November/December 1991
Published by SeaCoast Services

Published 4 - 6 times per year Volume I, Number 4 $3.00

EDITORIAL
NEWPORT, RHODE ISLAND, USA - THE EDITORIAL STAFF

The holiday season will soon be upon us, and I'm sure most of us have a lot to be thankful
for. We would like to wish you and yours a happy, healthy, and prosperous holiday
season.

With this issue we have reached the milestone of issue #4, and are collecting articles and
tidbits for issue #5. In recent conversations with subscribers, we found a widespread belief
that we had all the material we wanted, so they had not sent anything in for publication.
Nothing could be further from the truth. Folks, we really welcome your input. Many
European readers have asked for more articles by North Americans. As we enjoy reading
about what is going on in the rest of the QL world, they are equally interested in what's
going on here. So, please, send in your articles, listings, bits of information, etc. The only
restriction on the number of pages we print is the amount of material on hand.

Many of you have indicated that you wou'd have loved to have been included in the GOLD
CARD buy. We are happy to inform you that the good people of Miracle Systems, are
willing to extend the 27% savings we received, for a limited period (great Christmas gift).
For more information and ordering instructions, call Bob at IQLR (401-849-3805).

The "IQLR BUYER'S REGISTRY" (see issue #3) have placed their first group buy. The
item ordered is the Keyboard-90 Interface from the manufacturer at a 25% discount. If you
haven't joined the BUYER'S REGISTERY, this might be a good time.

We are constantly looking for ways to improve and enhance IQLR, to this end, our USA
readers will now receive their issues in envelopes. This will free up a half page for
additional material, and hopefully ensure it's arrival in good condition. Let us know what
changes or additions you'd like to see in the content of IQLR.

CORRECTION

Issue #1 of IQLR contained a program listing for DIRECTORY-DEVICES. Unfortunately
the listing acquired an error when I typed in a "+" instead of a "=" (both symbols are on
the same key). I apologize for any inconvience or frustration this may have caused. This is
a useful little program and the author was in no way responsible for the error. The
following two lines are what should have been listed:

300 REMark if pointer=0 then end of list
310 IF ad=0 THEN EXIT loop

IQLR4-1

3.2 MEG DISK DRIVES

Miracle Systems has informed us that they have an upgrade ROM (version 2.24) for the
GOLD CARD that they will provide free of charge when requested by individuals who
purchased earlier versions. This replacement chip improves the use of the 3.2 meg drives
as well)l1as providing a "slow down" option that will make arcade type games more
playable.

Miracle Systems has put a package together that takes the guess work out of buying the
right drives. They are offering two 3.2 meg drives, cased with power supply (you must tell
them that you need a power supply rated 110/120 volts for service in the USA), they also
include a box of 10 Extra High Density disks. The cost of this package is 155 Pounds
Sterling (this is a better price than what we can buy the items separately for).

Miracle Systems Ltd.

25 Broughton Way
Osbaldwich, York YOI 3BG
UK. Tel: 0904 423986

They accept VISA and MASTERCARD. From the US dial: 011-44-904-423986

IN THE PIPELINE

Work continues on the GRAPHICS CARD from Miracle Systems, as well as TWO NEW
PRODUCTS. The first is an honest to goodness, PARALLEL PORT, and the second is a
true SERIAL PORT. While no delivery dates were given by Miracle on these last two
items, they are expected in the not too distant future.

All three of these items, when released, will further open up the QL to the outside world, as
well as support the development of a new SUPER QL.

REPLACE: AN ARCHIVE UTILITY

CORNISH, NEW HAMPSHIRE, USA - BILL CABLE

Editors's note: The listing that accompanies this article was printed on a 24 pin dot matrix
printer directly from the DOC file received on disk from Bill . Hopefully this will prevent
typos and avoid the frustration that comes from keying in a long listing only to find it won't
run. Database systems and database oriented software play an increasingly important role
in personal computing. Computers are fantastic for sorting and using information, tasks
that database systems are specifically designed for. When you purchased your QL you
received a well designed and powerful database system in ARCHIVE.

Known more as a developer's tool, ARCHIVE has made a negative impression on many
QL'ers. This is unfortunate because database oriented software can only come from the
ARCHIVE language, or other specialized programs written in non-database languages like
"C" or SuperBasic.

It takes enormous effort to enter large amounts of data into a database, and you want to get
the most out of it. Any application program that builds up a body of data needs to support
very specialized data manipulation and reporting through it's own internal language, or else

IQLR4-2

Inter

interface with another database system that does. Without the fore-mentioned flexibility you
would be unable to properly use or control your data. For us, ARCHIVE provides this
complete data handling environment, interfacing with most good QL database oriented
software through it's export/import functions. In many ways we're lucky to have this
common ground, rather than the fragmentation seen on the PC.

Why REPLACE?? Often the information in a large database contains inconsistencies which
interfere with useful structuring. For example, you have an address database with hundreds
of addresses from around the world and you want to organize it by country. Unless you
were extremely organized in your up-front planning, you probably weren't consistent when
you entered the country name, for example, UK, U.K., England, ENGLAND, GB, USA,
U.S.A., or United States. If there were a lot of such inconsistencies, it'd take a
considerable amount of time to find and alter the data. With REPLACE it's quick and easy
to change occurrences like England to UK one time or 1000 times. If you use large
databases, you'll certainly be able to find many uses for this utlity.

