Preface

The original QL Toolkit was produced in something of a rush to provide
useful facilities which, arguably, should have been built in to the QL
to start with. Since its appearance, I have been subjected to
continuous pressure to modify certain facilities and extend the range
of facilities provided.

QLToolkit II is, therefore, a revised (to the extent of being almost
completely rewritten) and much enlarged version of the original QL
Toolkit. 0Old facilities now work faster and are more compact, so that
there is room in the ROM cartridge for over 100 operations.

The fact that QLToolkit II ever saw the light of day is due to
prompting from a number of quarters. Many people have contacted me
complaining that they have been unable to lay their hands on the
original QLToolkit, and this eventually convinced me that there was a
market for a second version. Repeated criticism of the original
facilities made at great length (and with justification) by Chas
Dillon have provided the basis for many of the modifications to the
old routines. Ed Bruley has provided invaluable practical support in
putting the product on the market, and Cambridge Systems Technology
allowed me to use one of their Winchester disk systems to test the
network server.

Even so, QLToolkit II might not have been completed without the
unrelenting encouragement from Hellmuth Stuven of QSOFT, Denmark,
whose indomitable faith in the technical merit of this product has
kept me on my toes.

My thanks to you all, TT.
QJUMP Toolkit II for the QL

Version II of the QJUMP Toolkit for the QL is an extended and improved
version of the original QL Toolkit. This new version is largely
rewritten to provide more facilities and to make the existing
facilities of the QL and the QL Toolkit more powerful. Since many of
these improvements are to correct defects in the ROMs supplied with
the QL, it would be better to supply an upgrade to the QL by replacing
the Sinclair ROMs. Given the hostile attitude of Sinclair Research
Limited towards such an upgrade, this Toolkit II is supplied as the
next best thing.

1l Introduction

The Toolkit II attempts to put a large number of facilities into a
consistent form. A little preamble is worthwhile to explain some of
the principles.

This manual uses the following simple convention when describing
commands and function calls:

CAPITAL LETTERS are used for parts typed as is
bold letters are used descriptively
lower case letters are used as examples

Thus
VIEW name is a description
VIEW fred is an example

1.1 Commands Procedures Functions

The extensions to SuperBASIC appear as extra commands, procedures and
functions. The distinction between a command and a procedure is very
slight and the two terms tend to be used interchangeably: the command
is what a user types, the procedure is what does the work. In some
cases a command is used to invoke a procedure which in turn sets up
and initiates a Job (e.g. SPL starts the resident spooler). A function
is something that has a value and the name of a function cannot be
used as a command: the value may be PRINTED, used in an expression or
assigned to a variable.

1.2 Y/N/A/Q?

Y/N/A/Q? is a concise, if initially confusing, prompt that Toolkit II
is bound to throw at the unsuspecting user from time to time. It is no
more than a request for the user to press one of the keys Y (for yes),
N (for no), A (for all) or Q (for Oh! Bother, I give up). What will
actually happen when you press one of these keys, will depend on what
you are trying to do at the time.

There is a short form which only allows Y (for yes) and N (for no).

Before the reply to the Y/N/A/Q? (or Y or N?) prompt is read, any
characters which have been typed ahead are discarded. Typing BREAK
(CTRL + space) or ESC will have the same effect as a 'Q' (or 'N')
keypress.

1.3 Overwriting

In some cases a command is given to create a new file with the same
name as a file which already exists. In general this will result not
in an error message, but a prompt requesting permission to overwrite
the file. There are two (deliberate) exceptions to this rule: OPEN NEW
will return an error, while the procedures COPY O, SAVE O, SBYTES O
and SEXEC O and the spooler will happily overwrite their destination
files without so much as a 'by your leave'.

1.4 #channel

All input and output from SuperBASIC is through 'channels'. Some of
these channels are implicit and are never seen (e.g. the command 'SAVE
SER' opens a channel to SER, lists the program to the channel, and
closes the channel). Others are identified by a channel number which
is a small, positive, integer preceded by a '#' (e.g. #2).

Many commands either allow or require a channel to be specified
for input or output. This should be a SuperBASIC channel number:

#0 1is the command channel (at the bottom of the screen),

#1 is the normal output channel and
#2 is the program listing channel.

Other channels (e.g. for communication with a file) may be opened
using the SuperBASIC OPEN commands (see section 10).

For interactive commands the default channel is #0, for most other
commands the default channel is #1, for LIST and ED the default
channel is #2, while for file access commands the default is #3.

For many of the commands it is possible to specify an implicit
channel. This is in the form of '\' followed by a file or device name.
The effect of this is to open an implicit channel to the file or
device, do the required operation and close the channel again.

E.g. DIR list current directory to #1
DIR #2 list current directory to #2
DIR \files list current directory to file 'files'

this last example should be distinguished from

DIR files list directory entries starting with
files to #1

1.5 File and Device Names

In general it is possible to specify file or device names as either a
normal SuperBASIC name or as a string. The syntax of SuperBASIC names
limits the characters used in a name to letters digits and the
underscore. There is no such limitation on characters used in a
string. On a standard QL, a filename has to be given in full, but
using the Toolkit II, the directory part of the name can be defaulted
and just the filename used.

E.qg. OPEN #3, fred open file fred in the current directory

This gives rise to one problem: the SuperBASIC interpreter has the
unfortunate characteristic of trying to evaluate all the parameters of
a command as expressions; in this example 'fred' will probably be an
undefined variable which should not give rise to any problems.
However, the command

OPEN #3,1list
will give an 'error in expression' error as it is not possible for
'LIST', which is a command, to have a value. There are two ways around
this problem: either avoid filenames which are the same as commands
(procedures), functions or SuperBASIC keywords (e.g. FOR, END, IF

etc.), or put the name within quotes as a string:

OPEN #3, 'list' or OPEN #3,"list"

1.6 CTRL F5

The CTRL F5 keystroke (press CTRL and while holding it down press F5)
is used to freeze the QL screen. Many commands in Toolkit II check

their output window and, when it is full, internally generate a CTRL
F5 keystroke to hold the display until the user presses a key. (F5
will usually be the best key to press.)

2 Contents of Toolkit II

SuperBASIC is used as a command language on the QL as well as a
programming language. Extensions are provided to improve the
facilities of SuperBASIC in both these areas as well as providing
program development facilities.

The following list gives a comprehensive form of each command or
function. There are often default values of the parameters to simplify
the use of the procedures.

2.1 Development Facilities
Section 3 File editing

Toolkit II provides an editor and a command for viewing the
contents of text files. ED is a window based editor for editing
SuperBASIC programs. VIEW is a command for examining line based
files (e.g. assembler source files).

Commands
ED #channel, line number edit SuperBASIC program
VIEW #channel, name view contents of a file

2.2 Command Language

The command language facilities of Toolkit II are intended to provide
the QL with the control facilities to unlock the potential of the QDOS
operating system. Most of these are 'direct' commands: they are typed
in and acted on immediately. This does not mean that they may not be
used in programs, but some care should be taken when doing this.

Section 4 Directory Control
QDOS does have a tree directory structure filing system! The

Toolkit II provides a comprehensive set of facilities for
controlling access to directories within this tree.

Commands
DATA USE name set the default directory
for data files
PROG USE name set the default directory
for executable programs
DEST USE name set the default destination

directory (COPY, WCOPY)
SPL_USE name set the default destination

device (SPL)

DDOWN name move to a sub-directory
DUP move up through the tree
DNEXT name move to another directory

at the same level

DLIST #channel lists the defaults

Functions
DATADS function to find current
data directory
PROGDS function to find current
program directory
DESTDS function to find current

default destination

Section 5 File Maintenance

All the filing system maintenance commands use the default (usually
'data') directories. Some of the commands are interactive and thus
not suitable for use in SuperBASIC programs: these are marked with
an asterisk in this list. In these cases there are also simpler
commands which may be used in programs. Depending on the command,
the name given may be a generic (or 'wildcard') name referring to
more than one file. With the exception of DIR (an extended version
of the standard QL command DIR), all of these 'wildcard' commands
have names starting with 'W'.

Commands
drive statistics and

list of files
list of files

DIR #channel, name
WDIR #channel, name
drive statistics

list of files and their
Statistics

STAT #channel, name
WSTAT #channel, name

DELETE name delete a file

*WDEL #channel, name delete files

COPY name TO name copy a file

COPY O name TO name copy a file (overwriting)
COPY N name TO name copy a file (without header)
COPY H name TO name copy a file (with header)
*WCOPY #channel, name TO name copy files

SPL name TO name
SPLF name TO name

RENAME name TO name
*WREN #channel, name TO name

Section 6 SuperBASIC Programs

spool a file
spool a file, <FF> at end

rename a file
rename files

Toolkit II redefines and extends the file loading and saving
operations of the QL. All the commands use the default directories.
Additionally, the execution control commands have been extended to
cater for the error handling functions of the 'JS' and 'MG' ROMs.

Commands

DO name do commands in file

LOAD name load a SuperBASIC program

LRUN name load and run a SuperBASIC
program

MERGE name merge a SuperBASIC program

MRUN name merge and run a SuperBASIC
program

SAVE name, ranges save a SuperBASIC program

SAVE O name, ranges as SAVE but overwrites
file if it exists

RUN line number start a SuperBASIC program

STOP stop a SuperBASIC program

NEW reset SuperBASIC

CLEAR clear SuperBASIC variables

Section 7 Load and Save

The binary load and save operations of the QL are extended to use
the default directories.

Commands

LRESPR name load a file into resident
procedure area and CALL

LBYTES name, address load a file into memory at
specified address

CALL address, parameters CALL machine code with
parameters

SBYTES name, address, size save an area of memory

SBYTES O name, address, size as SBYTES but overwrites
file if it exists

SEXEC name, address, size, data save an area of memory as

an executable file
SEXEC O name, address, size, data as SEXEC but overwrites
file if it exists

Section 8 Program Execution
Program execution is, Anne Boleyn would be relieved to know, the

opposite of program (ex)termination. The EXEC and EXEC W commands
in the standard QL are replaced by EX and EW in the QL Toolkit.

Toolkit II redefines EXEC and EXEC W to be the same as EX and EW.
ET is for debuggers (no offence meant) only.

Commands
EXEC/EX program specifications load and set up one or
EXEC W/EW program specifications more executable files

ET program specifications

Section 9 Job Control

The multitasking facilities of QDOS are made accessible by the job
control commands and functions of Toolkit II.

Commands
JOBS #channel list current jobs
RJOB id or name, error code remove a job
SPJOB id or name, priority set job priority
AJOB id or name, priority activate a job
Functions
PJOB (id or name) find priority of job
OJOB (id or name) find owner of job
JOBS (id or name) find job name!
NXJOB (id or name, id) find next job in tree

2.3 SuperBASIC programming

Toolkit II has extensions to SuperBASIC to assist in writing more
powerful and flexible programs. The major improvements are in file
handling and formatting.

Section 10 Open and Close

The standard QL channel OPEN commands are redefined by Toolkit IT
to use the data directory. In addition, Toolkit II provides a set
of functions for opening files either using a specified channel
number (as in the standard QL commands), or they will find and
return a vacant channel number. The functions also allow filing
system errors to be intercepted and processed by SuperBASIC
programs.

Commands
OPEN #channel, name open a file for read/write
OPEN IN #channel, name open a file for input only
OPEN NEW #channel, name open a new file
OPEN OVER #channel, name open a new file, if it
exists it is overwritten
OPEN DIR #channel, name open a directory

CLOSE #channels close channels

Functions

FTEST (name) test status of file

FOPEN (#channel, name) open a file for read/write

FOP IN (#channel, name) open a file for input only

FOP NEW (#channel, name) open a new file

FOP_OVER (#channel, name) open a new file, if it
exists it is overwritten

FOP DIR (#channel, name) open a directory

Section 11 File Information

Toolkit II has a set of functions to read information from the
header of a file.

FLEN (#channel
FTYP (#channel

find file length

)
) find file type

FDAT (#channel) find file data space

FXTRA (#channel) find file extra info

FNAMES (#channel) find filename

FUPDT (#channel) find file update date

Section 12 Direct Access Files

Toolkit II has a set of commands for transferring data to and from
any part of a file. The commands themselves read or write 'raw'
data, either in the form of individual bytes, or in SuperBASIC
internal format (integer, floating point or string).

