
Preface

The original QL Toolkit was produced in something of a rush to provide

useful facilities which, arguably, should have been built in to the QL

to start with. Since its appearance, I have been subjected to

continuous pressure to modify certain facilities and extend the range

of facilities provided.

QLToolkit II is, therefore, a revised (to the extent of being almost

completely rewritten) and much enlarged version of the original QL

Toolkit. Old facilities now work faster and are more compact, so that

there is room in the ROM cartridge for over 100 operations.

The fact that QLToolkit II ever saw the light of day is due to

prompting from a number of quarters. Many people have contacted me

complaining that they have been unable to lay their hands on the

original QLToolkit, and this eventually convinced me that there was a

market for a second version. Repeated criticism of the original

facilities made at great length (and with justification) by Chas

Dillon have provided the basis for many of the modifications to the

old routines. Ed Bruley has provided invaluable practical support in

putting the product on the market, and Cambridge Systems Technology

allowed me to use one of their Winchester disk systems to test the

network server.

Even so, QLToolkit II might not have been completed without the

unrelenting encouragement from Hellmuth Stuven of QSOFT, Denmark,

whose indomitable faith in the technical merit of this product has

kept me on my toes.

My thanks to you all, TT.

QJUMP Toolkit II for the QL

Version II of the QJUMP Toolkit for the QL is an extended and improved

version of the original QL Toolkit. This new version is largely

rewritten to provide more facilities and to make the existing

facilities of the QL and the QL Toolkit more powerful. Since many of

these improvements are to correct defects in the ROMs supplied with

the QL, it would be better to supply an upgrade to the QL by replacing

the Sinclair ROMs. Given the hostile attitude of Sinclair Research

Limited towards such an upgrade, this Toolkit II is supplied as the

next best thing.

1 Introduction

The Toolkit II attempts to put a large number of facilities into a

consistent form. A little preamble is worthwhile to explain some of

the principles.

This manual uses the following simple convention when describing

commands and function calls:

 CAPITAL LETTERS are used for parts typed as is

 bold letters are used descriptively

 lower case letters are used as examples

Thus

 VIEW name is a description

 VIEW fred is an example

1.1 Commands Procedures Functions

The extensions to SuperBASIC appear as extra commands, procedures and

functions. The distinction between a command and a procedure is very

slight and the two terms tend to be used interchangeably: the command

is what a user types, the procedure is what does the work. In some

cases a command is used to invoke a procedure which in turn sets up

and initiates a Job (e.g. SPL starts the resident spooler). A function

is something that has a value and the name of a function cannot be

used as a command: the value may be PRINTED, used in an expression or

assigned to a variable.

1.2 Y/N/A/Q?

Y/N/A/Q? is a concise, if initially confusing, prompt that Toolkit II

is bound to throw at the unsuspecting user from time to time. It is no

more than a request for the user to press one of the keys Y (for yes),

N (for no), A (for all) or Q (for Oh! Bother, I give up). What will

actually happen when you press one of these keys, will depend on what

you are trying to do at the time.

There is a short form which only allows Y (for yes) and N (for no).

Before the reply to the Y/N/A/Q? (or Y or N?) prompt is read, any

characters which have been typed ahead are discarded. Typing BREAK

(CTRL + space) or ESC will have the same effect as a 'Q' (or 'N')

keypress.

1.3 Overwriting

In some cases a command is given to create a new file with the same

name as a file which already exists. In general this will result not

in an error message, but a prompt requesting permission to overwrite

the file. There are two (deliberate) exceptions to this rule: OPEN_NEW

will return an error, while the procedures COPY_O, SAVE_O, SBYTES_O

and SEXEC_O and the spooler will happily overwrite their destination

files without so much as a 'by your leave'.

1.4 #channel

All input and output from SuperBASIC is through 'channels'. Some of

these channels are implicit and are never seen (e.g. the command 'SAVE

SER' opens a channel to SER, lists the program to the channel, and

closes the channel). Others are identified by a channel number which

is a small, positive, integer preceded by a '#' (e.g. #2).

Many commands either allow or require a channel to be specified

for input or output. This should be a SuperBASIC channel number:

 #0 is the command channel (at the bottom of the screen),

 #1 is the normal output channel and

 #2 is the program listing channel.

Other channels (e.g. for communication with a file) may be opened

using the SuperBASIC OPEN commands (see section 10).

For interactive commands the default channel is #0, for most other

commands the default channel is #1, for LIST and ED the default

channel is #2, while for file access commands the default is #3.

For many of the commands it is possible to specify an implicit

channel. This is in the form of '\' followed by a file or device name.

The effect of this is to open an implicit channel to the file or

device, do the required operation and close the channel again.

E.g. DIR list current directory to #1

 DIR #2 list current directory to #2

 DIR \files list current directory to file 'files'

 this last example should be distinguished from

 DIR files list directory entries starting with

 files to #1

1.5 File and Device Names

In general it is possible to specify file or device names as either a

normal SuperBASIC name or as a string. The syntax of SuperBASIC names

limits the characters used in a name to letters digits and the

underscore. There is no such limitation on characters used in a

string. On a standard QL, a filename has to be given in full, but

using the Toolkit II, the directory part of the name can be defaulted

and just the filename used.

E.g. OPEN #3,fred open file fred in the current directory

This gives rise to one problem: the SuperBASIC interpreter has the

unfortunate characteristic of trying to evaluate all the parameters of

a command as expressions; in this example 'fred' will probably be an

undefined variable which should not give rise to any problems.

However, the command

 OPEN #3,list

will give an 'error in expression' error as it is not possible for

'LIST', which is a command, to have a value. There are two ways around

this problem: either avoid filenames which are the same as commands

(procedures), functions or SuperBASIC keywords (e.g. FOR, END, IF

etc.), or put the name within quotes as a string:

 OPEN #3,'list' or OPEN #3,"list"

1.6 CTRL F5

The CTRL F5 keystroke (press CTRL and while holding it down press F5)

is used to freeze the QL screen. Many commands in Toolkit II check

their output window and, when it is full, internally generate a CTRL

F5 keystroke to hold the display until the user presses a key. (F5

will usually be the best key to press.)

2 Contents of Toolkit II

SuperBASIC is used as a command language on the QL as well as a

programming language. Extensions are provided to improve the

facilities of SuperBASIC in both these areas as well as providing

program development facilities.

The following list gives a comprehensive form of each command or

function. There are often default values of the parameters to simplify

the use of the procedures.

2.1 Development Facilities

 Section 3 File editing

 Toolkit II provides an editor and a command for viewing the

 contents of text files. ED is a window based editor for editing

 SuperBASIC programs. VIEW is a command for examining line based

 files (e.g. assembler source files).

 Commands

 ED #channel, line number edit SuperBASIC program

 VIEW #channel, name view contents of a file

2.2 Command Language

The command language facilities of Toolkit II are intended to provide

the QL with the control facilities to unlock the potential of the QDOS

operating system. Most of these are 'direct' commands: they are typed

in and acted on immediately. This does not mean that they may not be

used in programs, but some care should be taken when doing this.

 Section 4 Directory Control

 QDOS does have a tree directory structure filing system! The

 Toolkit II provides a comprehensive set of facilities for

 controlling access to directories within this tree.

 Commands

 DATA_USE name set the default directory

 for data files

 PROG_USE name set the default directory

 for executable programs

 DEST_USE name set the default destination

 directory (COPY, WCOPY)

 SPL_USE name set the default destination

 device (SPL)

 DDOWN name move to a sub-directory

 DUP move up through the tree

 DNEXT name move to another directory

 at the same level

 DLIST #channel lists the defaults

 Functions

 DATAD$ function to find current

 data directory

 PROGD$ function to find current

 program directory

 DESTD$ function to find current

 default destination

 Section 5 File Maintenance

 All the filing system maintenance commands use the default (usually

 'data') directories. Some of the commands are interactive and thus

 not suitable for use in SuperBASIC programs: these are marked with

 an asterisk in this list. In these cases there are also simpler

 commands which may be used in programs. Depending on the command,

 the name given may be a generic (or 'wildcard') name referring to

 more than one file. With the exception of DIR (an extended version

 of the standard QL command DIR), all of these 'wildcard' commands

 have names starting with 'W'.

 Commands

 DIR #channel, name drive statistics and

 list of files

 WDIR #channel, name list of files

 STAT #channel, name drive statistics

 WSTAT #channel, name list of files and their

 statistics

 DELETE name delete a file

 *WDEL #channel, name delete files

 COPY name TO name copy a file

 COPY_O name TO name copy a file (overwriting)

 COPY_N name TO name copy a file (without header)

 COPY_H name TO name copy a file (with header)

 *WCOPY #channel, name TO name copy files

 SPL name TO name spool a file

 SPLF name TO name spool a file, <FF> at end

 RENAME name TO name rename a file

 *WREN #channel, name TO name rename files

 Section 6 SuperBASIC Programs

 Toolkit II redefines and extends the file loading and saving

 operations of the QL. All the commands use the default directories.

 Additionally, the execution control commands have been extended to

 cater for the error handling functions of the 'JS' and 'MG' ROMs.

 Commands

 DO name do commands in file

 LOAD name load a SuperBASIC program

 LRUN name load and run a SuperBASIC

 program

 MERGE name merge a SuperBASIC program

 MRUN name merge and run a SuperBASIC

 program

 SAVE name, ranges save a SuperBASIC program

 SAVE_O name, ranges as SAVE but overwrites

 file if it exists

 RUN line number start a SuperBASIC program

 STOP stop a SuperBASIC program

 NEW reset SuperBASIC

 CLEAR clear SuperBASIC variables

 Section 7 Load and Save

 The binary load and save operations of the QL are extended to use

 the default directories.

 Commands

 LRESPR name load a file into resident

 procedure area and CALL

 LBYTES name, address load a file into memory at

 specified address

 CALL address, parameters CALL machine code with

 parameters

 SBYTES name, address, size save an area of memory

 SBYTES_O name, address, size as SBYTES but overwrites

 file if it exists

 SEXEC name, address, size, data save an area of memory as

 an executable file

 SEXEC_O name, address, size, data as SEXEC but overwrites

 file if it exists

 Section 8 Program Execution

 Program execution is, Anne Boleyn would be relieved to know, the

 opposite of program (ex)termination. The EXEC and EXEC_W commands

 in the standard QL are replaced by EX and EW in the QL Toolkit.

 Toolkit II redefines EXEC and EXEC_W to be the same as EX and EW.

 ET is for debuggers (no offence meant) only.

 Commands

 EXEC/EX program specifications load and set up one or

 EXEC_W/EW program specifications more executable files

 ET program specifications

 Section 9 Job Control

 The multitasking facilities of QDOS are made accessible by the job

 control commands and functions of Toolkit II.

 Commands

 JOBS #channel list current jobs

 RJOB id or name, error code remove a job

 SPJOB id or name, priority set job priority

 AJOB id or name, priority activate a job

 Functions

 PJOB (id or name) find priority of job

 OJOB (id or name) find owner of job

 JOB$ (id or name) find job name!

 NXJOB (id or name,id) find next job in tree

2.3 SuperBASIC programming

Toolkit II has extensions to SuperBASIC to assist in writing more

powerful and flexible programs. The major improvements are in file

handling and formatting.

 Section 10 Open and Close

 The standard QL channel OPEN commands are redefined by Toolkit II

 to use the data directory. In addition, Toolkit II provides a set

 of functions for opening files either using a specified channel

 number (as in the standard QL commands), or they will find and

 return a vacant channel number. The functions also allow filing

 system errors to be intercepted and processed by SuperBASIC

 programs.

 Commands

 OPEN #channel, name open a file for read/write

 OPEN_IN #channel, name open a file for input only

 OPEN_NEW #channel, name open a new file

 OPEN_OVER #channel, name open a new file, if it

 exists it is overwritten

 OPEN_DIR #channel, name open a directory

 CLOSE #channels close channels

 Functions

 FTEST (name) test status of file

 FOPEN (#channel, name) open a file for read/write

 FOP_IN (#channel, name) open a file for input only

 FOP_NEW (#channel, name) open a new file

 FOP_OVER (#channel, name) open a new file, if it

 exists it is overwritten

 FOP_DIR (#channel, name) open a directory

 Section 11 File Information

 Toolkit II has a set of functions to read information from the

 header of a file.

 FLEN (#channel) find file length

 FTYP (#channel) find file type

 FDAT (#channel) find file data space

 FXTRA (#channel) find file extra info

 FNAME$ (#channel) find filename

 FUPDT (#channel) find file update date

 Section 12 Direct Access Files

 Toolkit II has a set of commands for transferring data to and from

 any part of a file. The commands themselves read or write 'raw'

 data, either in the form of individual bytes, or in SuperBASIC

 internal format (integer, floating point or string).