REPLACE allows you to replace one piece of text with another in any ARCHIVE database,
you can do it by a yes/no query or repeatedly (all) or repeatedly with suppressed display
(fast). You can do it in one field or in all fields, upper and lower case can be ignored or
not.eNith this in mind, REPLACE should be part of your bag of tricks when using
ARCHIVE.

REPLACE is a complex program that does a lot of text manipulation. I've arranged the
listing for both compactness and completeness of each line. It's not easy to follow in such a
form, but you should be able to pick out the main points. Incorporated within the program
are many useful general purpose procedures that I've developed over the years for
standardized input and output.

This is a NEW program and I've debugged as much as I can, but be watchful, and please
report any bugs you may find to me. Never use it on your master copy of a database, but
only on a backup. When you're satisfied with the results, then and only then should you
overwrite your master. Any ordering of your database will be lost, so remember to reorder
it when you're done.

I am placing this utility in the public domain, and it will be available from various group
libraries. An enhanced version plus many other useful ARCHIVE utilities are available
from me as "DBProgs", the price is $19.95. Send orders to:

Bill Cable

RR 3, Box 92

Cornish, NH 03745

USA Tel: 603-675-6081

To enter the program; boot up ARCHIVE, type: EDIT <ENTERS>, then type in the
listing, procedure by procedure. The ARCHIVE editor will automatically indent just like
the listing. If your indentations don't match the listing then you have made a mistake. EXIT
the editor to SAVE (SAVE command) or print (LLIST command) the program. To start
the program type: replace <ENTER>. Try it on the GAZET database (the sample
database that came on the ARCHIVE cartridge), by changing "$" to "DOLLAR", etc.

HAPPY ARCHIVING, Bill Cable

IQLR4-3

(REPLACE: listing)

proc acky;line,m$,v$
liny:line,v$: print v$:m$:". Press <ENTER> : ";v$;: input i$:liny;iline,
endproc

"

proc close_all
while 1: close : endwhile
endproc

proc defy;line,m$,d$,v$
liny;line,v$,"": print v$;m$;" [<ENTER> if '":d$;"'] : ":i:inp
if ans$="": let ans$=d$: endif : if ans$="\": let ans$="": endif

print at line,len(m$)+1;" : ";rv$;" ";ans$; :rv$: tab 80;v$;
endproc

proc displayer
let i$=f1$: let i=instr(i$,","): print at 3,0;: while i
let fn=int(val(i$(1 to i)))
if fn>=0 and fn<numfld()
print fieldn(fn); tab 13:;": ":fieldv(fn); tab 79: endif
if i<len(i$): let i$=i$(i+1 to len(i$)): let i=instr(i$,","
else : let i=0: endif : endwhile
endproc

proc field_find;k
let fnd=0: let fld=numfld(): while k<numfld(): if fieldt(k)
let i$=fieldv(k): if ign: let i%$=lower(i$): endif
if instr(i$,s$): let fnd=1: let fld=k: let fld$=fieldn(k): return
endif : endif : let k=k+1: endwhile
endproc

proc field_show
let pg=1: cls
print "Fields of ";dv$;db$; tab 40;count();" records"; tab 70;:"page ";pg
let i=0: let r=2: let c=1: while i<numfld(): let i$=num(i,3)
print at r,wid*(c-1);i$;" ";fieldn(i);: let i=i+l: let r=r+l
if r>rows+l: let c=c+l: let r=2: if c>cols and i<numfld()
input at 23,1;"Press <{ENTER> for more : "3;i$%$: let c=1
let pg=pg+l: cls : print "Fields of ";dv$:;db$; tab 70;"page ";pg
endif : endif : endwhile
endproc

proc header;i$
paper spap: cls : paper hpap: ink hink: print rept(" ",160);
print at 0,1; tab (80-len(i$))/2:upper(i$);: at 3,0;: paper spap: ink sink
endproc

proc inp
print rv$;: input
endproc

"o "M,

:ans$; :: print rv$;

IQLR4 - 4

(REPLACE: listing cont.)

proc inpy;:line,m$,v$
liny;line,v$: print v$;m$+" :
endproc

‘ttinps print vs:

proc key_choice;i,i$,)$,k$
let ans$="": while not instr(j$,ans$) or len(ans$)<>1
print at 1,05kS$% tab 80; at gl isi" 7 Mnvsy" irvEi ks
let ans$=-lower(getkey()): if not instr(j$,ans$)
acky;i,"Press the SINGLE KEY corresponding to the desired action",rv$
endif : endwhile : print k$;rv$;ans$;" ":rv$; tab 80:k$:
endproc

proc liny;line,v$
if line
print at line,0;v$; tab 80;v$;: print at line,1;: else : print : endif
endproc

proc make_proc
if 1t$Of1ds: if ke$<>"f":msg323,"making transfer procedure","": endif
spoolon dv$+"tmp_ tmp" export : lprint "proc transfer"
lprint "lat ":fhd8:"=i8": dprint Ylet kt$='":flds:'""
lprint "endproc": spooloff : merge dv$+"tmp_tmp": endif
endproc

