **GREEN** for 301 &501 Games White Clock game for single player

225 DEFine PROCedure dartbd

- 226 x=54:y=50:an=PI/20:dx=0:dy=0
- 227 FOR f=1 TO 10
- 228 c1=2:c2=0:anseg:bdseg
- 229 c1=4:c2=7:anseg:bdseg
- 230 END FOR f
- 231 bdcnt
- 232 END DEFine

234 DEFine PROCedure anseg

- 235 x1=COS(an):y1=SIN(an)
- 236 an=an+PI/10
- 237 x2=COS(an):y2=SIN(an)
- 238 END DEFine

240 **DEFine PROCedure bdseg**

- 241 r=44:c=c1:dwseg
- 242 r=40:c=c2:dwseg
- 243 r=24:c=c1:dwseg
- 244 r=20:c=c2:dwseg
- 245 END DEFine

247 DEFine PROCedure bdcnt

- 248 INK#ch,4:FILL#ch,1:CIRCLE#ch,x,y,4:FILL#ch,0
- 249 INK#ch,2:FILL#ch,1:CIRCLE#ch,x,y,1.7:FILL#ch,0
- 250 END DEFine

252 DEFine PROCedure dwseg

- 253 FILL#ch,1:INK#ch,c
- 254 ARC#ch,x+x1*r,y+y1*r TO x+x2*r,y+y2*r,PI/10
- 255 LINE#ch TO x,y:LINE#ch TO x+x1*r,y+y1*r
- 256 FILL#ch,0
- 257 END DEFine

259 REMark Board numbers,x,y coordinates

- 260 DATA 1,174,6,18,210,20,4,242,42,13,256,66,6,264,95
- 261 DATA 10,255,122,15,237,148,2,213,169,17,169,183,3,136,187
- 262 DATA 19,90,183,7,60,170,16,22,148,8,13,122,11,4,95
- 263 DATA 14,4,66,9,28,42,12,50,20,5,94,7,20,132,2

265 DEFine PROCedure bdnums

- 266 RESTORE 260
- 267 ch=3:OVER#ch,1:CSIZE#ch,2,0:INK#ch,7
- 268 FOR n=1 TO 20
- 269 READ num,nx,ny:CURSOR#ch,nx,ny:PRINT#ch,num
- 270 END FOR n
- 271 OVER#ch.0
- 272 END DEFine

274 DEFine PROCedure sliders

- 275 ch=1:BLOCK#ch,8,196,86,0,0:BLOCK#ch,8,196,384,0,0
- 276 BLOCK#ch,284,8,98,198,0
- 277 REPeat lp_x
- 278 FOR a=0 TO 282 STEP 4
- 279 BLOCK#ch,a,8,98,198,pcol:PAUSE sp
- 280 IF KEYROW(7)=4:EXIT lp_x
- 281 END FOR a
- 282 FOR a=282 TO 0 STEP -4
- 283 BLOCK#ch,282-a,8,a+98,198,0:PAUSE sp
- 284 IF KEYROW(7)=4:EXIT lp_x
- 285 END FOR a
- 286 END REPeat lp_x
- 287 dx = (a*.383)
- 288 IF pcol=2:xp=86:ELSE xp=384
- 289 REPeat lp_y
- 290 FOR a=4 TO 192 STEP 2
- 291 BLOCK#ch,8,a,xp,4,pcol:PAUSE sp
- 292 IF KEYROW(7)=2:EXIT lp_y
- 293 END FOR a
- 294 FOR a=192 TO 4 STEP -2
- 295 BLOCK#ch,8,192-a,xp,a+4,0:PAUSE sp
- 296 IF KEYROW(7)=2:EXIT lp_y
- 297 END FOR a
- 298 END REPeat lp_y
- 299 dy=100-(a*.521)
- 300 BLOCK#ch,282,8,98,198,0:BLOCK#ch,8,192,xp,4,0
- 301 dy=100-(a*.521)
- 302 dr=SQRT((dy-50)^2+(dx-54)^2)
- 303 da = ACOS((dx-54)/dr)
- 304 dc=pcol:dart:dnum
- 305 END DEFine

