GA-

GIGASOERT

BAS

By André ClaabBen and Gerd-Uwe Neukamp
Published by ABC Elektronic

(C)

1985

GIGA-SOFT

CONTENTS

Disclaimer

Introduction:

Graphics

Direct Access to medium

Base Conversion

Multitasking Control Commands

Sprites and Animation

Sprite Definition Commands

MENU Control Commands

Pull-Down-Menus

Programmable Function Keys

Clock Commands

Other Commands

Window Commands

Index

< page - 2 -

>

R © 6 O W LW L W

N R R KRR R R
QO V. o 0 0 W

GIGA-SOFT

DISCLAIMER

All rights reserved. No part of this instruction guide or of
the included programs may be reproduced or distributed in any
form (e.g. as prints) without the explicit permission of GIGA-
SOFT. Copies for personal use are allowed.

The program has been developed and reproduced carefully,
neither the author nor the distributors, however, can
guarantee that the program and this guide are free of errors.
Therefore GIGA-SOFT under no circumstances will be liable for
any direct, indirect, Incidental or consequential loss of use,
stored data, profit or contracts which may arise from any
error, defect or failure of this software.

GIGA-SOFT has a policy of constant development and improvement
of their products. We reserve the right to change manuals and
software at any time and without notice.

INSTRUCTIONS FOR THE BASIC EXTENSION "GIGA-BASIC VERSION 1.00"

INTRODUCTION :
Although the Sinclair QL comes with a real good BASIC, some
commands are missing, which would offer the full power of the
QL. This extension set should increase your motivation to
program in BASIC. With over 70 commands and functions, GIGA-
BASIC is a useful extension for the QL. Before starting work
with GIGA-BASIC you should read this manual carefully. You
should never work with your original copy of GIGA-BASIC. To
obtain working copies a backup program is included. To start
this program enter 'exec w mdvl clone'. You can backup GIGA-
BASIC up to three times.

The extension includes the following groups
e graphics
e sprite handling and sprite animation
e Dbase conversion
e full screen BASIC editor
e direct access to medium
e mnmultitasking clocks
e mouse driven screen oriented menus
e pull-down-menus
e multitasking control commands
e programmable function keys
e others

GRAPHICS

e PAINT #dev, X, y
Fills an irregularly bordered area of the chosen
screen with the ink colour.

< page - 3 - >

GIGA-SOFT

dev: device number of the screen
X X= coordinate
Y: y= coordinate

DIRECT ACCESS TO MEDIUM

e GET #dev, variable (,variable)
Gets a value from medium and writes it into the
variable. The type of the value depends on the type
of the variable.
Example: GET #4, integer$%

#dev: device number
variable: any type and number of variables

e BGET #dev, byte (,byte)
Gets byte from medium and puts it into the

variable.
#dev: device number
byte: any type and number of variables

e PUT #dev, variable (,variable)
Writes value to Microdrive. Any variable type is
allowed.

#dev: device number

variable: any type and number of variables.

e BPUT #dev, byte (,byte)
Writes byte to Microdrive.

ftdev: device number
byte: variable which gets a byte

e SET POINTER f#dev, pointer
Sets file-pointer to new position. With this
command it i1s possible to have direct access to
Microdrive (or FLP, HDK, FDK and so on).

#dev: device number
pointer: longword containing the pointer

e GET_POINTER (#dev)
Gets the pointer of the selected Microdrive.

Example: pointer = GET POINTER (#dev)
f#dev: device number
pointer: variable containing the pointer

< page - 4 - >

GIGA-SOFT

BASE CONVERSION

The following functions provide an easy way to
convert bases.

hexnum$ = CHEXS$ (decimal)

Converts a decimal value into a hexadecimal
string
hexnum$: string which will contain the hex number
decimal: variable containing the decimal number

decimal = CHEX (hexnum$)

Converts a hexadecimal string (max. 32 bit)
into a decimal number.

decimal: variable which will contain the decimal number
hexnum$: string containing the hex number

binary$ = CBINS (decimal)

Converts a decimal number into a binary string

(32 bit).
decimal: variable which will contain the decimal number
binary$: string containing the binary number

decimal = CBIN (binary$)

Converts a binary string into a decimal number.
Decimal: variable which will contain the decimal number
binary$S: string containing the binary number

MULTITASKING CONTROL COMMANDS

The following commands are intended to control the
multitasking capabilities of the 04. Now it is possible to
delete, suspend or activate jobs from BASIC.