proc msg;line,m$,v$
liny;line,v$: print v$;"{"+mé$+"}";v$;
endproc

proc replace
error close_all
mode 0: let ign=0: let hpap=5: let hink=0: let spap=0: let sink=5: let 1t$=""
let rv$=chr(0)+chr(26): let rows=20: let cols=4: let wid=80/cols: let kc$=""
header:"replace procedure for archive databases"
print at 2,38;"V1.0 For Public Domain Bill Cable 9/91"; at 4,0;
print "Replaces text within any database in one or all text fields. You can"
print " make changes that cannot be reversed so work with a backup copy of"
print " your database not with your master copy. Works best using RAM files.'
defy;8."Device where database is (raml_,flpl_,mdvi_,ete)","rami_",""
let dv$=ans$: dir dv$:inpy;23,"Database name [Not your master copy |",""
if ans$="": mode 1: stop : endif : let db%$=ans$: open dv$+db$
msg;23,"removing any order","": reset :field _show
print at 22,0;"Below separated by commas list field numbers for display"
defy;23,"Field numbers to display","0","": let fl$=ans$+","
while 1:header;"replace text in "+dv$+db$
print "Give text to search for [<ENTER>=exit]"
print at 5,1;"Search for ";rv$;" ";: input s$;: print srvss
if s$="": close : mode 1:msg;0,"All files closed","": stop : endif
print " and replace with ";rv$;" "3: input t$;: print " ";rv$;
yorn;7,"Do replacements in one particular field",""
if ans$="y":field_show: let t=0

v

"on

IQLR4 - §

¢
L/Report

/7

(REPLACE: listing cont.)

while not t:inpy;23,"Replace '"+s$+"' with '"+t$+"' in field number",""
let fld=int(val(ans$)): if f1d>=0 and fld<numfld(): let t=fieldt(fld)
endif : endwhile : let fnd=1: let fld$=fieldn(fld)
let m$=f1d$: let n$="search "+f1d$+" field":make_ proc
else : let m$="all": let n$="search all fields": let fnd=0: endif
yorn;23,"Ignore upper/lower case in search",""
if ans$="y": let ign=1: let s$=lower(s$): else : let ign=0: endif
yorn;23,"Ready to "+n$+" to replace '"+s$+"' with '"+t$+"'",""
if ans$="n": let kc$="e": else : let kec$="": let fcnt=0: let rcnt=0
header ; "DOING REPLACEMENTS" :msg;23,n$+" for '"+s$+"'",""
if m$="all": find s$: else : if not ign: search instr(fieldv(fld),s$)
else : search instr(lower(fieldv(fld)),s$): endif : endif : endif
while found() and kc$<>"e"
if m$="all": if not fnd:field find:;0: endif : endif
if fnd or m$<>"all": if ke$<>"f":displayer: endif : let fldv8$=fieldv(fld)
if ign: let k=instr(lower(fldvs$),s$): else : let k=instr(fldv$,s$)
endif : let chg=0: let 1=len(s$): while k and kc$<>"e"
let 1$=fldv$(k to k+l-1): if k=1: let k$=rv$+1$+rvs
if 1<len(fldv$): let k$=k$+fldv$(1+1 to len(fldvs)): endif
else : let k$=f1dv$(1 to k-1)+rvs$+1$+rvs$: if k+l-1<len(fldv$)
let k$=k$+f1dvs(k+]l to len(fldvs$)): endif : endif
print at 20,1;f1d$; tab 13;": ";k$; tab 79: let fent=fcnt+l
if ke$<>"a" and kc$<>"f": let i$="Replace Options : "
key_choice;23,i$+"Y(es)/N(o)/A(11)/F(ast)/E(xit)","ynafe",""
let kc$=ans$: if kc$="f":msg:23,"in fast replace mode",""
else : if ke$="a":msg;23,"replacing found text","": endif : endif
endif : if kc$="y" or kc$="a" or kc$="f"
let rcent=rcnt+1l: if m$="all":make_proc: endif : if k=1: let j$=t$
if 1<len(fldv$): let j$=j$+f1dvs$(1+1 to len(fldv$)): endif
else : let j$=f1dv$(l to k-1)+t$: if k+l-1<len(fldv$)
let j$=j$+f1dvs(k+l to len(fldv$)): endif : endif
print at 20,15;j$; tab 79;: let fldvs$=j$: let k=k+len(t$): let chg=1
else : let k=k+l: endif
if k¢=len(fldv$): if not ign: let i=instr(fldv$(k to len(fldvs$)),s$)
else : let izinstr(lower(fldv$(k to len(fldv$))),.s$): endif
if i: let k=k+i-1: else : let k=0: endif : else : let k=0: endif
if ke$<O>"f":msg:23, "more "+n$+" for '"+ss+"'" "
endif : continue : endif : endif : endwhile
if ke$<>"e":acky;23,"Reached end of file",rv$: endif : endwhile
endproc

proc yornjline,m$,v$
let ans$="": while ans$<{>"y" and ans$<>"n":liny;line,v$

print v$:m$+" [y/n | : ";:inp: let ans$=lower(ans$): print v$;: endwhile
endproc

IQLR4 - 6

Inter,

Editor's Note: Bill has produced a wide range of ARCHIVE software products and
educational programs and is a regular contributer to UPDATE Magazine on the subject of
ARCHIVE. Their back issues contain a treasure trove of Bill's material.

UPDATE MAGAZINE supports the 2068, Spectrum, and QL computers, it is published
quarterly at the subscription rate of $18.00 per year. Why not subscribe now and enjoy
Bill’s articles year round.

Write to: UPDATE MAGAZINE, P.O. Box 1095 - Peru, IN 46970, USA

ONLINE WITH THE QL

IDAHO FALLS, IDAHO, USA - RON BLIZZARD

The September/October IQLR mentioned that 41% of those responding to the questionnaire
used their QL's primarily for communications. Although, this number is larger than
expected, it still indicates that over half of all QL owners DO NOT use modems, even
though it is now cheaper than ever to get "online".