 Commands

 BGET #channel\position, items get bytes from a file

 BPUT #channel\position, items put bytes onto a file

 GET #channel\position, items get internal format data

 from a file

 PUT #channel\position, items put internal format data

 onto a file

 TRUNCATE #channel\position truncate file

 FLUSH #channel flush file buffers

 Functions

 FPOS (#channel) find file position

 Section 13 Format Conversions

 Toolkit II provides a number of facilities for fixed format I/O.

 These include binary and hexadecimal conversions as well as fixed

 format decimal.

 Commands

 PRINT_USING #channel, format, fixed format output

 list of items to print

 Functions

 FDEC$ (value, field, ndp) fixed format decimal

 IDEC$ (value, field, ndp) scaled fixed format

 CDEC$ (value, field, ndp) decimal

 FEXP$ (value, field, ndp) fixed exponent format

 HEX$ (value, number of bits) convert to hexadecimal

 BIN$ (value, number of bits) convert to binary

 HEX (hexadecimal string) hexadecimal to value

 BIN (binary string) binary to value

 Section 14 Display Control

 Toolkit II provides commands for enabling and disabling the cursor

 as well as setting the character fount and sizes or restoring the

 windows to their turn on state.

 Commands

 CURSEN #channel enable the cursor

 CURDIS #channel disable the cursor

 CHAR_USE #channel, addr1, addr2 set or reset the

 character fount

 CHAR_INC #channel, x inc, y inc set the character x and

 y increments

 WMON mode reset to 'Monitor'

 WTV mode reset to 'TV' windows

 Section 15 Memory Management

 Toolkit II has a set of commands and functions to provide memory

 management facilities within the 'common heap' area of the QL.

 Functions

 FREE_MEM find the amount of free

 memory

 ALCHP (number of bytes) allocates space in common

 heap (returns the base

 address of the space)

 Commands

 RECHP base address return space to common

 heap

 CLCHP clear out all allocations

 in the common heap

 DEL_DEFB delete file definition

 blocks from common heap

 Section 16 Procedure Parameters

 Four functions are provided by Toolkit II to improve the handling

 of procedure (and function) parameters. Using these it is possible

 to determine the type (integer, floating point or string) and usage

 (single value or array) of the calling parameter as well as the

 'name'.

 PARTYP (name) find type of parameter

 PARUSE (name) find usage of parameter

 PARNAM$ (parameter number) find name of parameter

 PARSTR$ (name, parameter number) if parameter 'name' is a

 string, find the value,

 else find the name.

 Section 17 Error Handling

 These facilities are provided for error processing in versions JS

 and MG of SuperBASIC.

 ERR_DF true if drive full error

 has occurred

 REPORT #channel, error number report an error

 CONTINUE line number continue or retry from a

 RETRY line number specified line

 Section 18 Time-keeping

 Two clocks are provided in Toolkit II, one configurable digital

 clock, and an alarm clock.

 CLOCK #channel, format variable format clock

 ALARM hours, minutes alarm clock

 Section 19 Extras

 EXTRAS lists the extra facilities

 linked into SuperBASIC

 TK2_EXT enforces the Toolkit II

 definitions of common

 commands and functions

2.4 Extensions to Devices

In addition to extending the SuperBASIC interpreter, Toolkit II has

important extensions to the console, Microdrive and Network device

drivers.

 Section 20 Console Driver

 Toolkit II provides last line recall for the command channel #0 as

 well as allowing strings of characters to be assigned to 'ALT'

 keystrokes received on this channel.

 Commands

 <ALT><ENTER> keystroke recovers last

 line typed

 ALTKEY character, strings assign a string to <ALT>

 character keystroke

 Section 21 Microdrive Driver

 Toolkit II extends the microdrive driver to provide OPEN file with

 overwrite, as well as TRUNCATE and RENAME of files. These

 facilities are supported at QDOS level (Traps #2 and #3) as

 well as from SuperBASIC. The FLUSH operation is respecified

 to set the file header as well as flush the buffers.

 Section 22 Network Driver

 The network driver is enhanced to provide a primitive form of

 broadcast communication as well as providing a comprehensive file

 server program which allow many QLs to share a disk system or

 printer.

 Commands

 FSERVE invokes the 'file server'

 NFS_USE name, network names sets the network file

 server name

 Device names

 Nstation number_IO device the name of a remote

 IO device (e.g. N2_FLP1_

 is floppy 1 on network

 station 2)

3 File Editing

3.1 ED - SuperBASIC Editor

ED is a small editor for SuperBASIC programs which are already loaded

into the QL. If the facilities look rather simple and limited, please

remember that the main design requirement of ED is the small size to

leave room for other facilities.

ED is invoked by typing:

 ED

 or ED line number

 or ED #channel number

 or ED #channel number, line number

If no line number is given, the first part of the program is listed,

otherwise the listing in the window will start at or after the given

line number. If no channel number is given, the listing will appear in

the normal SuperBASIC edit window #2. If a window is given, then it

must be a CONsole window, otherwise a 'bad parameter' error will be

returned. The editor will use the current ink and paper colours for

normal listing, while using white ink on black paper (or vice versa if

the paper is already black or blue) for 'highlighting'. Please avoid

using window #0 for the ED.

The editor makes full use of its window. Within its window, it

attempts to display complete lines. If these lines are too long to fit

within the width of the window, they are 'wrapped around' to the next

row in the window: these extra rows are indented to make this 'wrap

around' clear. For ease of use, however, the widest possible window

should be used.

ED must not be called from within a SuperBASIC program.

The ESC key is used to return to the SuperBASIC command mode.

After ED is invoked, the cursor in the edit window may be moved using

the arrow keys to select the line to be changed. In addition the up

and down keys may be used with the ALT key (press the ALT key and

while holding it down, press the up or down key) to scroll the window

while keeping the cursor in the same place, and the up and down keys

may be used with the SHIFT key to scroll through the program a 'page'

at a time.

The editor has two modes of operation: insert and overwrite. To change

between the two modes use 'CTRL F4' (press CTRL and while holding it

down press F4). There is no difference between the modes when adding

characters to or deleting characters from the end of a line. Within a

line, however, insert mode implies that the right hand end of a line

will be moved to the right when a character is inserted, and to the

left when a character is deleted. No part of the line is moved in

overwrite mode. Trailing spaces at the end of a line are removed

automatically.

To insert a new line anywhere in the program, press ENTER. If there is

no room between the line the cursor is on and the next line in the

program (e.g the cursor is on line 100 and the next line is 101) then

the ENTER key will be ignored, otherwise a space is opened up below

the current line, and a new line number is generated. If there is a

difference of 20 or more between the current line number and the next

line number, the new line number will be 10 on from the current line

number, otherwise, the new line number will be half way between them.

If a change is made to a line, the line is highlighted: this indicates

that the line has been extracted from the program. The editor will

only replace the line in the program when ENTER is pressed, the cursor

is moved away from the line, or the window is scrolled. If the line is

acceptable to SuperBASIC, it is rewritten without highlighting. If,

however, there are syntax errors, the message 'bad line' is sent to

window #0, and the line remains highlighted.

While a line is highlighted, ESC may be used to restore the original

copy of the line, ignoring all changes made to that line.

If a line number is changed, the old line remains and the new line is

inserted in the correct place in the program. This can be used to copy

single lines from one part of the program to another.

If all the visible characters in a line are deleted, or if all but the

line number is deleted, then the line will be deleted from the

program. An easier way to delete a line is to press CTRL and ALT and

then the left arrow as well.

The length of lines is limited to about 32766 bytes. Any attempt to

edit longer lines may cause undesirable side effects. If the length of

a line is increased when it is changed, there may be a brief pause

while SuperBASIC moves its working space.

3.2 Summary of Edit Operations

The general usage of the keys follows the Concepts section of the QL

User Guide first, and then the business programs usage.

TAB tab right (columns of 8)

SHIFT TAB tab left (columns of 8)

ENTER accept line and create a new line

ESC escape - undo changes or return to SuperBASIC

up arrow move cursor up a line

down arrow move cursor down a line

ALT up arrow scroll up a line (the screen moves down!)

ALT down arrow scroll down a line (the screen moves up!)

SHIFT up arrow scroll up one page

SHIFT down arrow scroll down one page

left arrow move cursor left one character

right arrow move cursor right one character

CTRL left arrow delete character to left of cursor

CTRL right arrow delete character under cursor

CTRL ALT left arrow delete line

SHIFT F4 change between overwrite and insert mode

3.3 Viewing a file

VIEW is procedure intended to allow a file to be examined in a window

on the QL display. The default window is #1.

View is invoked by typing

 VIEW name View file 'name' in window #1

 VIEW #channel, name View file 'name' in given window

 VIEW \name1, name2 Send file 'name2' to 'name1'

VIEW truncates lines to fit the width of the window. When the window

is full, CTRL F5 is generated. If the output device (or file) is not a

console, then lines are truncated to 80 characters.

4 Directory Control

4.1 Directory Structures

In QDOS terminology, a 'directory' is where the system expects to find

a file. This can be as simple as the name of a device (e.g. MDV2_ the

name of the Microdrive number 2) or be much more complex forming part

of a 'directory tree' (directories grow on trees - honestly, they do).

For example: the directory MDV2_ could include directories JOHN_ and

OLD_ (note: all directory names end with an '_'), and JOHN_ could

include files DATA1 and TEST).

 MDV2_

 ___________I__________

 I I

 JOHN_ OLD_

 _______I_________

 I I

 DATA1 TEST

This shows another characteristic of the 'directory tree': it grows

downwards. The complete QDOS filename for DATA1 in this example is

MDV1_JOHN_DATA1. (You may have come across the terms 'pathname' or

'treename': these refer to the same thing as a QDOS filename.)

One unusual characteristic of the QDOS directory structure is the

absence of a formal file name 'extension'. This is not strictly

necessary as 'extensions' (e.g. _aba for ABACUS files, _asm for

assembler source files etc.) are treated as files within a directory.

This can be illustrated with the case of an assembler program TEST,

processed using the GST macro assembler and linkage editor. The

assembler source file (TEST_ASM), the listing output from the

assembler (TEST_LIST), the relocatable output from the assembler

(TEST_REL), the linker control file (TEST_LINK), the linker listing

output (TEST_MAP) and the executable program produced by the linker

(TEST_BIN) are all treated as files within the directory TEST_.

 MDV2_

 ________I______

 I

 JOHN_

 ___________________I________________

 I

 TEST_

 __________________I_________________

 I I I I I I

 ASM LIST REL LINK MAP BIN

This Toolkit provides facilities to set default directories. The

defaults are available for all filing system operations. A default may

be set to any level of complexity and gives a starting point for

finding a file in the tree structure. Thus, in this example, if the

default is MDV2_, then JOHN_TEST_ASM will find the assembler source.

If the default is MDV2_JOHN_, then TEST_ASM will find it, while the

full filename MDV2_JOHN_TEST_ASM will find the file regardless of the

default.

4.2 Setting Defaults

Unusually, the Toolkit extensions to QDOS support three distinct

defaults for the directory structure. This is because QDOS is an

intrinsically multi-drive operating system. It is expected that

executable programs will be in a different directory, and probably on

a different drive, from any data files being manipulated. Furthermore,

the copying procedures are more likely to be used to copy from one

directory to another, or from the filing system to a printer or other

output device, than they are to be used to copy files within a

directory.

There are three commands for setting the three defaults:

 DATA_USE directory name set data default

 PROG_USE directory name set program default

 DEST_USE directory name set destination default

If the directory name supplied does not end with '_', '_' will be

appended to the directory name.

The DATA_USE default is used for most filing system commands in the

Toolkit. The PROG_USE default is used only for finding the program

files for the EX/EXEC commands, while the DEST_USE default is used to

find the destination filename when the file copying and renaming

commands (SPL, COPY, RENAME etc.) are used with only one filename.

There is a special form of the DEST_USE command which does not append

'_' to the name given. Notionally this provides the default

destination device for the spooler:

 SPL_USE device name

This sets the destination default, but, if there is no '_' at the end,

it is not treated as a directory and so, if a destination filename is

required, the default will be used unmodified.

E.g. DEST_USE flp2_old (default is FLP2_OLD_)

 SPL fred

 or SPL_USE flp2_old_ (default is FLP2_OLD_)

 SPL fred

Both of these examples will spool FRED to FLP2_OLD_FRED. Whereas if

SPL_USE is used with a name without a trailing '_' (i.e. not a

directory name) as follows

 SPL_USE ser (default is SER)

 SPL fred

then FRED will be spooled to SER (not SER_FRED).

Note that SPL_USE overwrites the DEST_USE default and vice versa

4.3 Directory Navigation

Three commands are provided to move through a directory tree.