Commands
BGET #channel\position, items get bytes from a file
BPUT #channel\position, items put bytes onto a file
GET #channel\position, items get internal format data
from a file
PUT f#channel\position, items put internal format data
onto a file
TRUNCATE #channell\position truncate file
FLUSH #channel flush file buffers
Functions
FPOS (#channel) find file position

Section 13 Format Conversions

Toolkit II provides a number of facilities for fixed format I/O.
These include binary and hexadecimal conversions as well as fixed
format decimal.

Commands

PRINT USING #channel, format, fixed format output
list of items to print

Functions
FDECS$ (value, field, ndp) fixed format decimal
IDECS (value, field, ndp) scaled fixed format
CDECS$ (value, field, ndp) decimal
FEXPS$ (value, field, ndp) fixed exponent format
HEXS$ (value, number of bits) convert to hexadecimal
BINS (value, number of bits) convert to binary
HEX (hexadecimal string) hexadecimal to wvalue
BIN (binary string) binary to value

Section 14 Display Control

Toolkit II provides commands for enabling and disabling the cursor
as well as setting the character fount and sizes or restoring the
windows to their turn on state.

Commands

CURSEN #channel enable the cursor

CURDIS #channel disable the cursor

CHAR USE #channel, addrl, addr2 set or reset the
character fount

CHAR INC #channel, x inc, y inc set the character x and
y increments

WMON mode reset to 'Monitor'

WTV mode reset to 'TV' windows

Section 15 Memory Management

Toolkit II has a set of commands and functions to provide memory
management facilities within the 'common heap' area of the QL.

Functions
FREE MEM find the amount of free
memory
ALCHP (number of bytes) allocates space in common
heap (returns the base
address of the space)
Commands
RECHP base address return space to common
heap
CLCHP clear out all allocations

in the common heap

DEL DEFB delete file definition
blocks from common heap

Section 16 Procedure Parameters

Four functions are provided by Toolkit II to improve the handling
of procedure (and function) parameters. Using these it is possible
to determine the type (integer, floating point or string) and usage
(single value or array) of the calling parameter as well as the

'name’'.
PARTYP (name) find type of parameter
PARUSE (name) find usage of parameter
PARNAMS (parameter number) find name of parameter
PARSTRS (name, parameter number) if parameter 'name' is a

string, find the value,
else find the name.

Section 17 Error Handling

These facilities are provided for error processing in versions JS
and MG of SuperBASIC.

ERR DF true if drive full error
has occurred

REPORT #channel, error number report an error

CONTINUE line number continue or retry from a

RETRY line number specified line

Section 18 Time-keeping

Two clocks are provided in Toolkit II, one configurable digital
clock, and an alarm clock.

CLOCK #channel, format variable format clock
ALARM hours, minutes alarm clock

Section 19 Extras

EXTRAS lists the extra facilities
linked into SuperBASIC
TK2 EXT enforces the Toolkit IT

definitions of common
commands and functions

2.4 Extensions to Devices

In addition to extending the SuperBASIC interpreter, Toolkit II has
important extensions to the console, Microdrive and Network device
drivers.

Section 20 Console Driver

Toolkit II provides last line recall for the command channel #0 as

well as allowing strings of characters to be assigned to 'ALT'
keystrokes received on this channel.

Commands
<ALT><ENTER> keystroke recovers last
line typed
ALTKEY character, strings assign a string to <ALT>

character keystroke

Section 21 Microdrive Driver

Toolkit II extends the microdrive driver to provide OPEN file with
overwrite, as well as TRUNCATE and RENAME of files. These
facilities are supported at QDOS level (Traps #2 and #3) as

well as from SuperBASIC. The FLUSH operation is respecified

to set the file header as well as flush the buffers.

Section 22 Network Driver

The network driver is enhanced to provide a primitive form of
broadcast communication as well as providing a comprehensive file
server program which allow many QLs to share a disk system or

printer.

Commands
FSERVE invokes the 'file server'
NEFS USE name, network names sets the network file

server name
Device names

Nstation number IO device the name of a remote
IO device (e.g. N2 FLP1
is floppy 1 on network
station 2)

3 File Editing
3.1 ED - SuperBASIC Editor

ED is a small editor for SuperBASIC programs which are already loaded
into the QL. If the facilities look rather simple and limited, please
remember that the main design requirement of ED is the small size to
leave room for other facilities.

ED is invoked by typing:

ED
or ED line number
or ED #channel number
or ED #channel number, line number

If no line number is given, the first part of the program is listed,
otherwise the listing in the window will start at or after the given
line number. If no channel number is given, the listing will appear in
the normal SuperBASIC edit window #2. If a window is given, then it
must be a CONsole window, otherwise a 'bad parameter' error will be
returned. The editor will use the current ink and paper colours for
normal listing, while using white ink on black paper (or vice versa if
the paper is already black or blue) for 'highlighting'. Please avoid
using window #0 for the ED.

The editor makes full use of its window. Within its window, it
attempts to display complete lines. If these lines are too long to fit
within the width of the window, they are 'wrapped around' to the next
row in the window: these extra rows are indented to make this 'wrap
around' clear. For ease of use, however, the widest possible window
should be used.

ED must not be called from within a SuperBASIC program.
The ESC key is used to return to the SuperBASIC command mode.

After ED is invoked, the cursor in the edit window may be moved using
the arrow keys to select the line to be changed. In addition the up
and down keys may be used with the ALT key (press the ALT key and
while holding it down, press the up or down key) to scroll the window
while keeping the cursor in the same place, and the up and down keys
may be used with the SHIFT key to scroll through the program a 'page'
at a time.

The editor has two modes of operation: insert and overwrite. To change
between the two modes use 'CTRL F4' (press CTRL and while holding it
down press F4). There is no difference between the modes when adding
characters to or deleting characters from the end of a line. Within a
line, however, insert mode implies that the right hand end of a line
will be moved to the right when a character is inserted, and to the
left when a character is deleted. No part of the line is moved in
overwrite mode. Trailing spaces at the end of a line are removed
automatically.

To insert a new line anywhere in the program, press ENTER. If there is
no room between the line the cursor is on and the next line in the
program (e.g the cursor is on line 100 and the next line is 101) then
the ENTER key will be ignored, otherwise a space is opened up below
the current line, and a new line number is generated. If there is a
difference of 20 or more between the current line number and the next
line number, the new line number will be 10 on from the current line
number, otherwise, the new line number will be half way between them.

If a change is made to a line, the line is highlighted: this indicates
that the line has been extracted from the program. The editor will
only replace the line in the program when ENTER 1is pressed, the cursor
is moved away from the line, or the window is scrolled. If the line is
acceptable to SuperBASIC, it is rewritten without highlighting. If,
however, there are syntax errors, the message 'bad line' is sent to
window #0, and the line remains highlighted.

While a line is highlighted, ESC may be used to restore the original

copy of the line, ignoring all changes made to that line.

If a line number is changed, the old line remains and the new line is
inserted in the correct place in the program. This can be used to copy
single lines from one part of the program to another.

If all the visible characters in a line are deleted, or if all but the
line number is deleted, then the line will be deleted from the
program. An easier way to delete a line is to press CTRL and ALT and
then the left arrow as well.

The length of lines is limited to about 32766 bytes. Any attempt to
edit longer lines may cause undesirable side effects. If the length of
a line is increased when it is changed, there may be a brief pause
while SuperBASIC moves its working space.

3.2 Summary of Edit Operations

The general usage of the keys follows the Concepts section of the QL
User Guide first, and then the business programs usage.

TAB tab right (columns of 8)

SHIFT TAB tab left (columns of 8)

ENTER accept line and create a new line

ESC escape - undo changes or return to SuperBASIC
up arrow move cursor up a line

down arrow move cursor down a line

ALT up arrow scroll up a line (the screen moves down!)
ALT down arrow scroll down a line (the screen moves up!)
SHIFT up arrow scroll up one page

SHIFT down arrow scroll down one page

left arrow move cursor left one character

right arrow move cursor right one character

CTRL left arrow delete character to left of cursor

CTRL right arrow delete character under cursor

CTRL ALT left arrow delete line

SHIFT F4 change between overwrite and insert mode

3.3 Viewing a file

VIEW is procedure intended to allow a file to be examined in a window
on the QL display. The default window is #1.

View is invoked by typing
VIEW name View file 'name' in window #1

VIEW #channel, name View file 'name' in given window
VIEW \namel, name2 Send file 'name2' to 'namel'

VIEW truncates lines to fit the width of the window. When the window
is full, CTRL F5 is generated. If the output device (or file) is not a
console, then lines are truncated to 80 characters.

4 Directory Control
4.1 Directory Structures
In QDOS terminology, a 'directory' is where the system expects to find

a file. This can be as simple as the name of a device (e.g. MDV2Z the
name of the Microdrive number 2) or be much more complex forming part

of a 'directory tree' (directories grow on trees - honestly, they do).
For example: the directory MDV2 could include directories JOHN and
OLD (note: all directory names end with an ' '), and JOHN could

include files DATAl and TEST) .

MDV2
I
I I
JOHN OLD
I
I I
DATAL TEST
This shows another characteristic of the 'directory tree': it grows

downwards. The complete QDOS filename for DATAl in this example is
MDV1 JOHN DATAl. (You may have come across the terms 'pathname' or
'treename': these refer to the same thing as a QDOS filename.)

One unusual characteristic of the QDOS directory structure is the
absence of a formal file name 'extension'. This is not strictly
necessary as 'extensions' (e.g. aba for ABACUS files, asm for
assembler source files etc.) are treated as files within a directory.

This can be illustrated with the case of an assembler program TEST,
processed using the GST macro assembler and linkage editor. The
assembler source file (TEST ASM), the listing output from the
assembler (TEST LIST), the relocatable output from the assembler
(TEST REL), the linker control file (TEST LINK), the linker listing
output (TEST MAP) and the executable program produced by the linker
(TEST BIN) are all treated as files within the directory TEST .

MDV2
I
I
JOHN _
I
I
TEST
I
I I i I I I
ASM LIST REL LINK MAP BIN

This Toolkit provides facilities to set default directories. The
defaults are available for all filing system operations. A default may
be set to any level of complexity and gives a starting point for
finding a file in the tree structure. Thus, in this example, if the

default is MDV2 , then JOHN TEST ASM will find the assembler source.
If the default is MDV2 JOHN , then TEST ASM will find it, while the
full filename MDVZ2 JOHN TEST ASM will find the file regardless of the
default.

4.2 Setting Defaults

Unusually, the Toolkit extensions to QDOS support three distinct
defaults for the directory structure. This is because QDOS is an
intrinsically multi-drive operating system. It is expected that
executable programs will be in a different directory, and probably on
a different drive, from any data files being manipulated. Furthermore,
the copying procedures are more likely to be used to copy from one
directory to another, or from the filing system to a printer or other
output device, than they are to be used to copy files within a
directory.

There are three commands for setting the three defaults:

DATA USE directory name set data default

PROG USE directory name set program default

DEST USE directory name set destination default
If the directory name supplied does not end with ' ', ' ' will be

appended to the directory name.

The DATA USE default is used for most filing system commands in the
Toolkit. The PROG USE default is used only for finding the program
files for the EX/EXEC commands, while the DEST USE default is used to
find the destination filename when the file copying and renaming
commands (SPL, COPY, RENAME etc.) are used with only one filename.

There is a special form of the DEST USE command which does not append
' ' to the name given. Notionally this provides the default
destination device for the spooler:

SPL_USE device name
This sets the destination default, but, if there is no ' ' at the end,

it is not treated as a directory and so, if a destination filename is
required, the default will be used unmodified.

E.qg. DEST USE flp2 old (default is FLP2 OLD)
ééi-éred

or SPL USE flp2 old (default is FLP2 OLD)
ééi‘éred

Both of these examples will spool FRED to FLP2 OLD FRED. Whereas if
SPL USE is used with a name without a trailing ' ' (i.e. not a
directory name) as follows

SPL USE ser (default is SER)

SPL fred

then FRED will be spooled to SER (not SER FRED).

Note that SPL USE overwrites the DEST USE default and vice versa

4.3 Directory Navigation

Three commands are provided to move through a directory tree.

DDOWN name move down (append 'name' to the
default)
DUP move up (strip off the last level

of the directory)

DNEXT name move up and then down a different
branch of the tree

It is not possible to move up beyond the drive name using the DUP
command. At no time is the default name length allowed to exceed 32
characters.