Why use a modem? There are many reasons. You can join one of the information services
(like Genie, Delphi, or Compuserve) and tap directly into the AP newswires, or join a
Special Interest Group (SIG), or send and receive electronic mail (E-Mail), or even play
onglane games. You can buy stocks by phone and, in some places, even do your banking via
modem.

Or maybe you want to communicate with other computer users in your area. There are
thousands of Electronic Bulletin Boards (BBS) that specialize in hundreds of subjects.
Several, including GREYMATTER (213-871-6260) in Los Angeles and C.A.T.S. BBS
(301-588-0579) in Washington, D.C., cover the Sinclair computers and have public
domain or shareware programs that can be "downloaded" to your QL. If you have a
problem, there is usually someone available who has had a similar problem and willing to
help.

Then again you may just be curious, or want another challenge, or need to find a use for
your SER2 port. That's how I got involved with communications. I wanted to see what
was out there and to use my QL for something new.

One of my first discoveries was Nuclear Fiction, an "online" Science Fiction magazine that
later published my first two short stories. This taught me a lot about writing because we
were encouraged to critique each other's work. I also made friends and, after bragging
about the QL, found that one of the writers that I had been critiquing, and having
discussions with, owned a QL and was a former president of the Dallas T/S User’s Group
(It's a small world).

The main benefit I've received from using a modem, however, is the QL information I've
collected. My disk I/F and drives were bought through online advertisements. The solution
to my Expanderram/Delta Disk I/F compatibility problem came over the phone lines. I've
gotten software advice, found sources of QL news, and found out about special services,
all via modem. And I've made a lot of friends in the process.

IQLR4-7

Inter:

There are drawbacks. Long distance phone calls can get expensive (thankfully Ed Grey, of
GREYMATTER, let me know about PC-Pursuit -- an online service that let's you call
BBSs in all major cities in the evenings for a flat monthly fee -- or I'd still be paying
AT&T). There are fewer Sinclair specific BBSs now.and many of the online programs
have gotton "long in the tooth", but there are still some useful ones. For example,
READMAC, a program that allows you to transfer MacPaint files to the QL, is available.
This means that online graphic files being created for the Macintosh can be used in QL DTP
?nd paint programs. There are similar programs for transferring .GIF and .RLE files to QL
ormat.

All this and more is available for the cost of an external modem and the parts to make a
cable. You'll also need terminal software, but there are two very good public domain
packages available --QLINK and QL-52. QLINK comes with a built-in editor, and several
utilities, including filters for text files. Both programs can use XMODEM for downloading
and uploading files to BBSs or to friends with computers. QLINK does not need the
MODAPTER at 1200 baud, though, I'm told, it helps. I have a MODAPTER PLUS and it
is incompatible with QLINK.

The following cable diagram works fine with my Avatex 1200 baud modem and QLINK
(taken from the QLINK manual).

OL (SER2ir) Modem

(DB-9) (DB-25)

1- GND -----m e > 7- Signal Ground
2- TXD --eemeememcemeeeeeeeee > 2- TD

3- RXD --memeemmemeeeeeees > 3- RD

4- No Connection

5- No Connection |

6,7,8 GND (The shielding ground in the shielded cable
--connected to three pins on the QL side)

L HERTS [V — > 20- DTR

9- +12V —memmmeeeeeeeeees > 4- (two wires are
connected to the same pin on the QL side)

A 1200 baud external modem (no longer state of the art) is available for $19.99 plus $5.50
S/H from Damark. A 2400 baud external modem can be found for about $75. I can supply
a copy of QLINK or QL-52 if you send either a floppy disk (5 1/4" - 1440 sectors) or a
formatted microdrive and return postage. I would also be glad to answer any questions you
have -- provided I know the answer.

Ron Blizzard Damark

6479 East 97 North 1-800-729-9000
Idaho Falls, ID 83401 Atari Model #§X-212
(208) 523-2330 Item # B-376-181504

IQLR4-8

TOOLKIT II TUTORIAL - PART 3
ADAPTED FROM: QL TECHNICAL REVIEW (C.G.H. SERVICES)

6. SUPERBASIC PROGRAMS
6.1 DO ‘

DO is a command for an executed SuperBasic command file, which is a file
containing unnumbered BASIC statements. Thus, using the example from 5.5.3, the
command: DO PRINT_CMD, would perform the three spooler commands contained within
the file. The advantage of the DO command being that the current SuperBasic program is
unaffected. It would be lost if you used LRUN. Any block commands within a command
file must appear on a single line, for example:

FORn=1TO 10: PRINT n
REPeat read: INPUT a$: PRINT a$, CODE (a$)

would be an acceptable file, whereas the following would not:

FORn=1TO 10
PRINT n
END FOR n
REPEAT read
INPUT a$
PRINT a$, CODE (a$%$)
END REPeat read

An attempt to LRUN such a file would lead to the error "not found". This refers to loop
control 'a’ which only exists in the line of the definition. It is of course, acceptable to use
either upper or lower case for keywords, and use normal abbreviations. Note the warnings
at the end of 6.1 in the TKII manual.