 DDOWN name move down (append 'name' to the

 default)

 DUP move up (strip off the last level

 of the directory)

 DNEXT name move up and then down a different

 branch of the tree

It is not possible to move up beyond the drive name using the DUP

command. At no time is the default name length allowed to exceed 32

characters.

These commands operate on the data default directory. Under certain

conditions they may operate on the other defaults as well:

 If the progam default is the same as the data default,

 then the two defaults are linked and these commands

 will operate on the PROG_USE default as well.

 If the destination default ends with '_' (i.e. it is a

 default directory rather than a default device), then

 these commands will operate on the destination default.

These rules are best seen in action:

 data program destination

 initial values mdv2_ mdv1_ ser

 DDOWN john mdv2_john_ mdv1_ ser

 DNEXT fred mdv2_fred_ mdv1_ ser

 PROG_USE mdv2_fred mdv2_fred_ mdv2_fred_ ser

 DNEXT john mdv2_john_ mdv2_john_ ser

 DUP mdv2_ mdv2_ ser

 DEST_USE mdv1 mdv2_ mdv2_ mdv1_

 DDOWN john mdv2_john_ mdv2_john_ mdv1_john_

 SPL_USE ser1c mdv2_john_ mdv2_john_ ser1c

4.4 Taking Bearings

Should you wonder where you are in the directory tree, there is a

command to list all three defaults:

 DLIST list data, program and destination

 or DLIST #channel defaults

 or DLIST \name

If an output channel is not given, the defaults are listed in window

#1.

To find the defaults from within a SuperBASIC program there are three

functions:

 DATAD$ find the data default

 PROGD$ find the program default

 DESTD$ find the destination default

The functions to find the individual defaults should be used without

any parameters. E.g.

 IF DATAD$<>PROGD$: PRINT 'Separate directories'

 DEST$=DESTD$

 IF DEST$ (LEN (DEST$))='_': PRINT 'Destination'! DEST$

Facilities to enable executable programs to find the default

directories were provided in the original Sinclair QL Toolkit, and the

same facilities are provided in this Toolkit. These facilities are not

widely used in commercial software for the QL. The real solution of

providing the default directories at QDOS trap level can only be

attained using additional hardware in the expansion slot or by

replacement operating system ROMs. You will probably find, therefore,

that much commercially written software will not recognise the

defaults you have set. There is an example of overcoming this problem

in the example program appendix.

5 File Maintenance

The standard file maintenance procedures of the QL (COPY, DELETE and

DIR) are filled out into a comprehensive set in Toolkit II. All of the

commands, both standard and new, use the directory defaults; in

addition, many of the commands use wild card names to refer to groups

of similarly named files.

5.1 Wild Card Names

A wild card name is a special type of filename where part of the name

is treated as a 'wild card' which can be substituted by any string of

characters. If, for convenience, the wild card name is to be a normal

SuperBASIC name, then special characters cannot be used for the wild

card (e.g. myfiles_*_asm would be treated by SuperBASIC as an

arithmetic expression and SuperBASIC would attempt to multiply

myfiles_ by _asm). For this reason a simpler scheme is adopted: any

missing section of a file name is treated as a wild card. The end of a

wild card name is implicitly missing.

If the wild card name is not a full file name, the default directory

is added to the start of the name.

In the following example, the default directory is assumed to be

FLP2_.

 Wild card name Full wild card name Typical matching files

 fred flp2_fred flp2_fred

 flp2_freda_list

 _fred flp2__fred flp2_fred

 flp2_freda_list

 flp2_old_fred

 flp2_old_freda_list

 flp1_old__list flp1_old__list flp1_old_jo_list

 flp1_old_freda_list

5.2 Directory Listing

There are two forms of directory listing: the first lists just the

filenames, the second lists the filenames together with file size and

update date. All the commands use wild card names and the data default

directory. The output from these commands will be sent to channel #1

by default; but a channel or implicit channel may be specified: if the

output channel is to a window the listing is halted (CTRL F5) when the

window is full.

 DIR #channel, name drive statistics and

 list of files

 WDIR #channel, name list of files

 WSTAT #channel, name list of files and their

 statistics

In all cases the channel specification and the name are optional.

The possible forms of (for example) WDIR are

 WDIR list current directory to #1

 or WDIR #channel list current directory to #channel

 or WDIR \name list current directory to 'name'

 or WDIR name list directory 'name' to #1

 or WDIR #channel, name list directory 'name' to #channel

 or WDIR \name1, name2 list directory 'name2' to 'name1'

E.g.

 WDIR \ser, _asm list all _asm files in current

 directory to SER

 WDIR flp1_ list all files on FLP1_ in window

 #1

 WDIR #3 list all files in current

 directory to channel #3

DIR is provided for compatibility only: before listing the files, the

drive statistics (medium name, number of vacant sectors / number of

good sectors) are written out.

5.3 Drive Statistics

There is one command to print the statistics for the drive holding a

specified directory, or the data default directory.

 STAT #channel, name

 or STAT \name1, name2

Both the channel and the name are optional.

5.4 File Deletion

The standard procedure DELETE has been modified to use the data

default directory unless a full file name is supplied. No error is

generated if the file is not found. There are also two interactive

commands to delete many files using wild card names.

 DELETE name delete one file

 WDEL #channel, name delete files

For WDEL both the channel and the name are optional.

E.g.

 WDEL delete files from current

 directory

 WDEL _list delete all _list files from

 current directory

Unless a channel is specified, the wild card deletion procedures use

the command window #0 to request confirmation of deletion. There are

four possible replies:

 Y (yes) delete this file

 N (no) do not delete this file

 A (all) delete this and all the next matching files

 Q (quit) do not delete this or any of the next files

5.5 File Copying

The two forms of the COPY command provided with the QL are changed to

use default filenames, and also to provide more flexibility. A number

of other commands are added.

Files in QDOS have headers which provide useful information about the

file that follows. It depends on the circumstances whether it is a

good idea to copy the header of a file when the file is copied.

It is a good idea to copy the header when:

 a) copying an executable program file so that the additional

 file information is preserved,

 b) copying a file over a pure byte serial link so that the

 communications software will know in advance the length

 of the file.

It is a bad idea to copy the header when:

 c) copying a text file to a printer because the header will

 be likely to have control codes and spurious or unprintable

 characters.

The general rules used by the COPY procedures in Toolkit II, are that

the header is only copied if there is additional information in the

header. This caters for cases (a) and (c) above. A COPY_N command is

included for compatibility with the standard QL COPY_N: this never

copies the header. A COPY_H command is included to copy a file with

the header to cater for case (b) above. (Note that the standard QL

command COPY always copies the header.) Neither COPY_N nor COPY_H need

ever be used for file to file copying.

A second general rule used by the COPY (as well as by the WREN)

procedures is that if the destination file already exists, then the

user will be asked to confirm that overwriting the old file is

acceptable. The COPY_O (copy overwrite) and the spooler procedures do

not extend this courtesy to the user.

If the commands are given with two filenames then the data default

directory is used for both files. If, however, only one filename (or,

in the case of the wild card procedures, no name at all) is given then

the destination will be derived from the destination default:

 a) if the destination default is a directory (ending with '_',

 set by DEST_USE) then the destination file is the

 destination default followed by the name,

 b) if the destination default is a device (not ending with

 '_', set by SPL_USE) then the destination is the

 destination default unmodified.

5.5.1 Single File Copies

 COPY name TO name copy a file

 COPY_O name TO name copy a file (overwriting)

 COPY_N name TO name copy a file (without header)

 COPY_H name TO name copy a file (with header)

These commands can be given with one or two names. The separator 'TO'

is used for clarity, you may use a comma instead.

To illustrate the use of the copy command, assume that the data

default is MDV2_ and the destination default is MDV1_.

 COPY fred TO old_fred copies mdv2_fred to

 mdv2_old_fred

 COPY fred, ser copies mdv2_fred to ser

 COPY fred copies mdv2_fred to

 mdv1_fred

 SPL_USE ser

 COPY fred copies mdv2_fred to ser

5.5.2 Wild Card Copies

The interactive copying procedure WCOPY is used for copying all or

selected parts of directories. The command may be given with both

source and destination wild card names, with one wild card name or

with no wild card names at all. Giving the command with no wild card

names has the same effect as giving one null name:

 WCOPY and WCOPY '' are the same.

If you get confused by the following rules about the derivation of the

copy destination, just use WCOPY intuitively and look carefully at the

prompts.

If the destination is not the destination default device, then the

actual destination file name for each copy operation is made up from

the actual source file name and the destination wild name. If a

missing section of the source wild name is matched by a missing

section of the destination wild name, then that part of the actual

source file name will be used as the corresponding part of the actual

destination name. Otherwise the actual destination file name is taken

from the destination wild name. If there are more sections in the

destination wild name than in the source wild name, then these extra

sections will be inserted after the drive name, and vice versa.

The full form of the command is:

 WCOPY #channel, name TO name copy files

The separator TO is used for clarity, you may use a comma instead.

If the channel is not given (i.e. most of the time), then the requests

for confirmation will be sent to the command channel #0. Otherwise

confirmation will be sent to the chosen channel, and the user is

requested to press one of:

 Y (yes) copy this file

 N (no) do not copy this file

 A (all) copy this and all the next matching files.

 Q (quit) do not copy this or any other files

If the destination file already exists, the user is requested to press

one of:

 Y (yes) copy this file, overwriting the old file

 N (no) do not copy this file

 A (all) overwrite the old file, and overwrite any

 other files requested to be copied.

 Q (quit) do not copy this or any other files

For example, if the default data directory is flp2_, and the default

destination is flp1_

 WCOPY would copy all files on flp2_ to flp1_

 WCOPY flp1_,flp2_ would copy all files on flp1_ to flp2_

 WCOPY fred would copy

 flp2_fred to flp1_fred

 flp2_freda_list to flp1_freda_list

 WCOPY fred,mog would copy

 flp2_fred to flp2_mog

 flp2_freda_list to flp2_moga_list

 WCOPY _fred,_mog would copy

 flp2_fred to flp2_mog

 flp2_freda_list to flp2_moga_list

 flp2_old_fred to flp2_old_mog

 flp2_old_freda_list to flp2_old_moga_list

 WCOPY _list,old__ would copy

 flp2_jo_list to flp2_old_jo_list

 flp2_freda_list to flp2_old_freda_list

 WCOPY old__list,flp1__ would copy

 flp2_old_jo_list to flp1_jo_list

 flp2_old_freda_list to flp1_freda_list

5.5.3 Background Copying

A background file spooler is provided which copies files in the same

way as COPY_O (Section 5.5.1), but is primarily intended for copying

files to a printer. As an option, a form feed (ASCII <FF>) can be sent

to the printer at the end of file.

 SPL name TO name spool a file

 SPLF name TO name spool a file, <FF> at end

The separator TO is used for clarity, you may use a comma instead.

The normal use of this command is with one name only:

 SPL_USE ser set spooler default

 SPLF fred spool fred to ser, adding

 a form feed to the file

When used in this way, if the default device is in use, the Job will

be suspended until the device is available. This means that many files

can be spooled to a printer at once.

A variation on the SPL and SPLF commands is to use SuperBASIC channels

in place of the filenames. These channels should be opened before the

spooler is invoked:

 SPL #channel3 TO #channel2

Where channel3 must have been opened for input and channel2 must

have been opened for output.

5.5.4 Renaming Files

Renaming a file is a process similar to COPYing a file, but the file

itself is neither moved nor duplicated, only the directory name is

changed. The commands, however, are exactly the same in use as the

equivalent COPY commands.

 RENAME name TO name see COPY

 WREN #channel, name TO name see WCOPY

6 SuperBASIC Programs

All the commands for loading, saving and running SuperBASIC programs

have been redefined in Toolkit II. The differences are in the areas

of:

 a) default filenames,

 b) WHEN ERROR (JS and MG ROMs only),

 c) common heap handling.

6.1 DO

There is one additional procedure, DO, to execute SuperBASIC commands

from file.

 DO name do commands in file

The commands should be 'direct': any lines with line numbers will be

merged into the current SuperBASIC program. The file should not

contain any of the commands listed in this section (e.g. RUN, LOAD

etc.), CONTINUE, RETRY or GOTO. It appears that a DO file can invoke

SuperBASIC procedures without harmful effect.

A DO file can contain in line clauses:

 FOR i=1 to 20: PRINT 'This is a DO file'

If you try to RUN a BASIC program from a DO file, then the file will

be left open. Likewise, if you put direct commands in a file that is

MERGED, then the file will be left open.

6.2 Default Directories

Most of the commands use the data default directory. In addition, the

program LOADing commands will try the program default directory if a

file cannot be found in the data default directory.