These commands operate on the data default directory. Under certain
conditions they may operate on the other defaults as well:

If the progam default is the same as the data default,
then the two defaults are linked and these commands
will operate on the PROG USE default as well.

If the destination default ends with ' ' (i.e. it is a

default directory rather than a default device), then
these commands will operate on the destination default.

These rules are best seen in action:

data program destination
initial values mdv2 mdvl ser
DDOWN john mdv2 john mdvl ser
DNEXT fred mdv2 fred mdvl ser
PROG USE mdvz fred mdv2 fred mdv2 fred ser
DNEXT Jjohn mdv2 john mdv2 john ser
DUP mdv2 mdv2 ser
DEST USE mdvl mdv2 mdvz mdvl
DDOWN john mdvZ2 john mdv2Z john mdvl john
SPL USE serlc mdvZ2 john mdv2 john serlc

4.4 Taking Bearings

Should you wonder where you are in the directory tree, there is a
command to list all three defaults:

DLIST list data, program and destination
or DLIST #channel defaults

or DLIST \name
If an output channel is not given, the defaults are listed in window

#1.

To find the defaults from within a SuperBASIC program there are three
functions:

DATADS find the data default
PROGDS$ find the program default
DESTDS find the destination default

The functions to find the individual defaults should be used without
any parameters. E.g.

IF DATADS<>PROGDS$: PRINT 'Separate directories'

DEST$=DESTDS
IF DESTS$ (LEN (DESTS$))='_': PRINT 'Destination'! DESTS

Facilities to enable executable programs to find the default
directories were provided in the original Sinclair QL Toolkit, and the
same facilities are provided in this Toolkit. These facilities are not
widely used in commercial software for the QL. The real solution of
providing the default directories at QDOS trap level can only be
attained using additional hardware in the expansion slot or by
replacement operating system ROMs. You will probably find, therefore,
that much commercially written software will not recognise the
defaults you have set. There is an example of overcoming this problem
in the example program appendix.

5 File Maintenance

The standard file maintenance procedures of the QL (COPY, DELETE and
DIR) are filled out into a comprehensive set in Toolkit II. All of the
commands, both standard and new, use the directory defaults; in
addition, many of the commands use wild card names to refer to groups
of similarly named files.

5.1 Wild Card Names

A wild card name is a special type of filename where part of the name
is treated as a 'wild card' which can be substituted by any string of
characters. If, for convenience, the wild card name is to be a normal
SuperBASIC name, then special characters cannot be used for the wild
card (e.g. myfiles * asm would be treated by SuperBASIC as an
arithmetic expression and SuperBASIC would attempt to multiply
myfiles Dby asm). For this reason a simpler scheme is adopted: any
missing section of a file name is treated as a wild card. The end of a
wild card name is implicitly missing.

If the wild card name is not a full file name, the default directory
is added to the start of the name.

In the following example, the default directory is assumed to be
FLP2 .

Wild card name Full wild card name Typical matching files

fred flp2 fred flp2 fred
flp2 freda list

fred flp2 fred flp2 fred
flp2 freda list
flp2 old fred
flp2 old freda list

flpl old 1list flpl old 1list flpl old jo list
flpl old freda list

5.2 Directory Listing

There are two forms of directory listing: the first lists just the
filenames, the second lists the filenames together with file size and
update date. All the commands use wild card names and the data default
directory. The output from these commands will be sent to channel #1
by default; but a channel or implicit channel may be specified: if the
output channel is to a window the listing is halted (CTRL F5) when the
window is full.

DIR #channel, name drive statistics and
list of files

WDIR #channel, name list of files

WSTAT #channel, name list of files and their
statistics

In all cases the channel specification and the name are optional.

The possible forms of (for example) WDIR are

WDIR list current directory to #1
or WDIR #channel list current directory to #channel
or WDIR \name list current directory to 'name'
or WDIR name list directory 'name' to #1
or WDIR #channel, name list directory 'name' to #channel
or WDIR \namel, name?2 list directory 'name2' to 'namel'
E.g.
WDIR \ser, asm list all asm files in current
directory to SER
WDIR flpl list all files on FLPl1 in window
#1
WDIR #3 list all files in current

directory to channel #3
DIR is provided for compatibility only: before listing the files, the

drive statistics (medium name, number of vacant sectors / number of
good sectors) are written out.

5.3 Drive Statistics

There is one command to print the statistics for the drive holding a
specified directory, or the data default directory.

STAT #channel, name
or STAT \namel, name?2

Both the channel and the name are optional.

5.4 File Deletion
The standard procedure DELETE has been modified to use the data
default directory unless a full file name is supplied. No error is
generated if the file is not found. There are also two interactive
commands to delete many files using wild card names.

DELETE name delete one file

WDEL #channel, name delete files

For WDEL both the channel and the name are optional.

E.g.
WDEL delete files from current
directory
WDEL 1list delete all 1list files from

current directory

Unless a channel is specified, the wild card deletion procedures use
the command window #0 to request confirmation of deletion. There are
four possible replies:

(yes) delete this file

(no) do not delete this file

(all) delete this and all the next matching files
(quit) do not delete this or any of the next files

(@ Al

5.5 File Copying

The two forms of the COPY command provided with the QL are changed to
use default filenames, and also to provide more flexibility. A number
of other commands are added.

Files in QDOS have headers which provide useful information about the
file that follows. It depends on the circumstances whether it is a
good idea to copy the header of a file when the file is copied.

It is a good idea to copy the header when:

a) copying an executable program file so that the additional
file information is preserved,

b) copying a file over a pure byte serial link so that the
communications software will know in advance the length
of the file.

It is a bad idea to copy the header when:

c) copying a text file to a printer because the header will

be likely to have control codes and spurious or unprintable
characters.

The general rules used by the COPY procedures in Toolkit II, are that
the header is only copied if there is additional information in the
header. This caters for cases (a) and (c) above. A COPY N command is
included for compatibility with the standard QL COPY N: this never
copies the header. A COPY H command is included to copy a file with
the header to cater for case (b) above. (Note that the standard QL
command COPY always copies the header.) Neither COPY N nor COPY H need
ever be used for file to file copying.

A second general rule used by the COPY (as well as by the WREN)
procedures is that if the destination file already exists, then the
user will be asked to confirm that overwriting the old file is
acceptable. The COPY O (copy overwrite) and the spooler procedures do
not extend this courtesy to the user.

If the commands are given with two filenames then the data default
directory is used for both files. If, however, only one filename (or,
in the case of the wild card procedures, no name at all) is given then
the destination will be derived from the destination default:

a) if the destination default is a directory (ending with ' ',
set by DEST USE) then the destination file is the
destination default followed by the name,

b) if the destination default is a device (not ending with

' ', set by SPL USE) then the destination is the
destination default unmodified.

5.5.1 Single File Copies

COPY name TO name copy a file

COPY O name TO name copy a file (overwriting)
COPY N name TO name copy a file (without header)
COPY H name TO name copy a file (with header)

These commands can be given with one or two names. The separator 'TO'
is used for clarity, you may use a comma instead.

To illustrate the use of the copy command, assume that the data
default is MDV2 and the destination default is MDV1 .

COPY fred TO old fred copies mdv2 fred to
mdvZ2 old fred

COPY fred, ser copies mdv2 fred to ser

COPY fred copies mdv2 fred to
mdvl fred

SPL_USE ser

COPY fred copies mdv2 fred to ser

5.5.2 Wild Card Copies

The interactive copying procedure WCOPY is used for copying all or
selected parts of directories. The command may be given with both
source and destination wild card names, with one wild card name or
with no wild card names at all. Giving the command with no wild card
names has the same effect as giving one null name:

WCOPY and WCOoPY '' are the same.

If you get confused by the following rules about the derivation of the
copy destination, just use WCOPY intuitively and look carefully at the
prompts.

If the destination is not the destination default device, then the
actual destination file name for each copy operation is made up from
the actual source file name and the destination wild name. If a
missing section of the source wild name is matched by a missing
section of the destination wild name, then that part of the actual
source file name will be used as the corresponding part of the actual
destination name. Otherwise the actual destination file name is taken
from the destination wild name. If there are more sections in the
destination wild name than in the source wild name, then these extra
sections will be inserted after the drive name, and vice versa.

The full form of the command is:
WCOPY #channel, name TO name copy files
The separator TO is used for clarity, you may use a comma instead.

If the channel is not given (i.e. most of the time), then the requests
for confirmation will be sent to the command channel #0. Otherwise
confirmation will be sent to the chosen channel, and the user is
requested to press one of:

yes) copy this file

no) do not copy this file

all) copy this and all the next matching files.
quit) do not copy this or any other files

0 P2

If the destination file already exists, the user is requested to press
one of:

Y (yes) copy this file, overwriting the old file

N (no) do not copy this file

A (all) overwrite the old file, and overwrite any
other files requested to be copied.

Q (quit) do not copy this or any other files

For example, if the default data directory is flpZ2 , and the default
destination 1is flpl

WCOPY would copy all files on flp2 to flpl
WCOPY flpl ,flp2 would copy all files on flpl to flp2

WCOPY fred would copy
flp2 fred to flpl fred

flp2 freda list to flpl freda list

WCOPY fred,mog would copy
flp2 fred to flp2 mog
flp2 freda list to flp2 moga list

WCOPY fred, mog would copy

flp2 fred to flp2 mog
flp2 freda list to flp2 moga list
flp2 old fred to flp2 old mog

flp2 old freda list to flp2 old moga list

WCOPY list,old would copy
flp2 jo 1list to flp2 old jo list
flp2 freda list to flp2 old freda list
WCOPY old 1list,flpl = would copy
flp2 old jo list to flpl jo list

flp2 old freda list to flpl freda list

5.5.3 Background Copying

A background file spooler is provided which copies files in the same
way as COPY O (Section 5.5.1), but is primarily intended for copying
files to a printer. As an option, a form feed (ASCII <FF>) can be sent
to the printer at the end of file.

SPL name TO name spool a file
SPLF name TO name spool a file, <FF> at end

The separator TO is used for clarity, you may use a comma instead.
The normal use of this command is with one name only:
SPL USE ser set spooler default

SPLF fred spool fred to ser, adding
a form feed to the file

When used in this way, if the default device is in use, the Job will
be suspended until the device is available. This means that many files
can be spooled to a printer at once.
A variation on the SPL and SPLF commands is to use SuperBASIC channels
in place of the filenames. These channels should be opened before the
spooler is invoked:

SPL #channel3 TO f#channel?2
Where channel3 must have been opened for input and channel? must
have been opened for output.

5.5.4 Renaming Files

Renaming a file is a process similar to COPYing a file, but the file
itself is neither moved nor duplicated, only the directory name is

changed. The commands, however, are exactly the same in use as the
equivalent COPY commands.

RENAME name TO name see COPY
WREN #channel, name TO name see WCOPY

6 SuperBASIC Programs

All the commands for loading, saving and running SuperBASIC programs
have been redefined in Toolkit II. The differences are in the areas
of:

a) default filenames,
b) WHEN ERROR (JS and MG ROMs only),
c) common heap handling.

6.1 DO

There is one additional procedure, DO, to execute SuperBASIC commands
from file.

DO name do commands in file

The commands should be 'direct': any lines with line numbers will be
merged into the current SuperBASIC program. The file should not
contain any of the commands listed in this section (e.g. RUN, LOAD
etc.), CONTINUE, RETRY or GOTO. It appears that a DO file can invoke
SuperBASIC procedures without harmful effect.

A DO file can contain in line clauses:
FOR i=1 to 20: PRINT 'This is a DO file'
If you try to RUN a BASIC program from a DO file, then the file will

be left open. Likewise, if you put direct commands in a file that is
MERGED, then the file will be left open.

6.2 Default Directories

Most of the commands use the data default directory. In addition, the
program LOADing commands will try the program default directory if a
file cannot be found in the data default directory.

6.3 WHEN ERROR Problems

There is a problem in the JS and MG ROM error handling code, in that
WHEN ERROR processing, once set, 1s never reset, even if the WHEN
ERROR clause is removed by a NEW or a LOAD! All of the commands in
this section clear the WHEN ERROR processing flag, and all but STOP
also clear the pointer to the current WHEN ERROR clause.