6.2 DEFAULT DIRECTORIES

The normal BASIC filing commands have been modified to use the default
directories. In addition the LOAD command will look for a file in the PROGRAM default,
if it doesn't locate it in the DATA default directory. An overwrite variant of the SAVE
command, SAVE_O has been introduced that works in the same manner as other overwrite
commands.

7. LOAD AND SAVE

This section refers to the loading and saving of binary files, i.e. LBYTES and
SBYTES for resident procedures and EXEC, EXEC_W, and SEXEC for transient
programs. SBYTES and SEXEC have been modified in the same way as other commands
that write to files (prompt appears if file already exists), and the overwrite variants have
been introduced.

A new command, LRESPR, has been added that combines the functions of
RESPR, LBYTES, and CALL. Thus: base = RESPR (file_length): LBYTES file, base:
CALL base, can simply be performed by typing: LRESPR file. With the latter it's not
necessary to explicitly find out the length of the file. As with RESPR, LRESPR may only
be used if no other jobs, other than BASIC are running on the QL.

IQLR4-9

8. PROGRAM EXECUTION

This section deals with the commands for executing compiled programs which run
on the QL as jobs. This formerly consisted of two commands EXEC and EXEC_W. These
have been modified and made synonymous with new versions: EX and EW. Another
command, ET has been introduced which loads a program into memory but returns control
to BASIC before starting the job. The EX command is explained further to illustrate the
new facilities provided by all of these commands.

8.1 SINGLE PROGRAM EXECUTION

EX may be used in the same way as the standard EXEC command in order to start a
job on the computer: EX filename. The command will look for the file on the program
default directory. In addition, the program may be passed a parameter string. As an
example of use I'll refer to a commercial program ‘"MASTER SPY EDITOR'. This program
can be invoked as follows: EX MS, FLP1_BOOT. This command executes MASTER SPY
(which I've renamed to MS on my working copy) which loads the file FLP1_boot and
presents it ready for editing. This feature was made available on MASTER SPY (version
1.7 and onwards) as a result of my writing to ARK to ask if it were available.

A further feature of the EX command is that filename (or channels) may be passed
to a program for use as it's standard input and output. BASIC programs compiled using
SUPERCHARGE cannot be passed input and output files, perhaps TURBOCHARGED
programs can, I don't know. But it is easy to write a PASCAL program to accept filenames
for input and output channels, and is a standard feature of PASCAL. Below is an example
PASCAL program which should be quite easy to follow for anyone familiar with
SuperBasic. Comments are enclosed between curly brackets.

PROGRAM mul2 (input, output);

VAR
param : string [20]; {like DIM param$ (20))
in_num, out_num : real;

BEGIN
REPEAT
getcomm (param); {read the parameter string }
writeln (param)
readln (in_num) (equivalent to INPUTa }
out_num :=in_num * 2
writeln (2 * in_num); {equivalent toprint2 *a }
UNTIL in_num = 0;
END.

This program simply reads in numbers and writes out double the number. If the
program was invoked using EX MUL2_BIN (the file mul2_pas is passed to the compiler
which produces mul2_rel [the extension .obj would be used on MS-DOS systems] and
then the linker processes this file and produces mul2_bin [.exe under MS-DOS]) then the
numbers could be typed in at the keyboard, and the answers would be printed to the screen.
Because no parameter has been passed only the numbers would be displayed on screen,
however the same program could be invoked as follows:

IQLR4-10

EX MUL2_BIN, IN_DAT< OUT_DAT; 'IN_DAT * 2'

MUL2 would have to be located in the program default and IN_FILE in the data
default directory. If IN_FILE contained the following lines:

il
-3.34
10.6
0

Then the file OUT_DATA would be produced in the data default directory
containing the following lines:

IN_DAT *2
5.4000000E+00
-6.6800000E+00
2.1200000E+01
0.0000000E+00

The file OUT_DAT would be overwritten automatically if it already exists. Note the
numbers may be easily formatted so as not to use scientific notation, this is merely the
default. The same results could be achieved by passing channel numbers instead of file
names:

OPEN_IN #3, IN_DAT
OPEN_NEW #4, OUT_DAT
EX'MUL2, #3, #4; 'IN_DAT * 2'
CLOSE #3: CLOSE #4

The Propero PASCAL compiler and the GST LINKER also accept parameter
strings. The compiler uses the parameter string to pass the name of the PASCAL program
and flags indicating various options for the compilation. Likewise with the linker one
passes the program name and the name of the file containing the linker directives. The
parameter need not be a string constant, it could be a variable:

FILES = FLP1_BOOT : EX MS;FILE$
8.2 FILTERS
EX also allows a series of programs to be executed that work together to process a
stream of data, the output from one program being passed to the input of the next. The
situation is analogous to a production line. In the TKII manual it explains that a series of
programs (or filters) could be executed as follows:

EX UC, FRED, TO LNO TO PAGE, SER; 'FILE FRED' & DATE$

Such a series of programs could be easily written in PASCAL but the string
handling is sufficiently different from SuperBasic so as to make the example of little use.
Instead, consider a simpler set of programs:

EX ADD3_BIN, IN_DAT TO MUL2_BIN, OUT_DAT; 'NUMBERS'

IQLR4-11

Inter n

7
eport

&

MUL2 is the same program as listed above. The output from ADD3 goes to the
input of MUL2 and the output goes to the file OUT_DAT. The file OUT_DAT will have the
heading 'NUMBERS'. The program ADD3 is as simple as MUL2:

PROGRAM ADD3 (input, output);
VAR
in_num, out_num : real;
BEGIN
REPEAT
readln (in_num);
out_num := in_num + 3;
writen (out_num);
UNTIL in_num =-3;
END.