6.3 WHEN ERROR Problems

There is a problem in the JS and MG ROM error handling code, in that

WHEN ERROR processing, once set, is never reset, even if the WHEN

ERROR clause is removed by a NEW or a LOAD! All of the commands in

this section clear the WHEN ERROR processing flag, and all but STOP

also clear the pointer to the current WHEN ERROR clause.

6.4 Common Heap

Toolkit II contains facilities for allocating space in the common

heap. This space is cleared by the commands that clear the SuperBASIC

variables: LOAD, LRUN, NEW and clear.

6.5 Summary of Commands

 DO name do commands in file

 LOAD name load a SuperBASIC program

 LRUN name load and run a SuperBASIC

 program

 MERGE name merge a SuperBASIC program

 MRUN name merge and run a SuperBASIC

 program

 SAVE name, ranges save a SuperBASIC program

 SAVE_O name, ranges as SAVE but overwrites

 file if it exists

 RUN line number start a SuperBASIC program

 STOP stop a SuperBASIC program

 NEW reset SuperBASIC

 CLEAR clear SuperBASIC variables

7 Load and Save

Toolkit II provides the same binary file load and save operations as

the standard QL. The differences are that the save operations will

request permission to overwrite if the file already exists, and all

the commands use default directories.

There are also two 'overwrite' variants for the save operations, and

one new command: LRESPR.

LRESPR opens the load file and finds the length of the file, then

reserves space for the file in the resident procedure area before

loading the file. Finally a CALL is made to the start of the file.

The CALL procedure itself has been rewritten to avoid the problems

that occur in AH and JM ROMs when a CALL is made from a large (>32

kbytes) program

 LRESPR name load a file into resident

 procedure area and CALL

 LBYTES name, address load a file into memory at

 specified address

 CALL address, parameters CALL machine code with

 parameters

 SBYTES name, address, size save an area of memory

 SBYTES_O name, address, size as SBYTES but overwrites

 file if it exists

 SEXEC name, address, size, data save an area of memory as

 an executable file

 SEXEC_O name, address, size, data as SEXEC but overwrites

For SEXEC and SEXEC_O the 'data' parameter is the default data space

required by the program.

If there are any Jobs in the QL (apart from Job 0 the SuperBASIC

interpreter) then LRESPR will fail with the error message 'not

complete'. If this happens, use RJOB to remove all the other Jobs.

8 Program Execution

There is one procedure for initiating the execution of compiled

(executable) programs. This procedure is invoked by five commands: EX,

EXEC (which are synonymous) EW, EXEC_W (which are synonymous) and ET.

The differences are very small: when EX is complete, it returns to

SuperBASIC; when EW is complete it waits until the programs initiated

have finished before returning to SuperBASIC; while ET sets up the

programs, but returns to SuperBASIC so that a debugger can be called

to trace the execution. EX will be used to describe all the commands.

8.1 Single Program Execution

In its simplest form EX can be used to initiate a single program:

 EX name

The program in the file 'name' is loaded into the transient program

area of the QL and execution is initiated. If the file does not

contain an executable program, a 'bad parameter' error is returned.

It is also possible to pass parameters to a program in the form of a

string:

 EX name; parameter string

In this case the program in the file 'name' is loaded into the

transient program area, the string is pushed onto its stack and

execution is initiated.

Finally it is possible for EX to open input and output files for a

program as well as (or instead of) passing it parameters. If

preferred, a SuperBASIC channel number may be used instead of a

filename. A channel used in this way must already be open.

 EX program name, file names or #channels; parameter string

Taking as an example the program UC which converts a text file to

upper case, the command:

 EX uc, fred, #1

will load and initiate the program UC, with fred as its input file and

the output being sent to window #1.

8.2 Filters

EX is designed to set up filters for processing streams of data.

Within the QL it is possible to have a chain of cooperating jobs

engaged in processing the same data in a form of production line. When

using a production line of this type, each job performs a well-defined

part of the total process. The first job takes the original data and

does its part of the process; the partially processed data is then

passed on to the next job which carries out its own part of the

process; and so the data gradually passes through all the processes.

The data is passed from one Job to the next through a 'pipe'. The data

itself is termed a 'stream' and the Jobs processing the data are

termed 'filters'.

Using the symbols [] to represent a single optional item

 () to represent a repeated optional item

the complete form of the EX command is

 EX [#channel TO] prog_spec (TO prog_spec) [TO #channel]

where prog_spec is

 program name (,file name or #channel) [;parameter string]

Each TO separator creates a pipe between Jobs.

All the names and the parameter string may be names, strings or string

expressions. The significance of the filenames is, to some extent,

program dependent; but there are two general rules which should be

used by all filters:

 1) the primary input of a filter is the pipe from the

 previous Job in the chain (if it exists), or else the

 first data file,

 2) the primary output of a filter is the pipe to the next

 job in the chain (if it exists) or else the last data

 file.

Many filters will have only two I/O channels: the primary input and

the primary output.

If the parameters of EX start with '#channel TO', then the

corresponding SuperBASIC channel will be closed (if it was already

open) and a new channel opened as a pipe to the first program. Any

data sent to this channel (e.g. by PRINTing to it) will be processed

by the chain of Jobs. When the channel is CLOSEd, the chain of Jobs

will be removed from the QL.

If the parameters of EX end with 'TO #channel', then the

corresponding SuperBASIC channel will be closed (if it was already

open) and a new channel opened as a pipe from the last program. Any

data passing through the chain of Jobs will arrive in this channel and

may be read (e.g. by INPUTing from it). When all the data has passed,

the Jobs will remove themselves and any further attempt to take input

from this channel will get an 'end of file' error. The EOF function

may be used to test for this.

8.3 Example of Filter Processing

As an example of filter processing, the programs UC to convert a file

to upper case, LNO to line number a file, and PAGE to split a file

onto pages with an optional heading are all chained to process a

single file:

 EX uc, fred TO lno TO page,ser; 'File fred at '&date$

The filter UC takes the file 'fred' and after converting it to upper

case, passes through a pipe to LNO. LNO adds line numbers to each line

and passes the file down a pipe to PAGE. In its turn, PAGE splits the

file onto pages with the heading (including in this case the date) at

the top of each page, before sending the file to the SER port. Note

that the file fred itself is not modified; the modified versions are

purely transient.

9 Job Control

As QDOS is a multitasking operating system, it is possible to have a

number of competing or co-operating Jobs in the QL at any one time.

Jobs compete for resources in line with their priority, and they may

co-operate using pipes or shared memory to communicate. The basic

attributes of a Job are its priority and its position within the tree

of Jobs (ownership). A Job is identified by two numbers: one is the

Job number which is an index into the table of Jobs, and the other is

a tag which is used to identify a particular Job so that it cannot be

confused with a previous Job occupying the same position in the Job

table. Within QDOS the two numbers are combined into the Job ID which

is Job number + tag*65536. For these Job control routines, where

Job_id is a parameter of one of the Job control routines, it may be

given as either a single number (the Job ID, as returned from OJob or

NXJob of Toolkit II) or as a pair of numbers (Job number,Job tag).

Thus the single parameter 65538 (2+1*65536) is equivalent to the two

parameters 2,1.

9.1 Job Control Commands

JOBS is a command to list all the Jobs running in the QL at the time.

If there are more Jobs in the machine than can be listed in the output

window, the procedure will freeze the screen (CTRL F5) when it is

full. The procedure may fail if Jobs are removed from the QL while the

procedure is listing them. The following information is given for each

Job:

 the Job number

 the Job tag

 the Job's owner Job number

 a flag 'S' if the Job is suspended

 the Job priority

 the Job (or program) name.

The command is

 JOBS list current Jobs to #1

 JOBS #channel list current Jobs

 JOBS \name list Jobs to 'name'

There are three procedures for controlling Jobs in the QL:

 RJOB id or name, error code remove a Job

 SPJOB id or name, priority set Job priority

 AJOB id or name, priority activate a Job

If a name is given rather than a Job ID, then the procedure will

search for the first Job it can find with the given name.

If there is a Job waiting for the completion of a Job removed by RJob,

it will be released with D0 set to the error code.

E.g. RJOB 3,8,-1 remove Job 3, tag 8 with error -1

 SPJOB demon,1 set the priority of the Job called

 'demon' to 1

9.2 Job Status Functions

The Job status functions are provided to enable a SuperBASIC program

to scan the Job tree and carry out complex Job control procedures.

 PJOB (id or name) find priority of Job

 OJOB (id or name) find owner of Job

 JOB$ (id or name) find Job name

 NXJOB (id or name,top Job id) find next Job in tree

NXJOB is a rather complex function. The first parameter is the id of

the Job currently being examined, the second is the id of the Job at

the top of the tree. If the first id passed to NXJOB is the last Job

owned, directly or indirectly, by the 'top Job', then NXJOB will

return the value 0, otherwise it will return the id of the next Job in

the tree.

Job 0 always exists and owns directly or indirectly all other Jobs in

the QL. Thus a scan starting with id = 0 and top Job id = 0 will scan

all Jobs in the QL.

It is possible that, during a scan of the tree, a Job may terminate.

As a precaution against this happening, the Job status functions

return the following values if called with an invalid Job id:

 PJOB=0 OJOB=0 JOB$='' NXJOB=-1

10 Open and Close

All of the OPEN and CLOSE commands and functions avoid the problem

that occurs using the standard QL facilities when more than 32768

files have been opened in one session.

10.1 Open Commands

The OPEN commands of the standard QL have been modified to use the

data default directory. Two commands have been added to open a new

file overwriting the old file if it already exists, and to open a

directory.

 OPEN #channel, name open a file for read/write

 OPEN_IN #channel, name open a file for input only

 OPEN_NEW #channel, name open a new file

 OPEN_OVER #channel, name open a new file, if it

 exists it is overwritten

 OPEN_DIR #channel, name open a directory

10.2 File Status

The function FTEST is used to determine the status of a file or

device. It opens a file for input only and immediately closes it. If

the file exists it will either return the value 0 or -9 (in use error

code), if it does not exist, it will return -7 (not found error code).

Other possible returns are -11 (bad name), -15 (bad parameter), -3

(out of memory) or -6 (no room in the channel table).

 FTEST (name) test status of file

The function can be used to check that a file does not exist:

 IF FTEST (file$) <> -7: PRINT 'File '; file$; ' exists'

10.3 File Open Functions

This is a set of functions for opening files. These functions differ

from the OPEN procedures in two ways. Firstly, if a file system error

occurs (e.g. 'not found' or 'already exists') these functions return

the error code and continue. Secondly the functions may be used to

find a vacant hole in the channel table: if successful they return the

channel number.

 FOPEN (#channel, name) open a file for read/write

 FOP_IN (#channel, name) open a file for input only

 FOP_NEW (#channel, name) open a new file

 FOP_OVER (#channel, name) open a new file, if it

 exists it is overwritten

 FOP_DIR (#channel, name) open a directory

When called with two parameters, these functions return the value zero

for successful completion, or a negative error code.

A file may be opened for read only with an optional extension using

the following code:

 ferr=FOP_IN (#3,name$&'_ASM') :REMark try to open _ASM file

 IF ferr=-7: ferr=FOP_IN (#3,name$) :REMark ERR.NF, try no _ASM

The #channel parameter is optional: if it is not given, the

functions will search the channel table for a vacant entry, and, if

the open is successful, the channel number will be returned. Note that

error codes are always negative, and channel numbers are positive.

In this example:

 outch = FOP_NEW (fred) :REMark open fred

 if outch < 0: REPORT outch: STOP :REMark ... oops

 PRINT #outch, 'This is file Fred'

 CLOSE #outch

there is no need to ever know the actual channel number.

10.4 CLOSE

The CLOSE command has been extended to take multiple parameters. In

addition, if called with no parameters it will close all channel

numbers #3 and above. It will not report an error if a channel is not

open.

 CLOSE #channels close channels

E.g. CLOSE #3, #4, #7 close #3, #4 and #7

11 File Information

There are six functions to extract information from the header of a

file.

If a file is being extended, the file length can be found by using the

FPOS function to find the current file position. (If necessary the

file pointer can be set to the end of file by the command GET

\#n 999999.)

 FLEN (#channel) find file length

 FTYP (#channel) find file type

 FDAT (#channel) find file data space

 FXTRA (#channel) find file extra info

 FNAME$ (#channel) find filename

 FUPDT (#channel) find file update date

The file type is 0 for ordinary files

 1 for executable programs

 2 for relocatable machine code

The file information functions can also be used with implicit

channels. E.g.