6.4 Common Heap

Toolkit II contains facilities for allocating space in the common

This space is cleared by the commands that clear the SuperBASIC

heap.
variables: LOAD, LRUN, NEW and clear.
6.5 Summary of Commands

DO name

LOAD name

LRUN name

MERGE name
MRUN name

SAVE name, ranges
SAVE O name, ranges

RUN line number
STOP

NEW
CLEAR

7 Load and Save

Toolkit II provides the same binary file load and save operations as

do commands in file
load a SuperBASIC program

load and run a SuperBASIC
program

merge a SuperBASIC program
merge and run a SuperBASIC
program

save a SuperBASIC program
as SAVE but overwrites
file if it exists

start a SuperBASIC program
stop a SuperBASIC program

reset SuperBASIC
clear SuperBASIC variables

the standard QL. The differences are that the save operations will

request permission to overwrite if the file already exists,

the commands use default directories.

There are also two

'overwrite'

one new command: LRESPR.

LRESPR opens the load file and finds the length of the file,

variants for the save operations,

and all

then

reserves space for the file in the resident procedure area before

loading the file.

Finally a CALL is made to the start of the file.

The CALL procedure itself has been rewritten to avoid the problems

that occur in AH and JM ROMs when a CALL is made from a large
kbytes)

program
LRESPR name

LBYTES name, address

CALL address, parameters

SBYTES name, address, size
SBYTES O name, address, size

SEXEC name, address, size, data

(>32

load a file
procedure

into resident

area and CALL

load a file into memory at
specified address

CALL machine code with
parameters

save an area of memory

as SBYTES but overwrites
file if it exists

save an area of memory as
an executable file

and

SEXEC O name, address, size, data as SEXEC but overwrites

For SEXEC and SEXEC O the 'data' parameter is the default data space
required by the program.

If there are any Jobs in the QL (apart from Job 0 the SuperBASIC
interpreter) then LRESPR will fail with the error message 'not
complete'. If this happens, use RJOB to remove all the other Jobs.

8 Program Execution

There is one procedure for initiating the execution of compiled
(executable) programs. This procedure is invoked by five commands: EX,
EXEC (which are synonymous) EW, EXEC W (which are synonymous) and ET.
The differences are very small: when EX is complete, it returns to
SuperBASIC; when EW is complete it waits until the programs initiated
have finished before returning to SuperBASIC; while ET sets up the
programs, but returns to SuperBASIC so that a debugger can be called
to trace the execution. EX will be used to describe all the commands.

8.1 Single Program Execution

In its simplest form EX can be used to initiate a single program:
EX name

The program in the file 'name' is loaded into the transient program

area of the QL and execution is initiated. If the file does not

contain an executable program, a 'bad parameter' error is returned.

It is also possible to pass parameters to a program in the form of a
string:

EX name; parameter string
In this case the program in the file 'name' is loaded into the
transient program area, the string is pushed onto its stack and
execution is initiated.
Finally it is possible for EX to open input and output files for a
program as well as (or instead of) passing it parameters. If
preferred, a SuperBASIC channel number may be used instead of a
filename. A channel used in this way must already be open.

EX program name, file names or #channels; parameter string

Taking as an example the program UC which converts a text file to
upper case, the command:

EX uc, fred, #1

will load and initiate the program UC, with fred as its input file and
the output being sent to window #1.

8.2 Filters

EX is designed to set up filters for processing streams of data.

Within the QL it is possible to have a chain of cooperating jobs
engaged in processing the same data in a form of production line. When
using a production line of this type, each job performs a well-defined
part of the total process. The first job takes the original data and
does its part of the process; the partially processed data is then
passed on to the next job which carries out its own part of the
process; and so the data gradually passes through all the processes.
The data is passed from one Job to the next through a 'pipe'. The data
itself is termed a 'stream' and the Jobs processing the data are
termed 'filters'.

Using the symbols [] to represent a single optional item
() to represent a repeated optional item

the complete form of the EX command is

EX [#channel TO] prog spec (TO prog spec) [TO #channel]
where prog spec is

program name (,file name or #channel) [;parameter string]
Each TO separator creates a pipe between Jobs.

All the names and the parameter string may be names, strings or string
expressions. The significance of the filenames is, to some extent,
program dependent; but there are two general rules which should be
used by all filters:

1) the primary input of a filter is the pipe from the
previous Job in the chain (if it exists), or else the
first data file,

2) the primary output of a filter is the pipe to the next
job in the chain (if it exists) or else the last data
file.

Many filters will have only two I/O channels: the primary input and
the primary output.

If the parameters of EX start with '#channel TO', then the
corresponding SuperBASIC channel will be closed (if it was already
open) and a new channel opened as a pipe to the first program. Any
data sent to this channel (e.g. by PRINTing to it) will be processed
by the chain of Jobs. When the channel is CLOSEd, the chain of Jobs
will be removed from the QL.

If the parameters of EX end with 'TO #channel', then the

corresponding SuperBASIC channel will be closed (if it was already
open) and a new channel opened as a pipe from the last program. Any
data passing through the chain of Jobs will arrive in this channel and
may be read (e.g. by INPUTing from it). When all the data has passed,
the Jobs will remove themselves and any further attempt to take input
from this channel will get an 'end of file' error. The EOF function
may be used to test for this.

8.3 Example of Filter Processing

As an example of filter processing, the programs UC to convert a file
to upper case, LNO to line number a file, and PAGE to split a file
onto pages with an optional heading are all chained to process a
single file:

EX uc, fred TO lno TO page,ser; 'File fred at '&date$

The filter UC takes the file 'fred' and after converting it to upper
case, passes through a pipe to LNO. LNO adds line numbers to each line
and passes the file down a pipe to PAGE. In its turn, PAGE splits the
file onto pages with the heading (including in this case the date) at
the top of each page, before sending the file to the SER port. Note
that the file fred itself is not modified; the modified versions are
purely transient.

9 Job Control

As QDOS is a multitasking operating system, it is possible to have a
number of competing or co-operating Jobs in the QL at any one time.
Jobs compete for resources in line with their priority, and they may
co-operate using pipes or shared memory to communicate. The basic
attributes of a Job are its priority and its position within the tree
of Jobs (ownership). A Job is identified by two numbers: one is the
Job number which is an index into the table of Jobs, and the other is
a tag which is used to identify a particular Job so that it cannot be
confused with a previous Job occupying the same position in the Job
table. Within QODOS the two numbers are combined into the Job ID which
is Job number + tag*65536. For these Job control routines, where
Job_id is a parameter of one of the Job control routines, it may be
given as either a single number (the Job ID, as returned from OJob or
NXJob of Toolkit II) or as a pair of numbers (Job number,Job tag).
Thus the single parameter 65538 (2+1*65536) is equivalent to the two
parameters 2,1.

9.1 Job Control Commands

JOBS is a command to list all the Jobs running in the QL at the time.
If there are more Jobs in the machine than can be listed in the output
window, the procedure will freeze the screen (CTRL F5) when it is
full. The procedure may fail if Jobs are removed from the QL while the
procedure is listing them. The following information is given for each
Job:

the Job number

the Job tag

the Job's owner Job number

a flag 'S' if the Job is suspended

the Job priority

the Job (or program) name.

The command is

JOBS list current Jobs to #1
JOBS #channel list current Jobs

JOBS \name list Jobs to 'name'

There are three procedures for controlling Jobs in the QL:

RJOB id or name, error code remove a Job
SPJOB id or name, priority set Job priority
AJOB id or name, priority activate a Job

If a name is given rather than a Job ID, then the procedure will
search for the first Job it can find with the given name.

If there is a Job waiting for the completion of a Job removed by RJob,
it will be released with DO set to the error code.

E.g. RJOB 3,8,-1 remove Job 3, tag 8 with error -1
SPJOB demon, 1 set the priority of the Job called
'demon' to 1

9.2 Job Status Functions

The Job status functions are provided to enable a SuperBASIC program
to scan the Job tree and carry out complex Job control procedures.

PJOB (id or name) find priority of Job
OJOB (id or name) find owner of Job
JOBS$ (1d or name) find Job name

NXJOB (id or name, top Job id) find next Job 1in tree

NXJOB is a rather complex function. The first parameter is the id of
the Job currently being examined, the second is the id of the Job at
the top of the tree. If the first id passed to NXJOB is the last Job
owned, directly or indirectly, by the 'top Job', then NXJOB will
return the value 0, otherwise it will return the id of the next Job in
the tree.

Job 0 always exists and owns directly or indirectly all other Jobs in
the QL. Thus a scan starting with id = 0 and top Job id = 0 will scan
all Jobs in the QL.

It is possible that, during a scan of the tree, a Job may terminate.
As a precaution against this happening, the Job status functions
return the following values if called with an invalid Job id:

PJOB=0 0JOB=0 JOBS="" NXJOB=-1
10 Open and Close
All of the OPEN and CLOSE commands and functions avoid the problem
that occurs using the standard QL facilities when more than 32768
files have been opened in one session.
10.1 Open Commands
The OPEN commands of the standard QL have been modified to use the
data default directory. Two commands have been added to open a new

file overwriting the old file if it already exists, and to open a
directory.

OPEN #channel, name open a file for read/write

OPEN IN #channel, name open a file for input only

OPEN NEW #channel, name open a new file

OPEN OVER #channel, name open a new file, if it
exists it is overwritten

OPEN DIR #channel, name open a directory

10.2 File Status

The function FTEST is used to determine the status of a file or
device. It opens a file for input only and immediately closes it. If
the file exists it will either return the value 0 or -9 (in use error
code), 1f it does not exist, it will return -7 (not found error code).
Other possible returns are -11 (bad name), -15 (bad parameter), -3
(out of memory) or -6 (no room in the channel table).

FTEST (name) test status of file
The function can be used to check that a file does not exist:

IF FTEST (file$) <> -7: PRINT 'File '; file$; ' exists'
10.3 File Open Functions
This is a set of functions for opening files. These functions differ
from the OPEN procedures in two ways. Firstly, if a file system error
occurs (e.g. 'not found' or 'already exists') these functions return
the error code and continue. Secondly the functions may be used to

find a vacant hole in the channel table: if successful they return the
channel number.

FOPEN (#channel, name) open a file for read/write

FOP IN (#channel, name) open a file for input only

FOP NEW (#channel, name) open a new file

FOP_OVER (#channel, name) open a new file, if it
exists it is overwritten

FOP DIR (#channel, name) open a directory

When called with two parameters, these functions return the value zero
for successful completion, or a negative error code.

A file may be opened for read only with an optional extension using
the following code:

ferr=FOP IN (#3,nameS$&' ASM') :REMark try to open ASM file
IF ferr=-7: ferr=FOP IN (#3,name$) :REMark ERR.NF, try no ASM

The #channel parameter is optional: if it is not given, the

functions will search the channel table for a vacant entry, and, if
the open is successful, the channel number will be returned. Note that
error codes are always negative, and channel numbers are positive.

In this example:

outch = FOP NEW (fred) :REMark open fred

if outch < 0: REPORT outch: STOP :REMark ... oops
PRINT #outch, 'This is file Fred'
CLOSE #outch

there is no need to ever know the actual channel number.

10.4 CLOSE

The CLOSE command has been extended to take multiple parameters. In
addition, if called with no parameters it will close all channel
numbers #3 and above. It will not report an error if a channel is not
open.

CLOSE #channels close channels
E.g. CLOSE #3, #4, #7 close #3, #4 and #7
1l File Information

There are six functions to extract information from the header of a
file.

If a file is being extended, the file length can be found by using the
FPOS function to find the current file position. (If necessary the
file pointer can be set to the end of file by the command GET

\#n 999999.)

FLEN (#channel) find file length

FTYP (#channel) find file type

FDAT (#channel) find file data space

FXTRA (#channel) find file extra info

FNAMES (#channel) find filename

FUPDT (#channel) find file update date
The file type is 0 for ordinary files

1 for executable programs
2 for relocatable machine code

The file information functions can also be used with implicit
channels. E.qg.

PRINT FLEN (#3) print the length of the
file open on channel #3

PRINT FLEN (\fred) print the length of file
fred

12 Direct Access Files

In QDOS, files appear as a continuous stream of bytes. On directory
devices (Microdrives, hard disks etc.) the file pointer can be set to
any position in a file. This provides 'direct access' to any data
stored in the file. Access implies both read access and, if the file
is not open for read only (OPEN IN from SuperBASIC, IO.SHARE in QDOS),
write access. Parts of a file as small as a byte may be read from, or
written to any position within a file. QDOS does not impose any fixed
record structures upon files: applications may provide these if they
wish.