This program reads a series of numbers and writes the values plus three. It stops
when it reads the number -3, this will have three added and be passed to MUL2 which
stops when it reads the number 0. So they stop properly together. If any program in the
chain failed, then the whole series of jobs involved would be removed.

Suppose that IN_DAT now contains the following lines:

The ADD3 (the job name is derived from the name on the PROGRAM statement in
the PASCAL program) will read this file and pass the following numbers to MUL2:

5.3000000E+01
-6.0000000E+01
1.3000000E+01
0.0000000E+00

MUL2 will read the numbers, and produce the file OUT_DAT:

NUMBERS
1.0600000E+01
-1.2000000E+00
2.6000000E+01
0.0000000E+00

The means of communications between these two programs is via a pipe. If the
IN_DAT is a much bigger file say, a thousand lines, then while these programs are
executing inspection of the channels menu in QRAM shows that there is a pipe associated
with both of the programs.

Each of the programs in the chain may have many other channels open and use the
screen and keyboard as well as other files and devices. However, if using software like
QRAM, it is important to remember that if the programs in the chain are competing for the
screen, then one will be suspended, this will cause the chain of programs to fail (the first

IQLR4-12

Inter

program in the chain may be suspended, and this will suspend the chain of jobs once the
pipes have been emptied). With the PASCAL programs as described, the programs will fail
even though output is not sent to the screen. This situation may be remedied by using the
UNLOCK utility supplied with QRAM.

I would think that it would be possible to write similar programs in FORTRAN, in
which case unit 6 of one program would be attached via a pipe to unit 5 of the next. 'C
also has standard input and output, which I'm sure would accept pipes (on a full
implementation of the language).

END OF PART 3
AUTHOR: Stephen Bedford

TIDBITS
ST. THOMAS, US VIRGIN ISLANDS - TAYLOR S. PENROSE

The following short routines may be useful to you:
LISTING 1

100 DEF PROC Frame (Txt$)

110 Cx$=" ": LineLen=52: REM Cx$=Space: Change LineLen to Suit

120 FOR Cx=LineLen to 1 STEP -1: REM Move Backwards

130 IF Len(Txt$)<LineLen: EXIT Cx

140 IF Txt$ (Cx)=Cx$ THEN CC=Cx: PRINT Txt$(1 TO CC)\
Txt3=Txt$(CC+1 TO): REM look for space to break line

150 END FOR Cx

160 PRINT Txt$

170 END DEF: REM neatens text: what width should do!

LISTING 2

100 DEF FN Sign(Num)

110 IF Num<0: RET-1

120 IF Num>0: RET+1: ELSE RETurn 0

130 END DEF: REM A feature of older Basics

REFLECTIONS

What kind of year has it been for the QL? As an individual involved with the QL since it's
introduction in 1984, I can honestly say, that the level of co-operation and development has
reached heights never before attained. I'd like to review some of the hardware and software
developments, both commercial and public domain, an important new group, a couple of
new publications.

IQLR4-13

HARDWARE: The following items are by no means all inclusive of this past year's
offerings, but those that have had a major impact:

The Miracle GOLD CARD

The KEYBOARD-90 INTERFACE

The MINERVA MK II ROM

The (resurrected) QIMI MOUSE INTERFACE
The QL ROM-CARD with MOS DISK DRIVER

(Note: Refer to back issues of IQLR for detailed information on the above listed items).
When you add to this list the rumored GRAFIX + CARD from Miracle, and a low-cost
simple HARDDISK interface that may be offered by QUANTA. You can readily see that
the hardware development arena is humming with activity.

SOFTWARE: This year's High Quality professional software releases include:

DP's PERFECTION, word processor

Jochen Merz's QD III, Mouse driven Editor

Jochen Merz's QDESIGN, Mouse driven CAD/Drawing package
The Prog's DATADESIGN, Mouse driven Database

Dilwyn Jones' PICTUREMASTER & VISION MIXER PLUS
C.G.H. Services' QL WORLD D-I-Y TOOLKIT

The availability of Public Domain software has grown a hundred fold with C.G.H.
Services, and Qubbesoft, both of the UK, and Intergroup Freeware Exchange in Germany
taking the lead. You probably expected QUANTA in this group, but unfortunately they
haven't added anything new to the QUANTA Library in over a year. A couple of major
public domain releases during this last year includes:

The C-68 'C' Compiler (7 disks)
MINIX-QL

A SPECTRUM EMULATOR is anticipated for release into the public domain (of interest to
Spectrum and emulated 2068 owners), before the end of the year.

There are a number of other software and hardware projects in the works, and when we
verify that they are more than just pipedreams, will keep you informed.

PUBLICATIONS & SPECIAL INTEREST GROUPS: In North America two new
publications have been launched this year. The first is the "QL HACKER'S JOURNAL"
that provides a forum for QL programmers to exchange ideas and programs. The second is
the "IQLR" you are reading.

A special interest group, QLAW headquartered in the UK was formed to promote a second
generation QL. They are trying to bring the people, expertise, and money, together so that a
new Super QL will no longer be a dream but a reality. If you haven't sent in the
questionaire that appeared in issue #1 of IQLR and shortly thereafter in QL World,
PLEASE do so, as the information requested is crucial to their success. You don't have to
join QLAW, just fill out and send in the questionaire.

IQLR4-14

Inter.