JOB_INF #dev

This command display, a list of all active Jobs. A
job is a program working in the background.
Additionally you can see the priority, the owner
job, the base address and the tag number. Job 0 is
the BASIC interpreter. For further information on
multitasking refer to the Sinclair User Guide.

#dev: device number

< page - 5 - >

GIGA-SOFT
SUS_JOB jobnr, tagnr, timeout

Suspends a job for a period.

Jjobnr: Jjobnumber

tagnr: tagnumber

timeout: Number of frames the job being deactive (-1:
infinite).

REL JOB jobnr, tagnr

Releases a suspended job. This command is the reverse

of SUS JOB.
jobnr: Jjobnumber
tagnr: tagnumber

PRIOR JOB jobnr, tagnr, priority

Sets the priority of a job. Priorities are allowed in
the range from 0 to 127, where 127 is the highest
priority. If the priority is high, more time is
available for the job.

jobnr: Jjobnumber

tagnr: tagnumber
priority: priority

SPRITES AND ANIMATION

GIGA-BASIC offers a great number of efficient commands for
development and animation of sprites. So it is easy to generate
action games or programs using icons. Sprites are organised in a
32 x 20 matrix and are flicker-free

Important definitions:

Sprite-data-block (sprdat): This is a memory block which contains
the bytes for the shape (mask) of the sprite. A sprite shape
contains 160 bytes. Every Sprite-data-block can be attached to
every sprite.

Sprite-number (sprnr): A sprite will be activated under a sprite-

number. Under this number the sprite can be moved over the whole
screen.

e SPRDIM spritenr, datanr, animtenr

Reserve memory for sprites. The defaults are:
SPRDIM 4,16,4

spritenr: number of possible sprites
datanr: number of possible Sprite-data-blocks

< page - 6 - >

GIGA-SOFT
animtenr: number of the sprites which can be animated
SPRCLR

SPRCLR releases the memory allocated by SPRDIM. All
defined Sprites are lost.

INVMASK #dev, x, vy, sprdat
Prints a sprite mask onto the screen. The coordinates
are relative to the left upper edge of the selected
window. The coordinates have pixel size 4. (This is

not a sprite, only a mask will be drawn).

dev: device number
sprdat: sprite-data-block

SPRON sprnr, sprdat
Activates a sprite with a sprite-data-block.
Note: This command does not have any effect on the
screen. The sprite will not be visible until it is

activated by the MOVESPR command

sprnr: sprite number
sprdat: sprite-data-block

SPROFF sprnr

Removes the selected sprite.
sprnr: sprite number
REFRESH

Important after "CLS'. All active sprites are
refreshed.

INVSPRITE sprnr
The chosen sprite is inverted.

sprnr: sprite number

MOVESPR sprnr, x, y (,sprdat)

Sets a sprite to a new position. The optional sprite-
parameter is intended to change the appearance of the
sprite. If no sprite-data-block parameter is given,
the sprite image does not change.

sprnr: sprite number
X, y: *absolute pixel coordinates
sprdat: sprite-data-block

< page - 7 - >

GIGA-SOFT

Several sprites can be moved using only one command. This type of

motion is named animation.

It is a really easy task to move

rockets, men, cars and other things now.

SETANIMATE sprnr, sprdat(,sprdatl) (,sprdat?2)
This command has as many parameters as you want to.
The given sprite-data-block are connected in series.
Note: Before using ANIMATE, you have to initialise the
routine with the SETANIMATE command. A maximum of 16
sprite-data-blocks may be connected.

sprnr: sprite number

sprdat: sprite-data-block

CLRANIMATE sprnr
The selected sprite entry will not be animated after
the use of CLRANIMATE.

sprnr: sprite number

STEPSPRITE sprnr, xstep, ystep, statx, staty
This command CIO be used after every SETANIMATE. You
can change the direction and speed of the animation in
your basic program.

sprnr: sprite number

xstep: stepsize x

ystep: stepsixe y

statx: 0 After reaching the border of the screen inverts
the x-direction.
1 After reaching the border appear at the other side.
2 After reaching the border kill the sprite.

staty: Same as statx but referring to the y-direction.

ANTMATE
Moves all sprites which are declared with the
SETANIMATE command over the screen.

Sprite = COLLISION (sprnr)
Asks whether two sprites are overlaid. If it is true
COLLISION returns the sprite number, otherwise -1.

sprnr: sprite number

sprite: If the sprite isn’t in contact with another sprite -1

will be returned, otherwise

< page - 8 -

the sprite number.