Procedures are provided for accessing single bytes, integers, floating
point numbers and strings. There is also a function for finding the
current file position.

To keep files tidy there is a command to truncate a file (when
information at the end of a file is no longer required), and a command
to flush the file buffers.

A direct access input or output (I/0) command specifies the I/0
channel, a pointer to the position in the file for the I/O operation
to start and a list of items to be input or output.

command #channel\position, items

It is usual (although not essential - the default is #3) to give a
channel number for the direct I/O commands. If no pointer is given,
the routines will read or write from the current position, otherwise
the file position is set before processing the list of I/0 items; if
the pointer is a floating point variable rather than an expression,
then, when all items have been read from or written to the file, the
pointer is updated to the new current file position. If no items are
given then nothing is written to or read from the file. This can be
used to position a file for use by other commands (e.g. INPUT for
formatted input).

12.1 Byte I/0

BGET #channell\position, items get bytes from a file
BPUT #channel\position, items put bytes onto a file

BGET gets 0 or more bytes from the channel. BPUT puts 0 or more bytes
into the channel. For BGET, each item must be a floating point or
integer variable; for each variable, a byte is fetched from the
channel. For BPUT, each item must evaluate to an integer between 0 and
255; for each item a byte is sent to the output channel.

For example the statements

abcd=2.6
722%=243

BPUT #3,abcd+1,'12"',2z2%

will put the byte values 4, 12 and 243 after the current file position
on the file open on #3.

Provided no attempt is made to set a file position, the direct I/0
routines can be used to send unformatted data to devices which are not
part of the file system. If, for example, a channel is opened to an
Epson compatible printer (channel #3) then the printer may be put into
condensed underline mode by either

BPUT #3,15,27,45,1
or PRINT #3,chr$(15);chr$(27);'-'";chrS$(1);

Which 1is easier?

12.2 Unformatted I/O

It is possible to put or get values in their internal form. The PRINT
and INPUT commands of SuperBASIC handle formatted IO, whereas the
direct I/0 routines GET and PUT handle unformatted I/0O. For example,
if the value 1.5 is PRINTed the byte values 49 ('1'), 46 ('.') and 53
('5'") are sent to the output channel. Internally, however, the number
1.5 is represented by 6 bytes (as are all other floating point
numbers) . These six bytes have the value 08 01 60 00 00 00 (in
hexadecimal). If the value is PUT, these 6 bytes are sent to the
output channel.

The internal form of an integer is 2 bytes (most significant byte
first). The internal form of a floating point number is a 2 byte
exponent to base 2 (offset by hex 81F), followed by a 4 byte mantissa,
normalised so that the most significant bits (bits 31 and 30) are
different. The internal form of a string is a 2 byte positive integer,
holding the number of characters in the string, followed by the
characters.

GET #channel\position, items get internal format data
from a file
PUT #channel\position, items put internal format data

onto a file

GET gets data in internal format from the channel. PUT puts data in
internal format into the channel. For GET, each item must be an
integer, floating point, or string variable. Each item should match
the type of the next data item from the channel. For PUT, the type of
data put into the channel, is the type of the item in the parameter
list. The commands

fpoint=54

wally%$=42: salary=78000: name$='Smith'
PUT #3\fpoint, wally%, salary, name$

will position the file, open on #3, to the 54th byte, and put 2 bytes
(integer 42), 6 bytes (floating point 78000), 2 bytes (integer 5) and
the 5 characters 'Smith'. Fpoint will be set to 69 (54+2+6+2+5).

For variables or array elements the type is self evident, while for
expressions there are some tricks which can be used to force the type:

+0 will force floating point type;
&' will force string type;
|10 will force integer type.

xyz$="'ab258.z"'
PUT #3\37,xyz$(3 to 5)||0
will position the file opened on channel #3 to the 37th byte and then

will put the integer 258 on the file in the form of 2 bytes (value 1
and 2, i.e. 1*256+2).

12.3 Truncate File
TRUNCATE #channel\position truncate file

If the position is not given, the file will be truncated to the
current position

TRUNCATE #dbchan truncate the file open on
channel dbchan

12.4 Flush Buffers
FLUSH #channel flush file buffers

QDOS directory device drivers maintain as much of a file in RAM as
possible. A power failure or other accident could result in a file
being left in an incomplete state. The FLUSH procedure will ensure
that a file is updated without closing it. Closing a file will always
cause the file to be flushed. Toolkit II includes an upgrade to the
microdrive routines to perform a complete flush. FLUSH will not work
with Micro Peripherals disk systems.

12.5 File Position

There is one function to assist in direct access I/0: FPOS returns the
current file position for a channel. The syntax is:

FPOS (#channel) find file position
For example:

PUT #4\102,valuel,value?
ptr = FPOS (#4)

will set 'ptr' to 114 (=102+6+6).

The file pointer can be set by the commands BGET, BPUT, GET or PUT
with no items to be got or put. If an attempt is made to put the file
pointer beyond the end of file, the file pointer will be set to the
end of file and no error will be returned. Note that setting the file
pointer does not mean that the required part of the file is actually
in a buffer, but that the required part of the file is being fetched.
In this way, it is possible for an application to control prefetch of
parts of a file where the device driver is capable of prefetching.

13 Format Conversions
Toolkit II provides a number of facilities for fixed format I/0. These
include binary and hexadecimal conversions as well as fixed format

decimal. Most of these are in the form of functions but one new
command is included.

13.1 PRINT USING

PRINT USING is a fixed format version of the PRINT command:
PRINT USING #channel, format, list of items to print

The 'format' is a string or string expression containing a template or
'image' of the required output. Within the format string the
characters +-#*,.!\'"$ and all have special meaning. When called,
the procedure scans the format string, writing out the characters of
the string, until a special character is found.

If the [Ocharacter is found, then the next character is written out,
even if it is a special character.

If the character is a " or ', then all the following characters are
written out until the next " or '.

If the \ character is found, then a newline is written out.

All the other special characters appear in format 'fields'. For each
field an item is taken from the list, and formatted according to the
form of the field and written out.

The field determines not only the format of the item, but also the
width of the item (equal to the width of the field). The field widths
in the examples below are arbitrary.

field format
FHHEH# if item is string, write string left
justified or truncated

otherwise write integer right justified

* ok k ok write integer right justified empty part
of field filled with * (e.g. ***12)

FH#H# . HH fixed point decimal (e.g. 12.67)

KAAK KK fixed point decimal, * filled (e.g. **12.67)
#4, #HH LA fixed point decimal, thousands separated

Kk KKK ek by commas (e.g 1,234.56 or *1,234.56)

—# HHHE exponent form (e.g. 2.9979E+08) optional sign
L EEHEEL I exponent form always includes sign

The exponent field must start with a sign, one #, and a decimal point
(comma or full stop). It must end with four !s.

Any decimal field may be prefixed or postfixed with a + or -, or
enclosed in parentheses. If a field is enclosed in parentheses, then
negative values will be written out enclosed in parentheses. If a - 1is
used then the sign is only written out if the value is negative; if a
+ is used, then the sign is always written out. If the sign is at the
end of the field, then the sign will follow the value.

Numbers can be written out with either a comma or a full stop as the
decimal point. If the field includes only one comma or full stop, then

that is the character used as the decimal point. If there is more than
one in the field, the last decimal point found (comma or full stop)
will be used as the decimal point, the other is used as the thousands
separator. Long live European unity!

If the decimal point comes at the end of the field, then it will not
be printed. This allows currencies to be printed with the thousands
separated, but with no decimal point (e.g 1,234).

Floating currency symbols are inserted into fields using the $
character. The currency symbols are inserted between the $ and the
first # in the field (e.g. S$Dm#.###,## or +SSH##, ###.##). When the
value is converted, the currency symbols are 'floated' to the right to
meet the value.

For example
fmtS="'[3 Charges ****x**xx x*x o (SSKr## #4#, #4#) #4, ##4 #4+\"

PRINT USING fmt$, 123.45, 123.45, 123.45
PRINT USING fmt$, -12345.67, -12345.67, -12345.67

PRINT USING " ###IIINT, 1234567
will print
$ Charges ****123.45 : SKrl23,45 : 123.45+
$ Charges *-12345.67 : (SKrl2.345,67) : 12,345.67-
1.235E+06

13.2 Decimal Conversions

These routines convert a value into a decimal number in a string. The
number of decimal places represented is fixed, and the exponent form
of floating point number is not used.

FDECS$ (value, field, ndp) fixed format decimal
IDECS (value, field, ndp) scaled fixed format
CDECS$ (value, field, ndp) decimal

The 'field' is length of the string returned, 'ndp' is the number of
decimal places.

The three routines are very similar. FDECS converts the value as it
is, whereas IDECS$ assumes that the value given is an integral
representation in units of the least significant digit displayed.
CDECS$ is the currency conversion which is similar to IDECS, except
that there are commas every 3 digits.

FDECS$ (1234.56,9,2) returns ' 1234.56'
IDECS (123456,9,2) returns ' 1234.56"'
CDEC$ (123456,9,2) returns ' 1,234.56'

If the number of characters is not large enough to hold the value, the
string is filled with '*'. The wvalue should be between -2731 and 2731
(-2,000,000,000 to +2,000,000,000) for IDECS and CDECS$, whereas for
FDECS the value multiplied by 10"ndp should be in this range.

13.3 Exponent Conversion

There is one function to convert a value to a string representing the
value in exponent form.

FEXPS$ (value, field, ndp) fixed exponent format

The form has an optional sign and one digit before the decimal point,
and 'ndp' digits after the decimal point. The exponent is in the form
of 'E' followed by a sign followed by 2 digits. The field must be at

least 7 greater than ndp. E.g.

FEXPS (1234.56,12,4) returns ' 1.2346E+03"
13.4 Binary and Hexadecimal

HEXS$S (value, number of bits) convert to hexadecimal
BINS$ (value, number of bits) convert to binary

These return a string of sufficient length to represent the value of
the specified number of bits of the least significant end of the
value. In the case of HEXS$ the number of bits is rounded up to the
nearest multiple of 4.

HEX (hexadecimal string) hexadecimal to value
BIN (binary string) binary to value

These convert the string supplied to a value. For BIN, any character
in the string, whose ASCII value is even, 1is treated as 0, while any
character, whose ASCII value is odd, 1s treated as 1. E.g. BIN
('".#.#') returns the value 5. For HEX the 'digits' '0O' to '9' 'A' to
'F' and 'a' to 'f' have their conventional meanings. HEX will return
an error if it encounters a non-recognised character.

14 Display Control

There are three separate facilities provided to extend the display
control operations of the QL. They are cursor control, character fount
control and window reset.

14.1 Cursor Control

The function INKEYS is designed so that keystrokes may be read from
the keyboard without enabling the cursor. Two procedures are supplied
to enable and disable the cursor. When the cursor is enabled, it will
usually appear solid (inactive). The cursor will start to flash
(active) when the keyboard queue has been switched to the window with
the cursor (e.g. by an INKEYS).

CURSEN #channel enable the cursor
CURDIS #channel disable the cursor

Note that while CURSEN and CURDIS default to channel #1, like most IO
commands, INKEYS$ defaults to channel #0.

For example:
CURSEN: inS$=INKEYS (#1,250): CURDIS

will enable the cursor in window #1, and wait for up to 5 seconds for
a character from the keyboard. If nothing is typed within the 5
seconds, then in$ will be set to a null string ("").

14.2 Character Fount Control

The QL display driver has two character founts built in. The first
provides patterns for the values 32 (space) to 127 (copyright), while
the second provides patterns for the values 127 (undefined) to 191
(down arrow) . For each character the display driver will use the
appropriate pattern from the first fount, if there is one, failing
that, it will use the appropriate pattern from the second fount,
failing that, it will use the first defined pattern in the second
fount.

Substitute founts need not have the same range of values as the built
in founts. A fount could, for example, be defined to have all wvalues
from 128 to 255.

The format of a QL fount is:

byte lowest character value in the fount
byte number of valid characters-1

9 bytes of pixels for the lowest character value
9 bytes of pixels for the next character value, etc.