 PRINT FLEN (#3) print the length of the

 file open on channel #3

 PRINT FLEN (\fred) print the length of file

 fred

12 Direct Access Files

In QDOS, files appear as a continuous stream of bytes. On directory

devices (Microdrives, hard disks etc.) the file pointer can be set to

any position in a file. This provides 'direct access' to any data

stored in the file. Access implies both read access and, if the file

is not open for read only (OPEN_IN from SuperBASIC, IO.SHARE in QDOS),

write access. Parts of a file as small as a byte may be read from, or

written to any position within a file. QDOS does not impose any fixed

record structures upon files: applications may provide these if they

wish.

Procedures are provided for accessing single bytes, integers, floating

point numbers and strings. There is also a function for finding the

current file position.

To keep files tidy there is a command to truncate a file (when

information at the end of a file is no longer required), and a command

to flush the file buffers.

A direct access input or output (I/O) command specifies the I/O

channel, a pointer to the position in the file for the I/O operation

to start and a list of items to be input or output.

 command #channel\position, items

It is usual (although not essential - the default is #3) to give a

channel number for the direct I/O commands. If no pointer is given,

the routines will read or write from the current position, otherwise

the file position is set before processing the list of I/O items; if

the pointer is a floating point variable rather than an expression,

then, when all items have been read from or written to the file, the

pointer is updated to the new current file position. If no items are

given then nothing is written to or read from the file. This can be

used to position a file for use by other commands (e.g. INPUT for

formatted input).

12.1 Byte I/O

 BGET #channel\position, items get bytes from a file

 BPUT #channel\position, items put bytes onto a file

BGET gets 0 or more bytes from the channel. BPUT puts 0 or more bytes

into the channel. For BGET, each item must be a floating point or

integer variable; for each variable, a byte is fetched from the

channel. For BPUT, each item must evaluate to an integer between 0 and

255; for each item a byte is sent to the output channel.

For example the statements

 abcd=2.6

 zz%=243

 BPUT #3,abcd+1,'12',zz%

will put the byte values 4, 12 and 243 after the current file position

on the file open on #3.

Provided no attempt is made to set a file position, the direct I/O

routines can be used to send unformatted data to devices which are not

part of the file system. If, for example, a channel is opened to an

Epson compatible printer (channel #3) then the printer may be put into

condensed underline mode by either

 BPUT #3,15,27,45,1

 or PRINT #3,chr$(15);chr$(27);'-';chr$(1);

Which is easier?

12.2 Unformatted I/O

It is possible to put or get values in their internal form. The PRINT

and INPUT commands of SuperBASIC handle formatted IO, whereas the

direct I/O routines GET and PUT handle unformatted I/O. For example,

if the value 1.5 is PRINTed the byte values 49 ('1'), 46 ('.') and 53

('5') are sent to the output channel. Internally, however, the number

1.5 is represented by 6 bytes (as are all other floating point

numbers). These six bytes have the value 08 01 60 00 00 00 (in

hexadecimal). If the value is PUT, these 6 bytes are sent to the

output channel.

The internal form of an integer is 2 bytes (most significant byte

first). The internal form of a floating point number is a 2 byte

exponent to base 2 (offset by hex 81F), followed by a 4 byte mantissa,

normalised so that the most significant bits (bits 31 and 30) are

different. The internal form of a string is a 2 byte positive integer,

holding the number of characters in the string, followed by the

characters.

 GET #channel\position, items get internal format data

 from a file

 PUT #channel\position, items put internal format data

 onto a file

GET gets data in internal format from the channel. PUT puts data in

internal format into the channel. For GET, each item must be an

integer, floating point, or string variable. Each item should match

the type of the next data item from the channel. For PUT, the type of

data put into the channel, is the type of the item in the parameter

list. The commands

 fpoint=54

 ...

 wally%=42: salary=78000: name$='Smith'

 PUT #3\fpoint, wally%, salary, name$

will position the file, open on #3, to the 54th byte, and put 2 bytes

(integer 42), 6 bytes (floating point 78000), 2 bytes (integer 5) and

the 5 characters 'Smith'. Fpoint will be set to 69 (54+2+6+2+5).

For variables or array elements the type is self evident, while for

expressions there are some tricks which can be used to force the type:

 +0 will force floating point type;

 &'' will force string type;

 ||0 will force integer type.

 xyz$='ab258.z'

 ...

 PUT #3\37,xyz$(3 to 5)||0

will position the file opened on channel #3 to the 37th byte and then

will put the integer 258 on the file in the form of 2 bytes (value 1

and 2, i.e. 1*256+2).

12.3 Truncate File

 TRUNCATE #channel\position truncate file

If the position is not given, the file will be truncated to the

current position

 TRUNCATE #dbchan truncate the file open on

 channel dbchan

12.4 Flush Buffers

 FLUSH #channel flush file buffers

QDOS directory device drivers maintain as much of a file in RAM as

possible. A power failure or other accident could result in a file

being left in an incomplete state. The FLUSH procedure will ensure

that a file is updated without closing it. Closing a file will always

cause the file to be flushed. Toolkit II includes an upgrade to the

microdrive routines to perform a complete flush. FLUSH will not work

with Micro Peripherals disk systems.

12.5 File Position

There is one function to assist in direct access I/O: FPOS returns the

current file position for a channel. The syntax is:

 FPOS (#channel) find file position

For example:

 PUT #4\102,value1,value2

 ptr = FPOS (#4)

will set 'ptr' to 114 (=102+6+6).

The file pointer can be set by the commands BGET, BPUT, GET or PUT

with no items to be got or put. If an attempt is made to put the file

pointer beyond the end of file, the file pointer will be set to the

end of file and no error will be returned. Note that setting the file

pointer does not mean that the required part of the file is actually

in a buffer, but that the required part of the file is being fetched.

In this way, it is possible for an application to control prefetch of

parts of a file where the device driver is capable of prefetching.

13 Format Conversions

Toolkit II provides a number of facilities for fixed format I/O. These

include binary and hexadecimal conversions as well as fixed format

decimal. Most of these are in the form of functions but one new

command is included.

13.1 PRINT_USING

PRINT_USING is a fixed format version of the PRINT command:

 PRINT_USING #channel, format, list of items to print

The 'format' is a string or string expression containing a template or

'image' of the required output. Within the format string the

characters +-#*,.!\'"$ and • all have special meaning. When called,
the procedure scans the format string, writing out the characters of

the string, until a special character is found.

If the • character is found, then the next character is written out,
even if it is a special character.

If the character is a " or ', then all the following characters are

written out until the next " or '.

If the \ character is found, then a newline is written out.

All the other special characters appear in format 'fields'. For each

field an item is taken from the list, and formatted according to the

form of the field and written out.

The field determines not only the format of the item, but also the

width of the item (equal to the width of the field). The field widths

in the examples below are arbitrary.

 field format

 ##### if item is string, write string left

 justified or truncated

 otherwise write integer right justified

 ***** write integer right justified empty part

 of field filled with * (e.g. ***12)

 ####.## fixed point decimal (e.g. 12.67)

 ****.** fixed point decimal, * filled (e.g. **12.67)

 ##,###.## fixed point decimal, thousands separated

 ,*.** by commas (e.g 1,234.56 or *1,234.56)

 -#.####!!!! exponent form (e.g. 2.9979E+08) optional sign

 +#.####!!!! exponent form always includes sign

The exponent field must start with a sign, one #, and a decimal point

(comma or full stop). It must end with four !s.

Any decimal field may be prefixed or postfixed with a + or -, or

enclosed in parentheses. If a field is enclosed in parentheses, then

negative values will be written out enclosed in parentheses. If a - is

used then the sign is only written out if the value is negative; if a

+ is used, then the sign is always written out. If the sign is at the

end of the field, then the sign will follow the value.

Numbers can be written out with either a comma or a full stop as the

decimal point. If the field includes only one comma or full stop, then

that is the character used as the decimal point. If there is more than

one in the field, the last decimal point found (comma or full stop)

will be used as the decimal point, the other is used as the thousands

separator. Long live European unity!

If the decimal point comes at the end of the field, then it will not

be printed. This allows currencies to be printed with the thousands

separated, but with no decimal point (e.g 1,234).

Floating currency symbols are inserted into fields using the $

character. The currency symbols are inserted between the $ and the

first # in the field (e.g. $Dm#.###,## or +$$##,###.##). When the

value is converted, the currency symbols are 'floated' to the right to

meet the value.

For example

 fmt$='•$ Charges *******.** : ($SKr##.###,##) : ##,###.##+\'

 PRINT_USING fmt$, 123.45, 123.45, 123.45

 PRINT_USING fmt$, -12345.67, -12345.67, -12345.67

 PRINT_USING '-#.###!!!!\', 1234567

will print

 $ Charges ****123.45 : SKr123,45 : 123.45+

 $ Charges *-12345.67 : (SKr12.345,67) : 12,345.67-

 1.235E+06

13.2 Decimal Conversions

These routines convert a value into a decimal number in a string. The

number of decimal places represented is fixed, and the exponent form

of floating point number is not used.

 FDEC$ (value, field, ndp) fixed format decimal

 IDEC$ (value, field, ndp) scaled fixed format

 CDEC$ (value, field, ndp) decimal

The 'field' is length of the string returned, 'ndp' is the number of

decimal places.

The three routines are very similar. FDEC$ converts the value as it

is, whereas IDEC$ assumes that the value given is an integral

representation in units of the least significant digit displayed.

CDEC$ is the currency conversion which is similar to IDEC$, except

that there are commas every 3 digits.

 FDEC$ (1234.56,9,2) returns ' 1234.56'

 IDEC$ (123456,9,2) returns ' 1234.56'

 CDEC$ (123456,9,2) returns ' 1,234.56'

If the number of characters is not large enough to hold the value, the

string is filled with '*'. The value should be between -2^31 and 2^31

(-2,000,000,000 to +2,000,000,000) for IDEC$ and CDEC$, whereas for

FDEC$ the value multiplied by 10^ndp should be in this range.

13.3 Exponent Conversion

There is one function to convert a value to a string representing the

value in exponent form.

 FEXP$ (value, field, ndp) fixed exponent format

The form has an optional sign and one digit before the decimal point,

and 'ndp' digits after the decimal point. The exponent is in the form

of 'E' followed by a sign followed by 2 digits. The field must be at

least 7 greater than ndp. E.g.

 FEXP$ (1234.56,12,4) returns ' 1.2346E+03'

13.4 Binary and Hexadecimal

 HEX$ (value, number of bits) convert to hexadecimal

 BIN$ (value, number of bits) convert to binary

These return a string of sufficient length to represent the value of

the specified number of bits of the least significant end of the

value. In the case of HEX$ the number of bits is rounded up to the

nearest multiple of 4.

 HEX (hexadecimal string) hexadecimal to value

 BIN (binary string) binary to value

These convert the string supplied to a value. For BIN, any character

in the string, whose ASCII value is even, is treated as 0, while any

character, whose ASCII value is odd, is treated as 1. E.g. BIN

('.#.#') returns the value 5. For HEX the 'digits' '0' to '9' 'A' to

'F' and 'a' to 'f' have their conventional meanings. HEX will return

an error if it encounters a non-recognised character.

14 Display Control

There are three separate facilities provided to extend the display

control operations of the QL. They are cursor control, character fount

control and window reset.

14.1 Cursor Control

The function INKEY$ is designed so that keystrokes may be read from

the keyboard without enabling the cursor. Two procedures are supplied

to enable and disable the cursor. When the cursor is enabled, it will

usually appear solid (inactive). The cursor will start to flash

(active) when the keyboard queue has been switched to the window with

the cursor (e.g. by an INKEY$).

 CURSEN #channel enable the cursor

 CURDIS #channel disable the cursor

Note that while CURSEN and CURDIS default to channel #1, like most IO

commands, INKEY$ defaults to channel #0.

For example:

 CURSEN: in$=INKEY$ (#1,250): CURDIS

will enable the cursor in window #1, and wait for up to 5 seconds for

a character from the keyboard. If nothing is typed within the 5

seconds, then in$ will be set to a null string ("").

14.2 Character Fount Control

The QL display driver has two character founts built in. The first

provides patterns for the values 32 (space) to 127 (copyright), while

the second provides patterns for the values 127 (undefined) to 191

(down arrow). For each character the display driver will use the

appropriate pattern from the first fount, if there is one, failing

that, it will use the appropriate pattern from the second fount,

failing that, it will use the first defined pattern in the second

fount.

Substitute founts need not have the same range of values as the built

in founts. A fount could, for example, be defined to have all values

from 128 to 255.

The format of a QL fount is:

 byte lowest character value in the fount

 byte number of valid characters-1

 9 bytes of pixels for the lowest character value

 9 bytes of pixels for the next character value, etc.

The pixels are stored with the top line in the lowest address byte.

For each pixel a bit set to one indicates INK, a bit set to zero

indicates paper. The leftmost pixel is in bit 6 of the byte.