307 DEFine PROCedure dart

- 308 ch=3:INK#ch.dc
- 309 BEEP 50,200,20,500,8
- 310 FILL#ch,1:CIRCLE#ch,dx,dy,2.5:FILL#ch,0
- 311 INK#ch,0
- 312 LINE#ch,dx-2,dy-2 TO dx+2,dy+2
- 313 LINE#ch,dx-2,dy+2 TO dx+2,dy-2
- 314 END DEFine

316 REMark Dartboard numbers / segment

317 DATA 6,13,4,18,1,20,5,12,9,14,11,8,16,7,19,3,17,2,15,10,6

319 **DEFine PROCedure dnum**

- 320 RESTORE 317
- 321 IF dy<50:da=PI+(PI-da)
- 322 dt=INT((da+PI/20)/(PI/10))+1
- 323 FOR seg=1 TO dt:READ num
- 324 dm = 1
- 325 IF dr>44 THEN dm=0
- 326 IF dr<=44 AND dr>40:dm=2
- 327 IF dr<=24 AND dr>20:dm=3
- 328 IF dr<=4 :num=25
- 329 IF dr<1.7:num=25:dm=2
- 330 END DEFine

332 **DEFine PROCedure teamscr**

- 333 ch=4:CSIZE#ch,2,1:INK#ch,2
- 334 CURSOR#ch,14,50:CLS#ch,4:PRINT#ch," ";score1;" "
- 335 IF pcol=2:CSIZE#ch,1,0:CURSOR#ch,10,80+p*5:PRINT#ch,dp1;' ':CLS#ch,2
- 336 ch=5:CSIZE#ch,2,1:INK#ch,4
- 337 CURSOR#ch,14,50:CLS#ch,4:PRINT#ch," ";score2;" "
- 338 IF pcol=4:CSIZE#ch,1,0:CURSOR#ch,10,80+p*5:PRINT#ch,dp2;' ':CLS#ch,2
- 339 END DEFine

OBDarts

Having obtained a copy of **QBDarts** SuperBASIC code and loaded it into a recognised QL device. Use the QDOS command LRUN, as shown:-

LRUN flp1_QBDarts

Follow the instructions on the intro screen and all being well you will soon be playing a game of simulated darts...

Notes on OL2K emulator

Both the **QLAY & QL2K emulators** use an application tool to create a QDOS directory file and append or delete files in it. Creating a new qlay.dir file first open a Windows **Command Prompt** (Win 7 Press Start button in *search programs and files* box type **command prompt**: Win 10 in *ask me anything* box type **command prompt**.)

Activate the command prompt window then navigate with DOS commands to the drive and Windows File Directory folder that holds your QL Files.

```
i.e C:\>chdir H:\QL\FDIR\WIN1 H:\QLFDIR\WIN1 >dir
```

This will list the files as a DOS directory. This needs to also contain a copy of QLAYT-86.EXE or QLAY-X64.EXE downloaded with QLAY or QL2K

At the DOS prompt now enter this command: -

```
i.e. H:\QL\FDIR\WIN1_>qlayt-x64.exe -c qlay.dir
```

This should create a directory file qlay.dir to which you can now append files. For example:-

```
i.e. H:\QL\FDIR\WIN1 >qlayt-x64.exe -i Boot
```

This will append the File named 'Boot' to the glay.dir.

Once you have appended your files you can use the following command to list them:-

i.e. H:\QL\FDIR\WIN1_> qlayt-x64.exe -l

A list of files should now be shown contained within the glay.dir

i.e. H:\QL\FDIR\WIN1_>qlayt-x64.exe -r Golf

This will remove the File named 'Golf' from the glay.dir.

Running the **QL2K emulator** the files listed in WIN1_ should now be readable by the QDOS DIR command; however these files will not be loadable or run if not compatible with the QDOS operating system you have. This even applies to QL software that does not work with or only works with certain versions of QL ROM's or with added Toolkit extensions.