The pixels are stored with the top line in the lowest address byte.
For each pixel a bit set to one indicates INK, a bit set to zero
indicates paper. The leftmost pixel is in bit 6 of the byte.

The character 'g' is stored as: 00000000
%00000000
%00111000
$01000100
$01000100
$01000100
%00111100
$00000100
$00111000

The command CHAR USE is used to set or reset one or both character
founts.

CHAR USE #channel, addrl, addr2 addrl and addr2 both point
to substitute founts
CHAR USE #channel, 0, addr2 the built in first fount

will be used, addr2 points
to a substitute second
fount

CHAR USE 0,0 reset both founts for
window #1

The QL display driver assumes that all characters are 5 pixels wide by
9 pixels high. Other sizes are obtained by doubling the pixels or by
adding blank pixels between characters. It is possible, with Toolkit
II, to set any horizontal and vertical spacing. If the increment is
set to less than the current character size (set by CSIZE) then
extreme caution is required as it will be possible for the display
driver to write characters (at the right hand side or bottom of the
window) partly outside the window. The windows should not come closer
to the bottom or right hand edges of the screen than the amount by
which the increment specified is smaller than the character spacing
set by CSIZE.

CHAR INC #channel, x inc, y inc set the character x and
y increments

The channel is defaulted to #1.
The character increments specified are cancelled by a CSIZE command.

For example, if there is a 3x6 character fount in a file called 'f3x6'
(length 875 bytes), then a 127 column by 36 row screen can be set up:

MODE 4

WINDOW 512-2,256-3,0,0 :REMark clear of edges of screen
CSIZE 0,0 :REMark spacing 6x10

CHAR INC 4,7 :REMark spacing 4x7

fount = ALCHP (875) :REMark reserve space for fount
LBYTES f£3x6, fount :REMark load fount

CHAR USE fount, 0 :REMark single fount only

14.3 Resetting the Windows
There are two commands for resetting the windows to the turn-on state:

WMON mode reset to 'Monitor'
WTV mode reset to 'TV' windows

The mode should be 0, 4 or 512 for the 4 colour (512 pixel) mode, or 8
or 256 for the 8 colour (256 pixel) mode. Only the window sizes,
positions and borders are reset by these commands, the paper strip and
ink colours remain unchanged.

15 Memory Management

As QDOS is a multitasking operating system, there may be several jobs
running in a QL, and so the amount of free memory may vary
unpredictably. No Job may assume that the amount of free memory is
fixed. The function FREE MEM may be used to guess at the free memory
(defined as the space available for filing system slave blocks less
the space required for two (c.f. QL Toolkit: one only) slave blocks.

Temporary space may be allocated in the 'common heap'. This is done
with the function ALCHP which returns the base address of the space
allocated. Individual allocations may be returned to QDOS with the
command RECHP, or all space allocated is released by the commands

CLCHP (clear common heap), CLEAR or NEW.

Functions
FREE MEM find the amount of free
memory
ALCHP (number of bytes) allocates space in common
heap (returns the base
address of the space)
Commands
RECHP base address return space to common
heap
CLCHP clear out all allocations

in the common heap

Making large allocations in the common heap and then accessing a drive
for the first time, can cause a terrible heap disease called 'large
scale fragmentation' where the drive definition blocks become widely
scattered in the heap leaving large holes that cease to be available
except as heap entries (i.e. you cannot load programs into them). A
simple but dangerous cure is to delete the drive definition blocks.

DEL DEFB delete file definition
blocks from common heap

Although there are precautions within the procedure DEL DEFB to
minimise damage, care should be taken to avoid using this command
while any directory device is active.

16 Procedure Parameters

In QL SuperBASIC procedure parameters are handled by substitution: on
calling a procedure (or function), the dummy parameters in the
procedure definition become the actual parameters in the procedure

call. The type and usage of procedure parameters may be found with two
functions:

PARTYP (name) find type of parameter
PARUSE (name) find usage of parameter
the type is 0 null the usage is 0 unset

1 string 1 variable

2 floating point 2 array

3 integer

One of the 'tricks' used by many machine code procedures is to use the
'name' of an actual parameter rather than the 'value' (e.g. 'LOAD
fred' to load the file name fred). Given the name of a dummy parameter
of a procedure, it would be possible to find the name of an actual
parameter of a SuperBASIC procedure call, but it would be very slow.
It is much easier to find the name of an actual parameter, if the
position in the parameter list is known.

PARNAMS (parameter number) find name of parameter

For example the program fragment

pname fred, joe, 'mary'

DEF PROC pname (nl,n2,n3)
PRINT PARNAMS (1), PARNAMS (2), PARNAMS (3)
END DEF pname

would print 'fred joe ' (the expression has no name).

One further 'trick' is to use the value of the actual argument if it
is a string, otherwise use the name. This is possible in SuperBASIC
procedures using the slightly untidy PARSTRS function.

PARSTRS (name, parameter number) if parameter 'name' is a
string, find the wvalue,
else find the name.

For example the program fragment
pstring fred, Jjoe, 'mary'

DEF PROC pstring (nl,n2,n3)
PRINT PARSTRS (nl,1), PARSTRS (n2,2), PARSTRS (n3,3)
END DEF pstring

would print 'fred joe mary'.

17 Error Handling

The JS and MG QL ROMs contain unfinished code for error trapping in
SuperBASIC: Toolkit II corrects some of the remaining problems.

Error handling is invoked by a WHEN ERROR clause. Unlike procedure and
function definitions, these clauses are static. The error handling
within a WHEN ERROR clause is set up when the clause is executed, but
is only actioned WHEN an ERROR occurs. This means that a program may
have more than one WHEN ERROR clause. As each one 1is executed, the
error processing within that clause replaces the previously defined
error processing.

The clause is opened with a WHEN ERROR statement, and closed with an
END WHEN statement. Within the clause there may be any normal type of
statement. (Although it might be better to avoid calling SuperBASIC
functions or procedures!) A WHEN ERROR clause is exited by a STOP,
CONTINUE, RETRY, RUN, LOAD or LRUN command (if you are using Toolkit
II). Furthermore the Toolkit II versions of RUN, NEW, CLEAR, LOAD,
LRUN, MERGE and MRUN reset the error processing (an unfortunate
omission from the QL ROMs) .

There are some additional facilities intended for use within WHEN
ERROR clauses.

ERROR functions
These functions correspond to each of the system error codes

(ERR_NC, ERR NJ, ERR OM, ERR OR, ERR BO, ERR NO, ERR NF,
ERR_EX, ERR IU, ERR EF, ERR DF, ERR BN, ERR TE, ERR FF,

ERR BP, ERR FE, ERR XP, ERR OV, ERR NI, ERR RO, ERR BL) and
return the value TRUE if the error, which caused the WHEN
ERROR clause to be invoked, is of that type. Do NOT use

ERR DF without Toolkit II.

ERROR information

ERLIN returns the line number
where the error occurred
ERNUM returns the error number

ERROR reporting

REPORT #channel reports the last error

REPORT reports the last error to
channel #0

REPORT #channel, error number reports the error number
given

RETRY and CONTINUE
As the RETRY and CONTINUE exit from an error clause without
resetting the WHEN ERROR, it would be useful if they could
also be used to exit to a different part of the program. In
Toolkit II, RETRY and CONTINUE can have a line number.
CONTINUE line number continue or retry from a
RETRY line number specified line

18 Timekeeping

18.1 Resident Digital Clock

CLOCK default clock in its own window
CLOCK #channel default clock, 2 rows of 10 chars
CLOCK #channel, string user defined clock

CLOCK is a procedure to set up a resident digital clock using the QL's
system clock. If no window is specified, then a default window is set
up in the top RHS of the monitor mode default channel 0. This window
is 60 by 20 pixels and is only suitable for four colour mode. The
clock may be invoked to execute within a window set up by BASIC. In
this case the clock job will be removed when the window is closed.

The string is used to define the characters written to the clock

window: any character may be written except $ or %. If a dollar sign
is found in the string then the next character is checked and

$d or $D will insert the three characters of the day of week,
Sm or $M will insert the three characters of the month.

If a percentage sign is found then

%5y or %Y will insert the two digit year

%d or %D will insert the two digit day of month
%h or %H will insert the two digit hour

%m or %M will insert the two digit minute

%$s or %S will insert the two digit second

The default string is '$d %d $m %h/%$m/%s ' a newline should be forced
by padding out a line with spaces until the right hand margin of the
window is reached.

To set the clock the SuperBASIC command SDATE is used:

SDATE year,month,day,hour,minute, seconds
Example:

SDATE 1989,6,1,14,45,30

MODE 8

OPEN #6, 'scr 156x10a32x16"

INK #6,0: PAPER #6,4

CLOCK #6,'QL time %h:%m'
18.2 Alarm Clock

ALARM time set alarm clock to sound at given time

The time should be specified as two numbers: hours (24 hour clock) and
minutes:

ALARM 14,30 alarm will sound at half past two
19 Extras
EXTRAS #channel lists the extra facilities
linked into SuperBASIC
EXTRAS lists the extras to #1

If the output channel is a window, the screen is frozen (CTRL F5) when
the window is full. With Toolkit II installed, there are hundreds of
extras.

TK2 EXT enforces the Toolkit II
definitions of common
commands and functions

If, for any reason, some of the Toolkit II extensions have been

re-defined, TK2 EXT (c.f. FLP EXT floppy disk extensions, EXP EXT
expansion unit extensions) will reassert the Toolkit II definitions.

20 Console Driver

20.1 Keyboard Extensions

There are two extensions to the QL keyboard handling. The first
provides a last line recall facility, and the second assigns a string

of characters to an 'ALT' keystroke.

<ALT><ENTER> keystroke recovers the
last line typed

This keystroke recovers (on a per-window basis) the last line typed,
provided only that the keyboard buffer is long enough to hold it.

The ALTKEY command assigns a string to an 'ALT' keystroke (hold the
ALT key down and press another key). The string itself may contain
newline characters, or, if more than one string is given, then there

will be an implicit newline between the strings. Thus a null string
may be put at the end to add a newline to the string.

ALTKEY character, strings assign a string to <ALT>
character keystroke
For example after the command

ALTKEY 'r', 'RJOB "SPL"',''
or ALTKEY 'r', 'RJOB "SPL"' & CHRS$ (10)

when ALT r is pressed, the command 'RJOB "SPL"' will be executed.
ALTKEY 'r' will cancel the ALTKEY string for 'r', while

ALTKEY will cancel all ALTKEY strings

21 Microdrive Driver
21.1 Microdrive extensions
There are three extensions to the microdrive filing system. These are
available as operating system entry points, but may also be supported
as calls from SuperBASIC.
OPEN OVERWRITE Trap #2, DO=1, D3=3
This variant of the OPEN call opens a file for
write/read whether it exists or not. The file
is truncated to zero length before use.

RENAME Trap #3, D0=4A, Al points to new name

This call renames a file. The name should include
the drive name (e.g. FLP1 NEW NAME) .

TRUNCATE Trap #3, D0=4B
This call truncates a file to the current byte
position.
21.2 Microdrive Improvements
The FS.FLUSH filing system call has been extended to perform a

complete flush including header information. This operation may be
accessed through the FLUSH command.

22 Network Driver

Attempts have been made in Toolkit II to elevate the rather elementary
network facilities of the QL to a useful level. The network
performance is dominated by the exceptionally low capability of the
network hardware. (If your QL has a pre-Dl14 serial number then it is
highly possible that your network hardware does not work at all,
although recent experience has shown that many more pre-D14 QLs have a
working network port than is generally supposed.)

22.1 Network Improvements

Fach QL connected to a network should have a unique 'station number'
in the range 1 to 63. This is set using the NET command.

NET station number

Toolkit II provides a new protocol for broadcast which includes new
provisions for handshaking. A broadcast is a message sent from one QL
to all other QLs listening to the network. The Toolkit II broadcast
protocol has a positive NACK (not acknowledged) handshake as well as
provision for detecting BREAK. The device names for the network are:

NETO station number output to station number
NETO 0 send broadcast

NETI station number input from station number
NETI my station nunber input from any station
NETI O receive a broadcast
NETI 0 buffer size receive a broadcast into

specified buffer size

When opening a channel to receive a broadcast, a buffer is opened to
allow the entire transmission to be received uninterrupted. If no
buffer size is specified, then all but 2k bytes of the free memory
will be taken. The buffer size should be specified in kbytes. For
example:

NETI 0 10 receive a broadcast into
10 kbyte buffer

When a network output channel is closed, then (as with the QL network
driver) the network driver will keep trying to send the last buffer
for approximately 20 seconds in case the receiving station is busy
with its Microdrives. With Toolkit II, however, after about 5 seconds
the driver will start checking for a BREAK.