The character 'g' is stored as: %00000000

 %00000000

 %00111000

 %01000100

 %01000100

 %01000100

 %00111100

 %00000100

 %00111000

The command CHAR_USE is used to set or reset one or both character

founts.

 CHAR_USE #channel, addr1, addr2 addr1 and addr2 both point

 to substitute founts

 CHAR_USE #channel, 0, addr2 the built in first fount

 will be used, addr2 points

 to a substitute second

 fount

 CHAR_USE 0,0 reset both founts for

 window #1

The QL display driver assumes that all characters are 5 pixels wide by

9 pixels high. Other sizes are obtained by doubling the pixels or by

adding blank pixels between characters. It is possible, with Toolkit

II, to set any horizontal and vertical spacing. If the increment is

set to less than the current character size (set by CSIZE) then

extreme caution is required as it will be possible for the display

driver to write characters (at the right hand side or bottom of the

window) partly outside the window. The windows should not come closer

to the bottom or right hand edges of the screen than the amount by

which the increment specified is smaller than the character spacing

set by CSIZE.

 CHAR_INC #channel, x inc, y inc set the character x and

 y increments

The channel is defaulted to #1.

The character increments specified are cancelled by a CSIZE command.

For example, if there is a 3x6 character fount in a file called 'f3x6'

(length 875 bytes), then a 127 column by 36 row screen can be set up:

 MODE 4

 WINDOW 512-2,256-3,0,0 :REMark clear of edges of screen

 CSIZE 0,0 :REMark spacing 6x10

 CHAR_INC 4,7 :REMark spacing 4x7

 :

 fount = ALCHP (875) :REMark reserve space for fount

 LBYTES f3x6, fount :REMark load fount

 CHAR_USE fount,0 :REMark single fount only

14.3 Resetting the Windows

There are two commands for resetting the windows to the turn-on state:

 WMON mode reset to 'Monitor'

 WTV mode reset to 'TV' windows

The mode should be 0, 4 or 512 for the 4 colour (512 pixel) mode, or 8

or 256 for the 8 colour (256 pixel) mode. Only the window sizes,

positions and borders are reset by these commands, the paper strip and

ink colours remain unchanged.

15 Memory Management

As QDOS is a multitasking operating system, there may be several jobs

running in a QL, and so the amount of free memory may vary

unpredictably. No Job may assume that the amount of free memory is

fixed. The function FREE_MEM may be used to guess at the free memory

(defined as the space available for filing system slave blocks less

the space required for two (c.f. QL Toolkit: one only) slave blocks.

Temporary space may be allocated in the 'common heap'. This is done

with the function ALCHP which returns the base address of the space

allocated. Individual allocations may be returned to QDOS with the

command RECHP, or all space allocated is released by the commands

CLCHP (clear common heap), CLEAR or NEW.

 Functions

 FREE_MEM find the amount of free

 memory

 ALCHP (number of bytes) allocates space in common

 heap (returns the base

 address of the space)

 Commands

 RECHP base address return space to common

 heap

 CLCHP clear out all allocations

 in the common heap

Making large allocations in the common heap and then accessing a drive

for the first time, can cause a terrible heap disease called 'large

scale fragmentation' where the drive definition blocks become widely

scattered in the heap leaving large holes that cease to be available

except as heap entries (i.e. you cannot load programs into them). A

simple but dangerous cure is to delete the drive definition blocks.

 DEL_DEFB delete file definition

 blocks from common heap

Although there are precautions within the procedure DEL_DEFB to

minimise damage, care should be taken to avoid using this command

while any directory device is active.

16 Procedure Parameters

In QL SuperBASIC procedure parameters are handled by substitution: on

calling a procedure (or function), the dummy parameters in the

procedure definition become the actual parameters in the procedure

call. The type and usage of procedure parameters may be found with two

functions:

 PARTYP (name) find type of parameter

 PARUSE (name) find usage of parameter

 the type is 0 null the usage is 0 unset

 1 string 1 variable

 2 floating point 2 array

 3 integer

One of the 'tricks' used by many machine code procedures is to use the

'name' of an actual parameter rather than the 'value' (e.g. 'LOAD

fred' to load the file name fred). Given the name of a dummy parameter

of a procedure, it would be possible to find the name of an actual

parameter of a SuperBASIC procedure call, but it would be very slow.

It is much easier to find the name of an actual parameter, if the

position in the parameter list is known.

 PARNAM$ (parameter number) find name of parameter

For example the program fragment

 pname fred, joe, 'mary'

 DEF PROC pname (n1,n2,n3)

 PRINT PARNAM$(1), PARNAM$(2), PARNAM$(3)

 END DEF pname

would print 'fred joe ' (the expression has no name).

One further 'trick' is to use the value of the actual argument if it

is a string, otherwise use the name. This is possible in SuperBASIC

procedures using the slightly untidy PARSTR$ function.

 PARSTR$ (name, parameter number) if parameter 'name' is a

 string, find the value,

 else find the name.

For example the program fragment

 pstring fred, joe, 'mary'

 DEF PROC pstring (n1,n2,n3)

 PRINT PARSTR$(n1,1), PARSTR$(n2,2), PARSTR$(n3,3)

 END DEF pstring

would print 'fred joe mary'.

17 Error Handling

The JS and MG QL ROMs contain unfinished code for error trapping in

SuperBASIC: Toolkit II corrects some of the remaining problems.

Error handling is invoked by a WHEN ERROR clause. Unlike procedure and

function definitions, these clauses are static. The error handling

within a WHEN ERROR clause is set up when the clause is executed, but

is only actioned WHEN an ERROR occurs. This means that a program may

have more than one WHEN ERROR clause. As each one is executed, the

error processing within that clause replaces the previously defined

error processing.

The clause is opened with a WHEN ERROR statement, and closed with an

END WHEN statement. Within the clause there may be any normal type of

statement. (Although it might be better to avoid calling SuperBASIC

functions or procedures!) A WHEN ERROR clause is exited by a STOP,

CONTINUE, RETRY, RUN, LOAD or LRUN command (if you are using Toolkit

II). Furthermore the Toolkit II versions of RUN, NEW, CLEAR, LOAD,

LRUN, MERGE and MRUN reset the error processing (an unfortunate

omission from the QL ROMs).

There are some additional facilities intended for use within WHEN

ERROR clauses.

 ERROR functions

 These functions correspond to each of the system error codes

 (ERR_NC, ERR_NJ, ERR_OM, ERR_OR, ERR_BO, ERR_NO, ERR_NF,

 ERR_EX, ERR_IU, ERR_EF, ERR_DF, ERR_BN, ERR_TE, ERR_FF,

 ERR_BP, ERR_FE, ERR_XP, ERR_OV, ERR_NI, ERR_RO, ERR_BL) and

 return the value TRUE if the error, which caused the WHEN

 ERROR clause to be invoked, is of that type. Do NOT use

 ERR_DF without Toolkit II.

 ERROR information

 ERLIN returns the line number

 where the error occurred

 ERNUM returns the error number

 ERROR reporting

 REPORT #channel reports the last error

 REPORT reports the last error to

 channel #0

 REPORT #channel, error number reports the error number

 given

 RETRY and CONTINUE

 As the RETRY and CONTINUE exit from an error clause without

 resetting the WHEN ERROR, it would be useful if they could

 also be used to exit to a different part of the program. In

 Toolkit II, RETRY and CONTINUE can have a line number.

 CONTINUE line number continue or retry from a

 RETRY line number specified line

18 Timekeeping

18.1 Resident Digital Clock

 CLOCK default clock in its own window

 CLOCK #channel default clock, 2 rows of 10 chars

 CLOCK #channel, string user defined clock

CLOCK is a procedure to set up a resident digital clock using the QL's

system clock. If no window is specified, then a default window is set

up in the top RHS of the monitor mode default channel 0. This window

is 60 by 20 pixels and is only suitable for four colour mode. The

clock may be invoked to execute within a window set up by BASIC. In

this case the clock job will be removed when the window is closed.

The string is used to define the characters written to the clock

window: any character may be written except $ or %. If a dollar sign

is found in the string then the next character is checked and

 $d or $D will insert the three characters of the day of week,

 $m or $M will insert the three characters of the month.

If a percentage sign is found then

 %y or %Y will insert the two digit year

 %d or %D will insert the two digit day of month

 %h or %H will insert the two digit hour

 %m or %M will insert the two digit minute

 %s or %S will insert the two digit second

The default string is '$d %d $m %h/%m/%s ' a newline should be forced

by padding out a line with spaces until the right hand margin of the

window is reached.

To set the clock the SuperBASIC command SDATE is used:

 SDATE year,month,day,hour,minute,seconds

Example:

 SDATE 1989,6,1,14,45,30

 MODE 8

 OPEN #6,'scr_156x10a32x16'

 INK #6,0: PAPER #6,4

 CLOCK #6,'QL time %h:%m'

18.2 Alarm Clock

 ALARM time set alarm clock to sound at given time

The time should be specified as two numbers: hours (24 hour clock) and

minutes:

 ALARM 14,30 alarm will sound at half past two

19 Extras

 EXTRAS #channel lists the extra facilities

 linked into SuperBASIC

 EXTRAS lists the extras to #1

If the output channel is a window, the screen is frozen (CTRL F5) when

the window is full. With Toolkit II installed, there are hundreds of

extras.

 TK2_EXT enforces the Toolkit II

 definitions of common

 commands and functions

If, for any reason, some of the Toolkit II extensions have been

re-defined, TK2_EXT (c.f. FLP_EXT floppy disk extensions, EXP_EXT

expansion unit extensions) will reassert the Toolkit II definitions.

20 Console Driver

20.1 Keyboard Extensions

There are two extensions to the QL keyboard handling. The first

provides a last line recall facility, and the second assigns a string

of characters to an 'ALT' keystroke.

 <ALT><ENTER> keystroke recovers the

 last line typed

This keystroke recovers (on a per-window basis) the last line typed,

provided only that the keyboard buffer is long enough to hold it.

The ALTKEY command assigns a string to an 'ALT' keystroke (hold the

ALT key down and press another key). The string itself may contain

newline characters, or, if more than one string is given, then there

will be an implicit newline between the strings. Thus a null string

may be put at the end to add a newline to the string.

 ALTKEY character, strings assign a string to <ALT>

 character keystroke

For example after the command

 ALTKEY 'r', 'RJOB "SPL"',''

 or ALTKEY 'r', 'RJOB "SPL"' & CHR$(10)

when ALT r is pressed, the command 'RJOB "SPL"' will be executed.

 ALTKEY 'r' will cancel the ALTKEY string for 'r', while

 ALTKEY will cancel all ALTKEY strings

21 Microdrive Driver

21.1 Microdrive extensions

There are three extensions to the microdrive filing system. These are

available as operating system entry points, but may also be supported

as calls from SuperBASIC.

 OPEN OVERWRITE Trap #2, D0=1, D3=3

 This variant of the OPEN call opens a file for

 write/read whether it exists or not. The file

 is truncated to zero length before use.

 RENAME Trap #3, D0=4A, A1 points to new name

 This call renames a file. The name should include

 the drive name (e.g. FLP1_NEW_NAME).

 TRUNCATE Trap #3, D0=4B

 This call truncates a file to the current byte

 position.

21.2 Microdrive Improvements

The FS.FLUSH filing system call has been extended to perform a

complete flush including header information. This operation may be

accessed through the FLUSH command.

22 Network Driver

Attempts have been made in Toolkit II to elevate the rather elementary

network facilities of the QL to a useful level. The network

performance is dominated by the exceptionally low capability of the

network hardware. (If your QL has a pre-D14 serial number then it is

highly possible that your network hardware does not work at all,

although recent experience has shown that many more pre-D14 QLs have a

working network port than is generally supposed.)

22.1 Network Improvements

Each QL connected to a network should have a unique 'station number'

in the range 1 to 63. This is set using the NET command.

 NET station number

Toolkit II provides a new protocol for broadcast which includes new

provisions for handshaking. A broadcast is a message sent from one QL

to all other QLs listening to the network. The Toolkit II broadcast

protocol has a positive NACK (not acknowledged) handshake as well as

provision for detecting BREAK. The device names for the network are:

 NETO_station number output to station number

 NETO_0 send broadcast

 NETI_station number input from station number

 NETI_my station nunber input from any station

 NETI_0 receive a broadcast

 NETI_0_buffer size receive a broadcast into

 specified buffer size

When opening a channel to receive a broadcast, a buffer is opened to

allow the entire transmission to be received uninterrupted. If no

buffer size is specified, then all but 2k bytes of the free memory

will be taken. The buffer size should be specified in kbytes. For

example:

 NETI_0_10 receive a broadcast into

 10 kbyte buffer

When a network output channel is closed, then (as with the QL network

driver) the network driver will keep trying to send the last buffer

for approximately 20 seconds in case the receiving station is busy

with its Microdrives. With Toolkit II, however, after about 5 seconds

the driver will start checking for a BREAK.