GIGA-SOFT

SPRITE DEFINITION COMMANDS

Sprites can be defined for MODE 4 or MODE 8.

example of an eight colour sprite:

100 :

120 :

130 sSD8
140 sSD8
150 sSD8
160 SD8
170 sSD8
180 sSD8
190 sD8
200 SD8
210 SDS8
220 SD8

"

110 SPRDEFBLOCK starship

« ... 22222222...."
..333333333333.."
...3333333333..."

The four colour example:

100 :

120 :

130 sSDh4
140 sSD4
150 sSD4
160 SD4
170 sSD4
180 sSD4
190 sSD4
200 sSh4
210 sSb4
220 Sh4
230 Sh4
240 Sh4
250 sSh4
260 Sh4
270 Sh4

110 SPRDEFBLOCK disk

Sidsdsiasssasadadddd i sain
CAFAEEE A
CHHAE A
Sidsdsiassssaadadddd i iaanssain
CHEREEER R L HEE R

CHERHEEEEESE L L eSS HHAA .
CHEHEEEEE L . L Ll FHEFFHASAA .
CHEREEEEEEAE L L eSS HHAA .

CHERERER RS L HE R
Sidsdsiassssaadadddd i iaanssain
e R
SRR AR
Sidsdsisssssaadadddd s iaansssin

The colours are set in the following forms

MODE 4

Red

green
white
black

MODE 8

blue
red
magenta
green

lll
121
|3l,l#|
:all other characters

lll
121
13l
l4l

< page - 9 -

>

The following is an

GIGA-SOFT

cyan . 'S5

yellow : '6!

white A

black : all other characters

SPRDEFBLOCK sprdat
Clears the selected sprite-data-block and prepares it
for a new definition.

sprdat: sprite-data-block

SD4 defblocks$
Command to define a four colour sprite. Up to 20
commands can be used after a SPRDEFBLOCK command. The
string must be 32 characters long.

SD8 defblocks$
Command to define an eight colour sprite. Up to 20
commands can be used after a SPRDEFBLOCK command. The

string must have a length of 16 characters.

SPRLOAD names$
With this command you can load previously defined
sprite-data-block. Before you use this command enough
space must be reserved by SPRDIM.
Example: PRLOAD *MDVl_PACMAN_SPR*

SPRSAVE names$
If you want to save the allocated sprite area you can
use this command. Only the area for sprite-data-block
will be saved.

flag = SPRACTIVE (sprnr)

With SPRACTIVE you can ask whether a sprite in active.
1 is true and 0 is false.

sprnr: sprite number
x=SPRXPOS (sprar)
y=SPRYPOS (sprnr)

With these functions you can find out the location of
a sprite.

sprnr: sprite number

< page - 10 - >

GIGA-SOFT

MENU CoNTROL COMMANDS

The following commands support your friendly screen orientated
menus. Now you can program mouse-driven menus as with the APPLE
MACINTOSH™

The handling is very simple. With commands like MENUPR or
MENUBLOCK you define a BLOCK. This block can be manually inverted
or selected with the MOUSE function. Possible input media are the
cursor keys or a mouse with the ABC-interface (included in the
big ABC package) .

Example
100 :
110 REMark small example menu
120 :
130 CLS
140 PRINT "M E N U"
150 PRINT: PRINT
160 MENUPR 1," Start a program"
170 MENUPR 2," List a program*
180 MENUPR 3," End"

190 :

200 a=MOUSE

210 :

220 SELect on a

230 =1: Start
240 =2: LIST

250 =3: STOP

260 END SELect
After entering and starting the program, the menu points
appear as if they were printed with the PRINT command. An
arrow appears, too. This arrow can he moved over the whole
screen. If the arrow is in range of a menu point this will be
inverted. So you can see exactly what you have chosen. By

pressing the button or space the selected menu number will be
returned.

e SETMDEV mode
Selects input medium for the menu commands.

mode : 0: keyboard (cursor keys / space)
1: mouse

e MENUDIM number

Reserves memory for the menu points. Space for pull-
down-menus will be automatically allocated.

number : the maximum number of menu points

< page - 11 - >

GIGA-SOFT

MENUBLOCK #dev, blknr, x, y, xO, yO

This command marks a block with the chosen menu-block-
number.

device number of a screen

menu-block-number

size of the block

position relative to the selected window (offset)

MENUPR #dev, blknr, text$

ICON #dev,

Prints a text an the screen similar to the print
command and activates it as a menu block.

device number of a screen
menu-block-number

text

The separator ';' is allowed.

blknr, sprdat, x, y

Similar to the INVMASK command it displays a sprite
block on the screen. The difference is that ICON marks
it menu block. With this command it is possible to
access symbols in a similar way as the MENUPR command.
You can define ICONs and use them for defining
MACINTOSH™ style programs.

device number of a screen
menu-block-number

sprite-data-block

pixel coordinates relative to the window

INVBLOCK blknr

Inverts a block.

menu-block—number

CLRBLOCK blknr

nr=MOUSE (x,

Clears a block.

menu-block—number

Y)

Displays an arrow which can be moved over the screen
by using the mouse. With the arrow you can select an
item.