22.2 File Servers

The file server provided in Toolkit II is a program which allows IO
resources attached to one QL to be accessed from another QL. This
means that, for example, disk drives attached to just one QL can be
accessed from several different QLs. The file server only needs to be
running on the QL with the shared IO resource. This version of the
file server is more general than the first version in that the IO

resources may be pure serial devices (such as modems or printers) or
windows on the QL display as well as file system devices (such as disk
drives) .

FSERVE invokes the 'file server'

There may be more than one QL on a network with a file server running:
the station numbers for these QLs should be as low as possible, and
should not be greater than 8.

It is possible that files opened across the network may be left open.
This can occur i1if a remote QL is removed from the network, is turned
off or is reset. To correct this condition, wait until all other
remote QLs have finished their operations on this QL, then remove the
file server and restart with the commands

RJOB SERVER
FSERVE

22.3 Accessing the File Server

The network file servers are accessed from remote QLs using a compound
device name:

Nstation number IO device the name of a remote
IO device (e.g. N2 FLP1
is floppy 1 on network
station 2)

For example

LOAD n2 flpl fred loads file 'fred' from
floppy 1 on network
station 2

OPEN_IN #3,nl flp2 myfile opens 'myfile' on floppy 2
on network station 1

OPEN #3,nl con 120x20a0x0 opens a 20 column 2 row
window on net station 2

The use of directory default names makes this rather simpler. For
example

PROG _USE nl winl progs by default all programs
will be loaded from
directory 'progs' on
Winchester disk 1 on
network station 1

SPL USE nl ser set the default spooler
destination to SER1 on

network station 1

It is possible to hide the network from applications by setting a

special name for a network file server.

NEFS USE name, network names sets the network file
server name

The 'network names' should be complete directory names, and up to
eight network names may be given in the command. Each one of these
network names is associated with one of the eight possible directory
devices ('name'l to 'name'S8).

For example

NFS USE mdv,n2 flpl ,n2 flp2 sets the network file
server name so that any
reference to 'mdvl' on
this remote QL, will be
taken to be a reference
flpl on net station 2,
likewise 'mdv2' will be
taken to be flp2 on net
station 2

OPEN_NEW #3,mdv2 fred now this will open file
'fred' on floppy 2 on
network station 2

The network names will normally just be a network number followed by a
device name as above and will end with an underscore to indicate that
the name is a directory. Indeed if the network file server name is to
be used with the wild card file maintenance commands, this is the only
acceptable form. QUILL, however, tends to open a file with the name
DEF TMP on mdvZ2 . Clearly, there will be problems if more than one
copy of QUILL is run across the network at any one time. This can be
avoided if the network name for mdv2 is set to be a directory:

NFS USE mdv,nl flpl ,nl flp2 fred DEF TMP opened on mdv2
will now appear in
directory 'fred' on flp2
on network station 1

FLP USE FLP is invoked after reset so if FLP is to be used as the
device name in the NFS USE command remember to include FLP USE XXX.
This will stop the TRUMP CARD / GOLD CARD etc. from trying to access
its own disk port instead of the network.

FLP USE xyz set device name for floppies
to xyz
NFS USE flp,nl flpl ,nl flp2 any reference to 'flpl' on

this QL will access flpl
on net station 1, etc.

22 .4 Messaging

The Toolkit II network facilities may also be used for messaging. A
window may be opened, a message sent, and a reply read using a simple

SuperBASIC program. If particularly pretty messages are required,
then the graphics facilities of SuperBASIC may also be used. The only
standard IO facilities not available across the network are SD.EXTOP
(extended operations) and SD.FOUNT (setting the founts).

For example
ch = FOPEN (n2 con 150x10a0x0): CLS #ch
INPUT f#ch, 'Do you want coffee? ';rep$
IF 'y' INSTR rep$ = 1 : PRINT 'Fred wants coffee'
CLS #ch: CLOSE #ch
23 Writing programs to use with EX

Programs invoked by EX (or EW or ET) fall into three classifications:

non standard program header is not standard format;

special program header is standard but there
is an additional flag;

standard program header is standard.

So far as EX is concerned, the distinction is that a special program
must contain the code to open its own I/0 channels.

At the start of execution a standard or non-standard program will have
the following information on the stack:

word the total number of channels open for this Job
[long the channel ID of the input pipe, if present]

(long the channel ID of each filename given in prog spec)
[long the channel ID of the output pipe, if present]

word the length of the option string or O

[bytes the bytes of the option string]

If there is just one channel open for a Job, then it is opened for
read/write unless it is a pipe in which case the direction is implied
in the command.

If there is more than one channel open for a Job, then the first
channel is the primary input (opened for read only), and the others
are opened OVERWRITE. The last channel is the primary output.

A Job should not close the channels supplied, but, when complete, it
should commit suicide. Each Job is owned by the next one in the chain,
so that when the last job has completed, the entire chain is removed.
Committing suicide in this way will put an end of file in the output.
Thus an end of file from the primary input should, directly or
otherwise, indicate to a program that the data is complete.

23.1 Special Programs

Standard and special programs have the value $4AFB in bytes 6 and 7.
This is followed by a standard string (length in a word followed by
the bytes of the program identification). In the case of a special
program header a further value of $4AFB (aligned on a word boundary)
follows the identification. When the program has been loaded, the
option string put on the jobs stack and the input pipe (if it is
required) opened and its ID put on the job's stack, then EX will make

a call to the address after the second identifying word. Note that the
code called will form part of a BASIC procedure, not part of an
executable program.

On entry to this code, the following registers will be set:

D4.L 0 or 1 if there is an input pipe; ID is not on stack
D5.L 0 or 1 if there is an output pipe; ID is on stack
D6.L Job ID for this program

D7.L total number of pipes + file names in prog spec

AQ address of support routines

Al pointer to command string

A3,A6 “*pointer to first file name (name table)

A4 pointer to job's stack

A5,A6 “*pointer beyond last file name (name table)

*these are the standard BASIC procedure parameter
passing registers.

The file setup procedure should decode the file names, open the files
required and put the IDs on the stack (A4). Register DO should be set
to the error code on return. D5 must be incremented by the number of
channel IDs put on the job's stack. A4 must be maintained as the job's
stack pointer. Registers D1 to D7, A0 to A3 and A5 may be treated as
volatile.

The routine (AO) to get a file name should be called with the pointer
to the appropriate name table entry in A3. DO is returned as the error
code, D1 to D3 are smashed. If DO is 0, Al is returned as the pointer
to the name (relative to A6). If DO is positive, A0 is returned as the
channel ID of the SuperBASIC channel (if the parameter was #n), all
other address registers are preserved.

The routine 2 (A0) to open a channel should be called with the pointer
to the file name in Al (relative to A6). The file name should not be
in the BASIC buffer; D3 should hold the access code (overwrite is
supported) and the job ID (as passed to the initialisation routine)
should be in D6. The error code is returned in DO, while D1 and D2 are
smashed, and Al is returned pointing to the file name used (it may
have a default directory in front). If the open fails, Al will point
to the default+given filename. The channel ID is returned in A0 and
all other registers are preserved.

In both cases the status register is returned set according to the
value of DO.

Appendix A

The appendix illustrates the use of Toolkit II facilities with the GST
assembler and linker. (The version used by QJUMP is supplied by GST
with their QC compiler: QC is well worth buying just to get the
assembler and linker!). The programs accept a wide variety of options
on their command line. This command line can be passed to the programs
in the parameter string of the EX command. Unfortunately the programs
do not attempt to find the default data directory, so it is necessary
to add this to the file names in the command line. The assembler is

called ASM and the linker LINK. Filenames can be passed to these
procedures as strings or names.

100 REMark assemble a relocatable file
110 :

120 DEFine PROCedure asr (file$)

130 EX asm; DATADS & PARSTRS (file$,1) & ' —-errors scr'

140 END DEFine asr

150 :

160 REMark assemble with listing

170 :

180 DEFine PROCedure asl (fileS$)

190 EW asm; DATADS & PARSTRS (file$,1) & ' -list ser -nosym'

200 END DEFine asl
210 :

220 REMark link program

230 :

240 DEFine PROCedure 1k (file$S)

250 EX link;DATADS&PARSTRS (file$,1) &'
260 END DEFine 1lk

-with '&DATADS&'link -nolis

If the data default directory is
calls

'FLP1 JUNK ', then the procedure

ASR 'table' and LK master

will create the command parameter strings to the assembler and linker
'"FLP1 JUNK table -list ser -nosym' and
'"FLP1 JUNK master -with FLP1 JUNK link -nolist'

Appendix B

QL Network Protocols
Standard QL Handshake

The Standard QL handshaking network protocol is compatible with the
Sinclair Spectrum protocol. It comprises 11 phases

sender receiver
a) scout
1) gap waiting for 3ms for
activity, if activity
occurs: restart
2) wait waiting for activity
(a scout)
3) scout send a scout of wait for 530us
duration < 530us, if
contention occurs:
restart
b) header

4) hactiv

set net active 22us

wait for active

5) hbytes for each byte 11.2us
start (inactive) bit,
8*11.2us data bits,
5%¥11.2us stop (active)

bits

wait for 2.5ms for
active,
restart

6) hackw

7) hackbt wait for start bit,
read 8 data bits,

if error: restart
c) data

8) dactiv set net active 22us

9) dbytes for each byte 11.2us
start (inactive) bit,
8*11.2us data bits,
5%¥11.2us stop (active)
bits

10) dackw wait for 2.5ms for
active, if not active:
restart

11) dackbt wait for start bit,

read 8 data bits,
if error: restart

if not active:

for each byte wait for

start (inactive) bit,
read 8 data bits, if
fails: restart

set net active 22us

send 11.2us start bit
8 data bits 00000001

wait for active

for each byte wait for

start (inactive) bit,
read 8 data bits, if
fails: restart

set net active 22us

send 11.2us start bit
8 data bits 00000001

The entire protocol is synchronised by a period of inactivity at least

2.8ms long.

The header is eight bytes long in the following format:

destination station number
sending station number

block number (high byte)
block number (low byte)
block type (0 normal,

number of bytes in block
data checksum
header checksum

If the number of bytes in a block is 0,

sent.

l=1last block of file)
(0 to 255)

256 data bytes are actually

The checksums are formed by simple addition:

bit errors in the most significant bit (the
within one block, then the errors will pass
If the block number received in a header is

if there are two single
most common type of error)
undetected.
not equal to the block

number required, then the header and data block are acknowledged but

ignored.

The protocol is not proof against a failure

on the last block

transmitted where the receiver has accepted the block, but the sender
has missed the acknowledge. In this case the sender will keep
re-transmitting the block until it times out (about 20s).

Toolkit II Broadcast

Toolkit II has a special version of this protocol for network
broadcast. This has an extended scout to allow time for the receiver
to interrogate the IPC without missing the scout, and it has an active
acknowledge / not acknowledge. The protocol has been defined in such a
way that future network drivers can be more flexible than the Toolkit
IT driver.

sender receiver
a) scout
1) gap waiting for 3ms for
activity, if activity
occurs: restart
2) wait waiting for activity
(a2 scout) every 20ms
check IPC for BREAK
3) scout send a scout of wait for 530us
duration < 530us, if
contention occurs:
restart
4) scext send a scout extension
of 5S5ms active
b) header
5) hbytes for each byte 11.2us for each byte wait for
start (inactive) bit, start (inactive) bit,
8*11.2us data bits, read 8 data bits, if
5¥11.2us stop (active) fails: nack
bits
6) hwait leaving net active,
wait 1lms
c) data
7) dbytes for each byte 11.2us for each byte wait for
start (inactive) bit, start (inactive) bit,
8*11.2us data bits, read 8 data bits if
5¥11.2us stop (active) fails: nack
bits
8) dack inactivate net and within 500us set net
wait 1lms for active: active and wait 5ms,
if fails, restart do any processing

required and when ready
for next packet,
inactivate and restart

d) Not acknowledge

9) nack wait for inactive wait for 2.8us of active
or inactive, if inactive:
restart

10) nackw wait 500us for active: wait 200us for active, if
timeout is ok, active active: restart, if inactive
is fail activate 500us (nack)

A broadcast acknowledge is bms active followed by more than 400us
inactive. A broadcast not acknowledge is no response or 5Sms active
followed by 200us to 300us inactive, followed by more than 200us
active.