SUPER QL - THE NEXT GENERATION
NEWPORT, RHODE ISLAND, USA - BOB DYL

PROBLEMS: In the past there were two major problems restricting the development of the
QL. The first ,was Amstrad's copywrite of the QDOS operating system, and their
unwillingness to license it to another party. The second major obstacle was the lack of a
proper bus system. It was widely reported several years ago that this is what prevented the
launch of the Futura.

SOLUTIONS: Both of these problems have now been addressed, at least in my eyes. We
have two Legal QDOS-Like operating systems free from Amstrad copywrite. The first and
best known is the MINERVA ROM developed by QVIEW. The second is the software
portion of the QL emulator for the Atari ST, or the SMS-2 operating system developed by
Tony Tebby, the creator of QDOS. Either of these or even a marriage of the two could
supply the new QL with a superb QDOS like operating system, that would offer
compatibility with existing QL software.

In like manner, the bus problem can be answered by the VME Bus System that is quickly
winning acceptance as the standard bus system for industrial computers using the 68XXX
family of processors. Miracle in using the 68000 processor in the GOLD CARD has
opened the door for development along these lines. There is a large number of engineers
working to future proof the VME Bus. A considerable amount of hardware and software
already exists for this Bus System.

In discussing this with a number of engineers, several of whom are familiar with the QL,
the excitement over the prospect of a new Super QL, with a QDOS Like operating System,
and a VME Bus was overwhelming, especially when you consider the possibility of using
OS-9 and eight, sixteen and thirty-two bit expansion slots on the board.

Please don't misundcrstahd, designing any piece of hardware will be plagued with
problems that have to be solved, we have just looked at two major ones. A considerable
amount of time, energy and money will be required before we see a Super QL.

POSSIBLE PATH SCENARIO: The most logical approach would seem to be the creation
of a new motherboard. This would contain the new operating system and VME bus
system. Included on this board would be Centronics Parallel and true RS-232 Serial
interfaces, as well as 8,16 and 32 bit expansion slots. A proper case, keyboard, and power
supply would also be supplied.

At this point the producers of the motherboard could offer it to QL owners to add
expansion boards and devices they already own, allowing us to customize our systems
based upon need and financial resources (the new motherboard would have to be
compatable with all or most of present QL hardware for this to be effective).

The advantages to QL owners are obvious. The advantage to the producers of the new
motherboard and case include a stable immediate market, profits that could be used to
market a complete NEW SUPER QL to the general computing public (new users), without
the enormous outlay of cash that is normally required to launch a new computer. The fact
that thousands of software applications (commercial and public domain), already exist
would be a tremendous boost to marketability.

IQLR4-15

The 68XXX family of computers already have hardware/software emulators for most of
the worlds computers i.e. MAC, MS-DOS, 0S-9, AMIGA and ATARI-ST. The
possibilities are endless, and we would be back on the cutting edge with room for
expansion.

We have seen that the GOLD CARD prevented some users from abandoning the QL and
brought previous users back. We believe the GRAFIX + CARD will do the same. A
SUPER QL without a doubt, would swell our ranks. We live in exciting times.

LINKING ASSEMBLER INTO C PROGRAMS
EAST PROVIDENCE, RHODE ISLAND, USA - WILL HORTON

With the advent of the C-68 "C" Compiler (available from IQLR), an entire library of
QDOS functions are available. However, there may be times when you need a special
purpose routine that isn't available in this library, or if you use the Metacomco QLC which
only comes with an all purpose QDOS trap function.

Being able to fully utilize QDOS makes a programming language useful for code generation
on the QL. This feature is offered by the "C" language, with the power of assembly and the
flexibility of a high level programming language. To further enhance this, you can link
your own assembly language routines into "C" programs. This article purports to
demonstrate how this is done.

Please refer to the C-program listing below. Note that this program is written for the C-68
compiler.

C-PROGRAM LISTING:

#include "stdio.h"
#idefine chan fgetchid (stdout)

main ()
char dir_name[10];
int chid,sectors,open_sectors,total_sectors;
int mask = 0x0000FFFF;
chid = open_dir ("FLP1_");

/* read sector information and medium from floppy 1 */
sectors = medinfo(chid,dir_name);

/* separate sector information from long word sectors */
open_sectors = sectors >> 16;

total_sectors = sectors & mask;

sd_clear (chan,-1);

printf("open/total sectors = %d/%d\n",open_sectors,total_sectors);

IQLR4-16

strnepy (dir_name,dir_name, 10);
dir_name[10]=0;
printf("Device name = %s",dir_name);

io_close(chid);

)

The purpose of this program is to open "floppy 1", read the medium information from the
floppy, and print the data to the screen. The medium information being the free sectors,
total sectors, and the device name.

The above listing containing the function medinfo() is the assembly language module that
will be linked. This function contains two arguments: the channel id, (an integer), and the
pointer to the name of the device. This function will return an integer containing the number
of sectors on the floppy. The most significant word of this integer is the open sectors, and
the least significant word is the total sectors. It will also return the pointer "dir_name"
pointing to the name of the floppy.

Now please refer to the Assembly language listing below, this listing is the function
medinfo().