< page - 12 - >

GIGA-SOFT

nr: if no menu point is chosen, -1 will be returned,
otherwise the otherwise the menu-block-number will be
returned.

X, Vy: start coordinates of the arrow

x = MXPOS, y = MYPOS

These functions return the position of the arrow after
pressing the SPACE-key.

PULL-DOWN-MENUS

This a new type of menu technique. On top of the screen you can see
a headline holding the menu points. If you move the arrow to one of
the points, a window will be opened with a submenu. Now you can
choose the point you want in the submenu. With the Pull-Down-Menus
you can handle a great number of menu points on a very small room.

Example:

100 SPRDIM :REMark Reserves space for the arrow

110 MENUDIM :REMark Allocates space for the pull-down-menu
120 :

130 MENU

0,0,1, "Addresses"

140 MENU 1,0,1, "Clear"
150 MENU 2,0,1, "Input"
160 MENU 3,0,11 "Edit"
170 :

180 MENU 0,11,1, "File"
190 MENU 1,1,1, "Load"
200 MENU 2,1,1, "Save"
210 :

220 MENU 0,2,1, "Exit"
230 MENU 1.2,t, "Reset"
240 MENU 2,7,1, "Basic"
250 :

200 SETMENU :REMark Clears the screen and shows the menu headline
270 :

280 GETMENU :REMark Shows the arrow and gets the menu point

290 x = HMENU

300 y = VMENU

310 :

MENU vnr, hnr, active, string$

Command to define a pull-down-menu.

vVnr: Vertical coordinate. The headline has the
coordinate zero.
Note: The menu points within the headline (vnr=0) must be

defined In ascending order. Every headline point must

< page - 13 - >

hnr:

active:

string$:

GIGA-SOFT

have a submenu. A maximum of 10 Items can be defined
in the vertical direction.

Horizontal coordinate. The number of horizontal items
is restricted to a maximum of 8. The total length of
the items in the headline must be selected to fit
according to the selected screen mode. This is
important for compatibility between mode 8(256) and
mode 4 (512).

Flag which selects whether you can access the menu
point or not

Text of the menu point. The length is restricted to 14
characters.

SETMEMU paperl, paper2, actcol, pascol

paperl:
paper?2:
actcol:
pascol:

GETMENU x,

X, V:

Default:

ACT1VE vnr,

vnr:
hnr:
active:

Clears the whole screen. Displays the headline.
is the screen colour
border colour of the headline

Colour of the active menu points
Colour of the passive menu points

y

Displays the arrow and allows the user to select menu
points.

start position of the arrow

GETMENU 256,100

hnr, active

Activates and deactivates menu points.
Vertical coordinate of the menu point

Horizontal coordinate of the menu point
Flag, l-active, O-inactive

With these functions you can get the position of the
chosen menu point.

Possible range:

HMENU (0-7)
VMENU (1-9)

< page - 14 - >

GIGA-SOFT

PROGRAMMABLE FUNCTION KEYS

Directly after starting the BASIC extension, the function keys
are programmed, information about the assignments can be gained
by pressing "F1". This assignment can easily be changed by the
user. Furthermore the function keys can be switched off if they
would disturb the function of other programs.

KEYS #dev
Lists all function key assignments to the specified
device.

#dev: device number (default is 1)

KEY keynr, string$

Allows the user to change the function key assignment.

keynr: Number of the function key (1 to 10), numbers greater
than 5 are activated by pressing the shift key
simultaneously.

String$: String containing the command (max. 32 characters).

Example: KEY 1, 'LIST'&CHRS (10)

KEYSON
Turns function keys on.

KEYSOFF
Turns function keys off.

CrLock COMMANDS

It is possible to display either a digital or an
analogue-clock on the screen. There is also the possibility of
changing colour and size to adapt the clocks to own programs.