Toolkit II Server Protocol

The Toolkit II server protocol is physically the same as the Standard
QL protocol, but the header has been slightly changed to improve the
checksum, to allow blocks of up to 1000 bytes to be sent and to
distinguish server transactions. A server header cannot be confused
with a standard header.

Appendix C

Toolkit II Code Sizes

size nr size/nr
Base area and tables 1618 1 1618
ED 2328 1 2328
VIEW 74 1 74
Directory control (DATA USE, DLIST etc.) 224 11 20
File maintenance (COPY, WDEL etc) 1356 13 104
SPL, SPLF 212 2 106
BASIC (LOAD, SAVE, RUN etc.) 308 13 24
Load and save (LBYTES, SBYTES, etc.) 182 6 30
CALL 30 1 30
EX, EW 750 2(37?) 375
JOB control procedures 292 4 73
JOB information functions 102 4 25
OPEN and FOPEN 122 11 11
CLOSE 60 1 60
File header information 86 6 14
Direct access files 518 7 74
PRINT USING 442 1 442
Decimal conversions (required for PRINT USING) 552 4 138
Hex and binary conversions 214 4 53
Cursor control 24 2 12
Character setting (CHAR USE, CHAR_ INC) 56 2 28
Window reset (includes 48 bytes in header) 128 2 04
Heap handling 146 4 38
Heap tidy (DEL DEFB) 62 1 62
BASIC procedure parameter type 136 4 34
ERROR handling 54 2 27
EXTRAS 68 1 68
Microdrive extensions 720 4 180
ALTKEY and last line recall 366 2 183

Network 3064 3 1021
Utility code 1674

The sizes above do not include the table entries for each BASIC
extension (=name length + 3 or 4 bytes).

Facilities not included in above:

RAM disk approx 1400
Buffered printer extension approx 500
total approx 2400

These can be accommodated by removing about 50 of the less useful
facilities.

Appendix D

Toolkit II Update Record

V2.01 First full version.

V2.02 First release version.

V2.03 Patched to prevent MG initialisation problems.
V2.04 (Jeaggil only) network eof problems fixed.

V2.05 Lost channel on OPEN NEW (file already exists) fixed.
EX EW changed so that owner is current job.

V2.06 EX EW changed for compiled programs: EX jobs owned by 0, EW
jobs owned by current job and now wait!

V2.07 (Sandy only) 'bad line' character wrap problem in ED fixed.

V2.08 Empty line in ED problem (introduced in V2.07) fixed.
Unset string parameter collapse in PRINT USING fixed.

V2.09 PUTting randomly positioned bytes over the the network should
not now shuffle the contents of a file.

V2.10 RENAME with only one name does not now leave file open.
The file system prompts are now sent to #0 rather than channel
0.

V2.11 1Initialisation error causing loss of replacement commands (e.g.
OPEN) using JM/AH ROMs and CST QDisc V1.17 and V1.18 fixed.

V2.12 Bad error message return from opening a file name that is too
long changed to return "bad name".
"Bad parameter" from special job opening a file specified as a
string in an EX command fixed.
"Not complete" from SPL fixed.
Last line recall changed to reduce problems due to asynchonous
modification of keyboard queue.

V2.13 Error status returned from SAVE and LIST if drive full or bad
or changed medium during output.
Network fixed to prevent serial I/O buffer damage when
interleaving serial I/0 with window enquiries while reading
from a file.

Appendix E

Floppy disk update Record

V1.

V1.

V1.

V1.

V1.

V1.

V1.

V1.

07

08

09

10

11

12

13

14

(not released)
Write operations held pending (up to 20 sectors).
Direct sector IO added.

Microdrive interleave problem with FS.LOAD call (in V1.07 only)
fixed.

Direct sector open does not now check the drive. On seek, the
track register is set to the actual track number found on the
track, seek errors will not be detected, so any track may be
read from any part of the disk.

Direct sector write in FM (*DnS) does not now give read/write

failed (it did work before though - just ignore the error
message) . This does not affect those interfaces which have MFM
only.

A fatal LOAD error condition has been removed. This occurred
in V1.07 onwards if:
a) a file is LOADed within .5 second of a modification
to that file
and Db) the file was not closed or flushed in this period
and c¢) the directory entry for the file has become
unreadable.
(There is no logical reason for conditions a and b to be
met simultaneously!)

Version 1.11 should be functionally identical to Version 1.10.
The source code has been completely reorganised.

The step rate detection procedure, which has not functioned
well since version 1.09, has been fixed.

The disk present detection routine has been changed to work
reliably with index pulses as short as 10 us. (A problem with
extreme out-of-spec Mitsubishi 3.5" drives.)

The FLP OPT command or the equivalent set of commands has been
added. This now gives a choice of security versus speed, and
extends the range of odd drives which may be used.

The disk change detection has been redesigned and the disk
header handling has been improved.

The FORMAT procedure has been rewritten. It will not now detect
step errors, but instead it formats and checks the disk in 5
revolutions per track (1 second, on double sided drives), or 3
revolutions per track (.6 second, on single sided drives).

The check on the 11th character of a medium name (FORMAT) is
not now done unless the name is at least 11 characters long.
The error returns from direct sector reads have been tidied up.
The read operations used in direct sector reads now have their
own read error recovery. This should improve the reliability of
direct sector reads (see V1.09 above). Direct sector reads no
longer clear the read buffer before attempting to read.

When checking for the presence of a disk, the driver now waits
for just over one second before giving up.

If there are repeated seek errors, the step rate is
automatically reduced.

The driver can now scatter load zero length files without
getting in a knot.

V1.15 The changes in V1.15 are mainly to accomodate the 1772 control
chip. Some of these may have beneficial side effects when using
1770 or 2793.

1) When first accessing a drive a check is made for 1772
step rates.

2) A compulsory 5Sms settle is added after any seek: there
was a problem at 2ms step rate with premature
termination of a restore command.

3) The unchecked seeks at the start of the format
procedure and before a direct sector read / write are
now performed at a slower step rate than the normal
seeks. This should reduce the chances of an undetected
seek error.

The sector allocation algorithm has been changed so that the
first sector of a file may be allocated in track 0 when all
other tracks are full.

The internal messages have been moved to the base of the ROM.

Foreign language versions can now be made with simple patches.
The write track procedure (for format) has Dbeen changed to
improve the worst case timing margin.

V1.16 A problem with repeated checks on a changed medium, when files
are still open on a previous medium, has been fixed.
The FLP EXT command clears the procedure stack.
RAM disk V1.02 incorporated where appropriate.

V1.17 RAM disk V1.03 incorporated where appropriate.

V1.18 Verify introduced on restore; additional pauses introduced on
seek error recovery.

V1.19 to V1.25 Identical to V1.18

Appendix F
Index and List of Differences

This index lists the SuperBASIC extensions in alphabetical order
together with the usage (procedure, function or program), the section
number describing the facility in detail, the origin of the facility
(whether the facility first appeared in the QL ROMs or in the Sinclair
QL Toolkit) and principal differences between the facility in the

Toolkit II and earlier versions.

This list only includes the most important differences,

in many cases

there are other improvements over earlier versions.

Name

AJOB
ALARM
ALCHP
ALTKEY
BGET

BIN

BINS
BPUT
CALL
CDECS
CHAR USE
CHAR_INC
CLCHP
CLEAR
CLOCK
CLOSE
CONTINUE
COoPY

COPY O
COPY N

COPY H
CURSEN
CURDIS
DATA USE
DATADS
DDOWN
DEL DEFB
DELETE
DEST USE
DESTDS
DIR
DLIST

DO

DNEXT
DUP

ED

ERR DF
ET

EX

EXEC
EXEC W
EXTRAS
EW

FDAT
FDECS
FEXP$S
FLEN
FLUSH
FNAMES

Usage

procedure
program
function
procedure
procedure
function
function
procedure
procedure
function
procedure
procedure
procedure
procedure
program
procedure
procedure
procedure

procedure
procedure

procedure
procedure
procedure
procedure
function

procedure
procedure
procedure
procedure
function

procedure
procedure
procedure
procedure
procedure
procedure
function

procedure
procedure
procedure
procedure
procedure
procedure
function

function

function

function

procedure
function

Section

9
18
15
20
12
13
13
12

13
14
14
15

18
10
17

[C2BNE)]

[

=

’_l
© 00 00 0 O ~J WK oY Uk D OO D DD DO

N =S Sy =
NP W Wk o

11

Origin

QL Toolkit
QL Toolkit
QL Toolkit
new

QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
bug fix

QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL

QL Toolkit
QL

QL

QL

new

oL

new
QL Toolkit
QL Toolkit
QL Toolkit
new

new

new

oL

new

new

QL

new

new

new

new

QL Toolkit
bug fix

QL Toolkit
QL Toolkit
QL

QL

QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
new

QL Toolkit
new

new

Differences

accepts Job name
resident program

clears WHEN ERROR
configurable program
close multiple files
specified line number
uses default directory
uses default destination
overwrites file

uses default directory
uses default destination

uses default directory

uses default directory

completely respecified

now the same as EX
now the same as EW

FOP_DIR
FOP_IN
FOP_NEW
FOP_OVER
FOPEN
FPOS
FREE MEM
FSERVE
FTEST
FTYP
FUPDT
FXTRA
GET

HEX

HEXS$
IDECS
JOBS
JOBS
LBYTES
LOAD

LRESPR
LRUN

MERGE
MRUN

NEW
NFS USE
NXJOB
OJOB

OPEN

OPEN DIR
OPEN IN
OPEN NEW
OPEN_OVER
PARNAMS
PARSTRS
PARTYP
PARUSE
PJOB

PRINT USING

PROG_USE
PROGD$
PUT
RECHP
RENAME
RETRY
RJOB

RUN

SAVE
SAVE_O

SBYTES
SBYTES_O
SEXEC
SEXEC_O

function
function
function
function
function
function
function
program
function
function
function
function
procedure
function
function
function
function
procedure
procedure
procedure

procedure
procedure

procedure
procedure

procedure
procedure
function
function
procedure
procedure
procedure
procedure
procedure
function
function
function
function
function
procedure
procedure
function
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure
procedure

10
10
10
10
10
12
15
22
10
11
11
11
12
13
13
13

o 1 O

o

N JJ

QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
new

new

QL Toolkit
new

new

QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL Toolkit
QL

QL

new

QL
QL
QL

QL

new

QL Toolkit
QL Toolkit
QL

new

QL

QL

new

new

new

QL Toolkit
QL Toolkit
QL Toolkit
new

QL Toolkit
new

QL Toolkit
QL Toolkit
QL Toolkit
QL

QL Toolkit
QL

QL

new

QL
new
QL

new

finds
finds
finds
finds
finds

gives

vacant
vacant
vacant
vacant
vacant

channel
channel
channel
channel
channel

512 bytes less

uses default directory
uses default directory
clears WHEN ERROR

uses default directory
clears WHEN ERROR
uses default directory
clears WHEN ERROR
uses default directory
clears WHEN ERROR
clears WHEN ERROR

uses
uses
uses
uses
uses

default
default
default
default
default

directory
directory
directory
directory
directory

specified line number
accepts Job name
clears WHEN ERROR

uses default directory
overwrites file

uses default directory
overwrites file
uses default directory
overwrites file

SPJOB
SPL
SPL_USE
SPLF
STAT
STOP

TK2 EXT
TRUNCATE
VIEW
WCOPY

WDEL
WDIR
WMON
WREN

WSTAT
WTV

procedure
program

procedure
program

procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure
procedure

procedure
procedure

e
WM WO U U Ul

(&)}

QL Toolkit
QL Toolkit
QL Toolkit
new

QL Toolkit
QL

new

QL Toolkit
QL Toolkit
new

QL Toolkit
QL Toolkit
QL Toolkit
new

QL Toolkit
QL Toolkit

accepts Job name
simplified destination

adds form feed to file
clears WHEN ERROR

position may be specified
defaults to command window

uses default destination
defaults to command window

defaults to command window
uses default destination