ASSEMBLY LANGUAGE LISTING:

%
*This program gets information about the medium: the name, and sectors.
%

: medinfo(chid,dir_name);

FS.MDINF EQU $45

I0.FSTRG EQU $03

*
XDEF medinfo

medinfo MOVE.L 4(AT),A0 drive id
MOVE.LL 8(A7),Al pointer to heap

MOVEML D2-D7/A2-A5,-(A7) save registers
MOVE.L AlA4

SUB.L D5,D5
MOVEQ #FS.MDINF,D0
MOVEL (A6)Al

#4

TRAP make it absolute
MOVEQ #-1,D3
TRAP #3
MOVE.L D1,D5 store sector info
*
MOVE.W #10,D2 name length
MOVE.L (A6),Al
AGAIN MOVE.B (O(A6,A1.L),(Ad)+ load name onto pointer

ADDA.L #1,A1
SUBLW #1,D2

IQLR4-17

CMPLW #0,D2
BPL AGAIN
MOVEB #0,(A4)

*
MOVE.L D5,D0 return sector info
MOVEML (A7)+D2-D7/A2-A5 restore registers
RTS and quit

*

*
END

The first item to take note of is the assembler directive XDEF. This directive tells the
assembler that the name medinfo is an external definition and that it can be called by an
external program. In this case it will be called by the C-Program listed in the beginning of
this article. Next, two items are popped off the stack, these two items are the arguments of
the function medinfo(), chid and dir_name respectively. Now the registers are saved on the
stack with a multiple move command. Saving all of the registers (except A6 and A7 which
are never saved),is somewhat of a formality, but it won't hurt to do so. Now the trap
FS.MDINF is invoked which reads the medium information and returns with the sector
information in register D1 and the medium name pointed to by Al. The next step is to have
the pointer "dir_name" point to the name of the device. Address register A4 holds the
address of the pointer "dir_name", and the loading of this pointer is shown in the
operand,()(A6,A1.L),(Ad)+.

After the sector information and device name have been received, the sector information
being held in register D5 must be moved to register D0. DO is used to hold the value
returned by a function. The registers stored on the stack pointer are now popped from the
stack by the command "MOVEM". At this point the program returns to the calling C-
Program.

Once returned from the "medinfo()" function, the sector information is returned as a long
word with the most-significant-word being the free sectors and the least-significant-word
being the total sectors. In order to extract this information from the integer "sectors”, two C
bit operators are used: the right shift ">>", and the logical AND "&". The device name is
pointed to by the pointer "dir_name".

In order to make this program work, the C listing must be compiled. Using the C-68
compiler, this would be a command such as: EX cc;'-c C_file_c', which will stop the
compiler after it produces the "C_file_o" file. Now this module is linked with the assembly
module "medinfo_o". The command to do this would be: EX 1d;'C_file_o medinfo_o'.

After the linking takes place an executable program is produced called "a_out" (the default
filename when none is specified). By simply executing "a_out", the program will run, open
floppy 1 and print out the sector and device name.

Depending on the assembler used, there may be other directives required to make this

assembly module linkable into a C_Program. The Metacomco Assembler was used for this
example, but other assemblers should work provided you adjust for their special directives.

IQLR4-18

{;, ¢
Interﬁ%n%é‘geport
- A

In our endeavor to bring you interesting developments in the QL world, we've discovered
an ideal expansion board for those of you with unexpanded machines, or non TRUMP
CARD RAM expansion and diskdrive interface.

QL ROM-CARD

The ROM-CARD utilizes the expansion port of the QL, so it won't work with the GOLD
CARD or TRUMP CARD installed.

Basically, the QL ROM-CARD may be used for the expansion of RAM or ROM, or for the
battery protected MOS RAM-DISK. Selection between the different applications is
accomplished by positioning a selector switch. Four memory banks are available on the
CARD, each with a type selector of it's own, allowing you to choose between installation
of a 32K EPROM (27256) for ROM, or 32K STATIC RAM (SRAM)(61256) for
RAM/ROM, or the MOS RAM-DISK.

The battery-backup is integrated on the board with automatic recharging. The write-
protection switch allows (for the first time), the use of SRAMs (much faster), for easy
replacement of EPROMS. The SRAMs don't require an EPROM burner, but instead are
programmed directly from the computer using LBYTES and POKE commands. The
buffered SRAM:s retain their memory contents after power-off, for a period of up to six
months before the QL has to be powered up for a few hours to automatically recharge the
batteries.

With the addition of the MOS DISK-DRIVER, the power-fail-safe, reset-safe, and write
protectable MOS RAM-DISK is the ideal device for users working only with microdrives.
You install your frequently used programs and/or data files ONE TIME to the MOS RAM-
DISK, they can then be started from the MOS RAM DISK in less than a second, whenever
you need them. The RAM used for a program (over 60K for Quill) will remain free for data
space.

The QL ROM-CARD is another product of outstanding quality and value, produced by
COMPUTER TECHNIK (Jurgen Falkenberg) of Germany and is offered in three
configurations:

ROM CARD 128K 0-Wait RAM/ROM, SRAMs/EPROMs, Battery 157 DM

ROM CARD 128K 0-Wait RAM/ROM, with MOS RAM-DISK 175DM
ROM CARD 128K 0-Wait RAM/ROM, with MOS RAM-DISK & SRAMs 210 DM

There is also a 30 DM postal charge per order (not per item). Order your QL. ROM-CARD
from:

Computer Technik (Jurgen Falkenberg)

Thanweg 36
D-7539 Ersinden
Germany Tel: 07231 81058

IQLR4-19

BEST WISHES

THIS

z 1
n <
< |
T
N =W
V-OH
ART
Al
d -
Q0
o