22.2 File Servers

The file server provided in Toolkit II is a program which allows IO

resources attached to one QL to be accessed from another QL. This

means that, for example, disk drives attached to just one QL can be

accessed from several different QLs. The file server only needs to be

running on the QL with the shared IO resource. This version of the

file server is more general than the first version in that the IO

resources may be pure serial devices (such as modems or printers) or

windows on the QL display as well as file system devices (such as disk

drives).

 FSERVE invokes the 'file server'

There may be more than one QL on a network with a file server running:

the station numbers for these QLs should be as low as possible, and

should not be greater than 8.

It is possible that files opened across the network may be left open.

This can occur if a remote QL is removed from the network, is turned

off or is reset. To correct this condition, wait until all other

remote QLs have finished their operations on this QL, then remove the

file server and restart with the commands

 RJOB SERVER

 FSERVE

22.3 Accessing the File Server

The network file servers are accessed from remote QLs using a compound

device name:

 Nstation number_IO device the name of a remote

 IO device (e.g. N2_FLP1_

 is floppy 1 on network

 station 2)

For example

 LOAD n2_flp1_fred loads file 'fred' from

 floppy 1 on network

 station 2

 OPEN_IN #3,n1_flp2_myfile opens 'myfile' on floppy 2

 on network station 1

 OPEN #3,n1_con_120x20a0x0 opens a 20 column 2 row

 window on net station 2

The use of directory default names makes this rather simpler. For

example

 PROG_USE n1_win1_progs by default all programs

 will be loaded from

 directory 'progs' on

 Winchester disk 1 on

 network station 1

 SPL_USE n1_ser set the default spooler

 destination to SER1 on

 network station 1

It is possible to hide the network from applications by setting a

special name for a network file server.

 NFS_USE name, network names sets the network file

 server name

The 'network names' should be complete directory names, and up to

eight network names may be given in the command. Each one of these

network names is associated with one of the eight possible directory

devices ('name'1 to 'name'8).

For example

 NFS_USE mdv,n2_flp1_,n2_flp2_ sets the network file

 server name so that any

 reference to 'mdv1' on

 this remote QL, will be

 taken to be a reference

 flp1 on net station 2,

 likewise 'mdv2' will be

 taken to be flp2 on net

 station 2

 OPEN_NEW #3,mdv2_fred now this will open file

 'fred' on floppy 2 on

 network station 2

The network names will normally just be a network number followed by a

device name as above and will end with an underscore to indicate that

the name is a directory. Indeed if the network file server name is to

be used with the wild card file maintenance commands, this is the only

acceptable form. QUILL, however, tends to open a file with the name

DEF_TMP on mdv2_. Clearly, there will be problems if more than one

copy of QUILL is run across the network at any one time. This can be

avoided if the network name for mdv2_ is set to be a directory:

 NFS_USE mdv,n1_flp1_,n1_flp2_fred_ DEF_TMP opened on mdv2_

 will now appear in

 directory 'fred' on flp2_

 on network station 1

FLP_USE FLP is invoked after reset so if FLP is to be used as the

device name in the NFS_USE command remember to include FLP_USE XXX.

This will stop the TRUMP CARD / GOLD CARD etc. from trying to access

its own disk port instead of the network.

 FLP_USE xyz set device name for floppies

 to xyz

 NFS_USE flp,n1_flp1_,n1_flp2_ any reference to 'flp1' on

 this QL will access flp1

 on net station 1, etc.

22.4 Messaging

The Toolkit II network facilities may also be used for messaging. A

window may be opened, a message sent, and a reply read using a simple

SuperBASIC program. If particularly pretty messages are required,

then the graphics facilities of SuperBASIC may also be used. The only

standard IO facilities not available across the network are SD.EXTOP

(extended operations) and SD.FOUNT (setting the founts).

For example

 ch = FOPEN (n2_con_150x10a0x0): CLS #ch

 INPUT #ch,'Do you want coffee? ';rep$

 IF 'y' INSTR rep$ = 1 : PRINT 'Fred wants coffee'

 CLS #ch: CLOSE #ch

23 Writing programs to use with EX

Programs invoked by EX (or EW or ET) fall into three classifications:

 non standard program header is not standard format;

 special program header is standard but there

 is an additional flag;

 standard program header is standard.

So far as EX is concerned, the distinction is that a special program

must contain the code to open its own I/O channels.

At the start of execution a standard or non-standard program will have

the following information on the stack:

 word the total number of channels open for this Job

 [long the channel ID of the input pipe, if present]

 (long the channel ID of each filename given in prog_spec)

 [long the channel ID of the output pipe, if present]

 word the length of the option string or 0

 [bytes the bytes of the option string]

If there is just one channel open for a Job, then it is opened for

read/write unless it is a pipe in which case the direction is implied

in the command.

If there is more than one channel open for a Job, then the first

channel is the primary input (opened for read only), and the others

are opened OVERWRITE. The last channel is the primary output.

A Job should not close the channels supplied, but, when complete, it

should commit suicide. Each Job is owned by the next one in the chain,

so that when the last job has completed, the entire chain is removed.

Committing suicide in this way will put an end of file in the output.

Thus an end of file from the primary input should, directly or

otherwise, indicate to a program that the data is complete.

23.1 Special Programs

Standard and special programs have the value $4AFB in bytes 6 and 7.

This is followed by a standard string (length in a word followed by

the bytes of the program identification). In the case of a special

program header a further value of $4AFB (aligned on a word boundary)

follows the identification. When the program has been loaded, the

option string put on the jobs stack and the input pipe (if it is

required) opened and its ID put on the job's stack, then EX will make

a call to the address after the second identifying word. Note that the

code called will form part of a BASIC procedure, not part of an

executable program.

On entry to this code, the following registers will be set:

 D4.L 0 or 1 if there is an input pipe; ID is not on stack

 D5.L 0 or 1 if there is an output pipe; ID is on stack

 D6.L Job ID for this program

 D7.L total number of pipes + file names in prog_spec

 A0 address of support routines

 A1 pointer to command string

 A3,A6 *pointer to first file name (name table)

 A4 pointer to job's stack

 A5,A6 *pointer beyond last file name (name table)

 *these are the standard BASIC procedure parameter

 passing registers.

The file setup procedure should decode the file names, open the files

required and put the IDs on the stack (A4). Register D0 should be set

to the error code on return. D5 must be incremented by the number of

channel IDs put on the job's stack. A4 must be maintained as the job's

stack pointer. Registers D1 to D7, A0 to A3 and A5 may be treated as

volatile.

The routine (A0) to get a file name should be called with the pointer

to the appropriate name table entry in A3. D0 is returned as the error

code, D1 to D3 are smashed. If D0 is 0, A1 is returned as the pointer

to the name (relative to A6). If D0 is positive, A0 is returned as the

channel ID of the SuperBASIC channel (if the parameter was #n), all

other address registers are preserved.

The routine 2(A0) to open a channel should be called with the pointer

to the file name in A1 (relative to A6). The file name should not be

in the BASIC buffer; D3 should hold the access code (overwrite is

supported) and the job ID (as passed to the initialisation routine)

should be in D6. The error code is returned in D0, while D1 and D2 are

smashed, and A1 is returned pointing to the file name used (it may

have a default directory in front). If the open fails, A1 will point

to the default+given filename. The channel ID is returned in A0 and

all other registers are preserved.

In both cases the status register is returned set according to the

value of D0.

Appendix A

The appendix illustrates the use of Toolkit II facilities with the GST

assembler and linker. (The version used by QJUMP is supplied by GST

with their QC compiler: QC is well worth buying just to get the

assembler and linker!). The programs accept a wide variety of options

on their command line. This command line can be passed to the programs

in the parameter string of the EX command. Unfortunately the programs

do not attempt to find the default data directory, so it is necessary

to add this to the file names in the command line. The assembler is

called ASM and the linker LINK. Filenames can be passed to these

procedures as strings or names.

100 REMark assemble a relocatable file

110 :

120 DEFine PROCedure asr (file$)

130 EX asm; DATAD$ & PARSTR$ (file$,1) & ' -errors scr'

140 END DEFine asr

150 :

160 REMark assemble with listing

170 :

180 DEFine PROCedure asl (file$)

190 EW asm; DATAD$ & PARSTR$ (file$,1) & ' -list ser -nosym'

200 END DEFine asl

210 :

220 REMark link program

230 :

240 DEFine PROCedure lk (file$)

250 EX link;DATAD$&PARSTR$(file$,1)&' -with '&DATAD$&'link -nolis

260 END DEFine lk

If the data default directory is 'FLP1_JUNK_', then the procedure

calls

 ASR 'table' and LK master

will create the command parameter strings to the assembler and linker

 'FLP1_JUNK_table -list ser -nosym' and

 'FLP1_JUNK_master -with FLP1_JUNK_link -nolist'

Appendix B

QL Network Protocols

Standard QL Handshake

The Standard QL handshaking network protocol is compatible with the

Sinclair Spectrum protocol. It comprises 11 phases

 sender receiver

 a) scout

 1) gap waiting for 3ms for

 activity, if activity

 occurs: restart

 2) wait waiting for activity

 (a scout)

 3) scout send a scout of wait for 530us

 duration < 530us, if

 contention occurs:

 restart

 b) header

 4) hactiv set net active 22us wait for active

 5) hbytes for each byte 11.2us for each byte wait for

 start (inactive) bit, start (inactive) bit,

 8*11.2us data bits, read 8 data bits, if

 5*11.2us stop (active) fails: restart

 bits

 6) hackw wait for 2.5ms for set net active 22us

 active, if not active:

 restart

 7) hackbt wait for start bit, send 11.2us start bit

 read 8 data bits, 8 data bits 00000001

 if error: restart

 c) data

 8) dactiv set net active 22us wait for active

 9) dbytes for each byte 11.2us for each byte wait for

 start (inactive) bit, start (inactive) bit,

 8*11.2us data bits, read 8 data bits, if

 5*11.2us stop (active) fails: restart

 bits

 10) dackw wait for 2.5ms for set net active 22us

 active, if not active:

 restart

 11) dackbt wait for start bit, send 11.2us start bit

 read 8 data bits, 8 data bits 00000001

 if error: restart

The entire protocol is synchronised by a period of inactivity at least

2.8ms long.

The header is eight bytes long in the following format:

 destination station number

 sending station number

 block number (high byte)

 block number (low byte)

 block type (0 normal, 1=last block of file)

 number of bytes in block (0 to 255)

 data checksum

 header checksum

If the number of bytes in a block is 0, 256 data bytes are actually

sent.

The checksums are formed by simple addition: if there are two single

bit errors in the most significant bit (the most common type of error)

within one block, then the errors will pass undetected.

If the block number received in a header is not equal to the block

number required, then the header and data block are acknowledged but

ignored.

The protocol is not proof against a failure on the last block

transmitted where the receiver has accepted the block, but the sender

has missed the acknowledge. In this case the sender will keep

re-transmitting the block until it times out (about 20s).

Toolkit II Broadcast

Toolkit II has a special version of this protocol for network

broadcast. This has an extended scout to allow time for the receiver

to interrogate the IPC without missing the scout, and it has an active

acknowledge / not acknowledge. The protocol has been defined in such a

way that future network drivers can be more flexible than the Toolkit

II driver.

 sender receiver

 a) scout

 1) gap waiting for 3ms for

 activity, if activity

 occurs: restart

 2) wait waiting for activity

 (a scout) every 20ms

 check IPC for BREAK

 3) scout send a scout of wait for 530us

 duration < 530us, if

 contention occurs:

 restart

 4) scext send a scout extension

 of 5ms active

 b) header

 5) hbytes for each byte 11.2us for each byte wait for

 start (inactive) bit, start (inactive) bit,

 8*11.2us data bits, read 8 data bits, if

 5*11.2us stop (active) fails: nack

 bits

 6) hwait leaving net active,

 wait 1ms

 c) data

 7) dbytes for each byte 11.2us for each byte wait for

 start (inactive) bit, start (inactive) bit,

 8*11.2us data bits, read 8 data bits if

 5*11.2us stop (active) fails: nack

 bits

 8) dack inactivate net and within 500us set net

 wait 1ms for active: active and wait 5ms,

 if fails, restart do any processing

 required and when ready

 for next packet,

 inactivate and restart

 d) Not acknowledge

 9) nack wait for inactive wait for 2.8us of active

 or inactive, if inactive:

 restart

 10) nackw wait 500us for active: wait 200us for active, if

 timeout is ok, active active: restart, if inactive

 is fail activate 500us (nack)

A broadcast acknowledge is 5ms active followed by more than 400us

inactive. A broadcast not acknowledge is no response or 5ms active

followed by 200us to 300us inactive, followed by more than 200us

active.

Toolkit II Server Protocol

The Toolkit II server protocol is physically the same as the Standard

QL protocol, but the header has been slightly changed to improve the

checksum, to allow blocks of up to 1000 bytes to be sent and to

distinguish server transactions. A server header cannot be confused

with a standard header.

Appendix C

Toolkit II Code Sizes

 size nr size/nr

Base area and tables 1618 1 1618

ED 2328 1 2328

VIEW 74 1 74

Directory control (DATA_USE, DLIST etc.) 224 11 20

File maintenance (COPY, WDEL etc) 1356 13 104

SPL, SPLF 212 2 106

BASIC (LOAD, SAVE, RUN etc.) 308 13 24

Load and save (LBYTES, SBYTES, etc.) 182 6 30

CALL 30 1 30

EX, EW 750 2(3?) 375

JOB control procedures 292 4 73

JOB information functions 102 4 25

OPEN and FOPEN 122 11 11

CLOSE 60 1 60

File header information 86 6 14

Direct access files 518 7 74

PRINT_USING 442 1 442

Decimal conversions (required for PRINT_USING) 552 4 138

Hex and binary conversions 214 4 53

Cursor control 24 2 12

Character setting (CHAR_USE, CHAR_INC) 56 2 28

Window reset (includes 48 bytes in header) 128 2 64

Heap handling 146 4 38

Heap tidy (DEL_DEFB) 62 1 62

BASIC procedure parameter type 136 4 34

ERROR handling 54 2 27

EXTRAS 68 1 68

Microdrive extensions 720 4 180

ALTKEY and last line recall 366 2 183

Network 3064 3 1021

Utility code 1674

The sizes above do not include the table entries for each BASIC

extension (=name length + 3 or 4 bytes).

Facilities not included in above:

RAM disk approx 1400

Buffered printer extension approx 500

 total approx 2400

These can be accommodated by removing about 50 of the less useful

facilities.

Appendix D

Toolkit II Update Record

V2.01 First full version.

V2.02 First release version.

V2.03 Patched to prevent MG initialisation problems.

V2.04 (Jeaggi only) network eof problems fixed.

V2.05 Lost channel on OPEN_NEW (file already exists) fixed.

 EX EW changed so that owner is current job.

V2.06 EX EW changed for compiled programs: EX jobs owned by 0, EW

 jobs owned by current job and now wait!

V2.07 (Sandy only) 'bad line' character wrap problem in ED fixed.

V2.08 Empty line in ED problem (introduced in V2.07) fixed.

 Unset string parameter collapse in PRINT_USING fixed.

V2.09 PUTting randomly positioned bytes over the the network should

 not now shuffle the contents of a file.

V2.10 RENAME with only one name does not now leave file open.

 The file system prompts are now sent to #0 rather than channel

 0.

V2.11 Initialisation error causing loss of replacement commands (e.g.

 OPEN) using JM/AH ROMs and CST QDisc V1.17 and V1.18 fixed.

V2.12 Bad error message return from opening a file name that is too

 long changed to return "bad name".

 "Bad parameter" from special job opening a file specified as a

 string in an EX command fixed.

 "Not complete" from SPL fixed.

 Last line recall changed to reduce problems due to asynchonous

 modification of keyboard queue.

V2.13 Error status returned from SAVE and LIST if drive full or bad

 or changed medium during output.

 Network fixed to prevent serial I/O buffer damage when

 interleaving serial I/O with window enquiries while reading

 from a file.

Appendix E

Floppy disk update Record

V1.07 (not released)

 Write operations held pending (up to 20 sectors).

 Direct sector IO added.

V1.08 Microdrive interleave problem with FS.LOAD call (in V1.07 only)

 fixed.

V1.09 Direct sector open does not now check the drive. On seek, the

 track register is set to the actual track number found on the

 track, seek errors will not be detected, so any track may be

 read from any part of the disk.

V1.10 Direct sector write in FM (*DnS) does not now give read/write

 failed (it did work before though - just ignore the error

 message). This does not affect those interfaces which have MFM

 only.

 A fatal LOAD error condition has been removed. This occurred

 in V1.07 onwards if:

 a) a file is LOADed within .5 second of a modification

 to that file

 and b) the file was not closed or flushed in this period

 and c) the directory entry for the file has become

 unreadable.

 (There is no logical reason for conditions a and b to be

 met simultaneously!)

V1.11 Version 1.11 should be functionally identical to Version 1.10.

 The source code has been completely reorganised.

V1.12 The step rate detection procedure, which has not functioned

 well since version 1.09, has been fixed.

V1.13 The disk present detection routine has been changed to work

 reliably with index pulses as short as 10 us. (A problem with

 extreme out-of-spec Mitsubishi 3.5" drives.)

V1.14 The FLP_OPT command or the equivalent set of commands has been

 added. This now gives a choice of security versus speed, and

 extends the range of odd drives which may be used.

 The disk change detection has been redesigned and the disk

 header handling has been improved.

 The FORMAT procedure has been rewritten. It will not now detect

 step errors, but instead it formats and checks the disk in 5

 revolutions per track (1 second, on double sided drives), or 3

 revolutions per track (.6 second, on single sided drives).

 The check on the 11th character of a medium name (FORMAT) is

 not now done unless the name is at least 11 characters long.

 The error returns from direct sector reads have been tidied up.

 The read operations used in direct sector reads now have their

 own read error recovery. This should improve the reliability of

 direct sector reads (see V1.09 above). Direct sector reads no

 longer clear the read buffer before attempting to read.

 When checking for the presence of a disk, the driver now waits

 for just over one second before giving up.

 If there are repeated seek errors, the step rate is

 automatically reduced.

 The driver can now scatter load zero length files without

 getting in a knot.

V1.15 The changes in V1.15 are mainly to accomodate the 1772 control

 chip. Some of these may have beneficial side effects when using

 1770 or 2793.

 1) When first accessing a drive a check is made for 1772

 step rates.

 2) A compulsory 5ms settle is added after any seek: there

 was a problem at 2ms step rate with premature

 termination of a restore command.

 3) The unchecked seeks at the start of the format

 procedure and before a direct sector read / write are

 now performed at a slower step rate than the normal

 seeks. This should reduce the chances of an undetected

 seek error.

 The sector allocation algorithm has been changed so that the

 first sector of a file may be allocated in track 0 when all

 other tracks are full.

 The internal messages have been moved to the base of the ROM.

 Foreign language versions can now be made with simple patches.

 The write track procedure (for format) has been changed to

 improve the worst case timing margin.

V1.16 A problem with repeated checks on a changed medium, when files

 are still open on a previous medium, has been fixed.

 The FLP_EXT command clears the procedure stack.

 RAM disk V1.02 incorporated where appropriate.

V1.17 RAM disk V1.03 incorporated where appropriate.

V1.18 Verify introduced on restore; additional pauses introduced on

 seek error recovery.

V1.19 to V1.25 Identical to V1.18

Appendix F

Index and List of Differences

This index lists the SuperBASIC extensions in alphabetical order

together with the usage (procedure, function or program), the section

number describing the facility in detail, the origin of the facility

(whether the facility first appeared in the QL ROMs or in the Sinclair

QL Toolkit) and principal differences between the facility in the

Toolkit II and earlier versions.

This list only includes the most important differences, in many cases

there are other improvements over earlier versions.

Name Usage Section Origin Differences

AJOB procedure 9 QL Toolkit accepts Job name

ALARM program 18 QL Toolkit resident program

ALCHP function 15 QL Toolkit

ALTKEY procedure 20 new

BGET procedure 12 QL Toolkit

BIN function 13 QL Toolkit

BIN$ function 13 QL Toolkit

BPUT procedure 12 QL Toolkit

CALL procedure 7 bug fix

CDEC$ function 13 QL Toolkit

CHAR_USE procedure 14 QL Toolkit

CHAR_INC procedure 14 QL Toolkit

CLCHP procedure 15 QL Toolkit

CLEAR procedure 6 QL clears WHEN ERROR

CLOCK program 18 QL Toolkit configurable program

CLOSE procedure 10 QL close multiple files

CONTINUE procedure 17 QL specified line number

COPY procedure 5 QL uses default directory

 uses default destination

COPY_O procedure 5 new overwrites file

COPY_N procedure 5 QL uses default directory

 uses default destination

COPY_H procedure 5 new

CURSEN procedure 14 QL Toolkit

CURDIS procedure 14 QL Toolkit

DATA_USE procedure 4 QL Toolkit

DATAD$ function 4 new

DDOWN procedure 4 new

DEL_DEFB procedure 15 new

DELETE procedure 5 QL uses default directory

DEST_USE procedure 4 new

DESTD$ function 4 new

DIR procedure 5 QL uses default directory

DLIST procedure 4 new

DO procedure 6 new

DNEXT procedure 4 new

DUP procedure 4 new

ED procedure 3 QL Toolkit completely respecified

ERR_DF function 17 bug fix

ET procedure 8 QL Toolkit

EX procedure 8 QL Toolkit

EXEC procedure 8 QL now the same as EX

EXEC_W procedure 8 QL now the same as EW

EXTRAS procedure 19 QL Toolkit

EW procedure 8 QL Toolkit

FDAT function 11 QL Toolkit

FDEC$ function 13 QL Toolkit

FEXP$ function 13 new

FLEN function 11 QL Toolkit

FLUSH procedure 12 new

FNAME$ function 11 new

FOP_DIR function 10 QL Toolkit finds vacant channel

FOP_IN function 10 QL Toolkit finds vacant channel

FOP_NEW function 10 QL Toolkit finds vacant channel

FOP_OVER function 10 QL Toolkit finds vacant channel

FOPEN function 10 QL Toolkit finds vacant channel

FPOS function 12 QL Toolkit

FREE_MEM function 15 QL Toolkit gives 512 bytes less

FSERVE program 22 new

FTEST function 10 new

FTYP function 11 QL Toolkit

FUPDT function 11 new

FXTRA function 11 new

GET procedure 12 QL Toolkit

HEX function 13 QL Toolkit

HEX$ function 13 QL Toolkit

IDEC$ function 13 QL Toolkit

JOB$ function 9 QL Toolkit

JOBS procedure 9 QL Toolkit

LBYTES procedure 7 QL uses default directory

LOAD procedure 6 QL uses default directory

 clears WHEN ERROR

LRESPR procedure 7 new

LRUN procedure 6 QL uses default directory

 clears WHEN ERROR

MERGE procedure 6 QL uses default directory

 clears WHEN ERROR

MRUN procedure 6 QL uses default directory

 clears WHEN ERROR

NEW procedure 6 QL clears WHEN ERROR

NFS_USE procedure 22 new

NXJOB function 9 QL Toolkit

OJOB function 9 QL Toolkit

OPEN procedure 10 QL uses default directory

OPEN_DIR procedure 10 new uses default directory

OPEN_IN procedure 10 QL uses default directory

OPEN_NEW procedure 10 QL uses default directory

OPEN_OVER procedure 10 new uses default directory

PARNAM$ function 16 new

PARSTR$ function 16 new

PARTYP function 16 QL Toolkit

PARUSE function 16 QL Toolkit

PJOB function 9 QL Toolkit

PRINT_USING procedure 13 new

PROG_USE procedure 3 QL Toolkit

PROGD$ function 3 new

PUT procedure 12 QL Toolkit

RECHP procedure 15 QL Toolkit

RENAME procedure 5 QL Toolkit

RETRY procedure 17 QL specified line number

RJOB procedure 9 QL Toolkit accepts Job name

RUN procedure 6 QL clears WHEN ERROR

SAVE procedure 6 QL uses default directory

SAVE_O procedure 6 new overwrites file

SBYTES procedure 7 QL uses default directory

SBYTES_O procedure 7 new overwrites file

SEXEC procedure 7 QL uses default directory

SEXEC_O procedure 7 new overwrites file

SPJOB procedure 9 QL Toolkit accepts Job name

SPL program 5 QL Toolkit simplified destination

SPL_USE procedure 4 QL Toolkit

SPLF program 5 new adds form feed to file

STAT procedure 5 QL Toolkit

STOP procedure 6 QL clears WHEN ERROR

TK2_EXT procedure 19 new

TRUNCATE procedure 12 QL Toolkit position may be specified

VIEW procedure 3 QL Toolkit

WCOPY procedure 5 new defaults to command window

 uses default destination

WDEL procedure 5 QL Toolkit defaults to command window

WDIR procedure 5 QL Toolkit

WMON procedure 14 QL Toolkit

WREN procedure 5 new defaults to command window

 uses default destination

WSTAT procedure 5 QL Toolkit

WTV procedure 14 QL Toolkit