DCLOCK on, x, y, paper, inkl, ink2
Displays a digital clock.
Default DCLOCK 1, 340, 0, 2, 7, 4

on: flag, O-removes the clock, others activate the clock

X, V: right upper coordinate of the clock in pixel
coordinates

paper: paper colour

inkl: ink colour

ink2: border colour

ACLOCK on, X, y, size, paper, inkl, ink2, ink3, ink4

Displays an analogue- clock.
Default ACLOCK 1, 0, O, 40, 0, 2, 2, 4, 6

< page - 15 - >

GIGA-SOFT

on: flag, O-removes the clock, others activate the clock

X, y: right upper coordinate of the clock in pixel
coordinates

size: vertical size of the clock

paper: paper colour

ink 1-4: ink colour for the hands of the clock and the circle

around it

OTHER COMMANDS

e CAT #mdvnr
Displays the directory of the specified drive in a
formatted form. Furthermore it displays the number of
blocks (512 bytes) each program uses.
#mdvnr: number of drive (default is 1)

e DUMP #dev
Displays all variables with contents, procedures and
functions with line numbers.

#fdev: output device (default is 1)

e COMMANDS #dev
Lists all new BASIC commands with their start address
on the output device.

#dev: output device (default is 1)

e HRDCOPY inv
Prints hardcopy on EPSOM-compatible printers. Through
technical restrictions, it is only possible to print a
maximum of 480 horizontal points.
inv: flag, l-inverted print, O-normal print

e SYSTEM #dev
Displays the system variables on screen.

#dev: output device (default is 1)

e 4 = FREE
Returns the amount of free BASIC memory.

e SCREEN #dev, linenr, tab

Default: SCREEN 11, 1, 3

This command enters the screen editor. It allows the
user to edit BASIC programs in a way similar to QUILL.
Unlike a normal ASCII-Editor all entered lines are
syntactically checked by the interpreter.

< page - 16 - >

Note:

GIGA-

SOFT

The interpreter will not accept lines after a

program break if the functions and procedures are not
reinitialized. This is possible by using the CLEAR

command, which will produce the message

'PROC/DEF

CLEARED'. After this message the work with the screen
editor can go on.
#dev: window number to edit in
Linenr: line number which will be displayed
Tab first step size of the inbuilt tabulator
The editor accepts the following key sequences:
Cursor Up
Cursor Down
Cursor Right
Cursor Left
ESC Leaves the editor
TABULATE Tabulator
SHIFT&ALT&UP Jumps to start of program
SHIPT&ALT&DOWN Jumps to end of program
ALT&UP Page up
ALT&DOWN Page down
CTRL&RIGHT Deletes character under the cursor
CTRL&LEFT Deletes character at the left of the
cursor
CTRL&ALT&LEFT Clears basic line
CTRL&ALT&RIGHT Deletes all characters at the right of
the cursor
SHIFT&UP Jumps to the first line of the screen
SHIFT&DOWN Jumps to the last line of the screen
ALT&LEFT Jumps to start of line
ALT&RIGHT Jumps to end of line
e SETFONT #dev, fountl, fount2

Gives the user the possibility of using a self-defined
Character Set. It is possible to define up to two
character sets at one time, in which case a character
is displayed from the first character set, If defined
there, if not defined, it is taken from the second
and, if it also is not defined there, the first
defined character of the second set is displayed. To
select the inbuilt fonts of the QL, just enter 0(zero)
for the start address of the font.

fountl: start address of the first font

fount?2: start address of the second font+

Example: (Using the character set 'BIG CST')

100 a = RESPR (1024) :REMark Reserve space for font

110 LBYTES 'mdvl_BIG_CST',a
120 FOR channel = 0 TO 2

:REMark Load new font
:REMark Loop

< page - 17 - >

GIGA-SOFT

130 SETFONT #channel :REMark Activate new for font
140 CLS #channel :REMark for every window
150 END FOR channel :REMark End loop

MONSCR mode

Activates the switch-on-status of the windows for the
monitor mode

mode: selects 4 or 8 colour mode

TVSCR mode

Activates the switch-on-status of the windows for the
television mode

mode: selects 4 or 8 colour mode
SETMON #dev, xsize, ysize, xO, yO, paper, strip, ink,
borderwidth, bordercolour

Changes the default window in monitor mode

SETTV #dev, xsize, ysize, xO, yO, paper, strip, ink,
borderwidth, bordercolour

Changes the default window in television mode
Mode = SETMODE

Returns the screen mode
4 - four colour, 8 - eight colour.

< page - 18 - >

GIGA-SOFT

WiNDow COMMANDS

The window commands allow the user
With these commands it is possible
window before writing to it and to
closing the window. This technique

e SCRSTORE nr, xs, ysS, X, Y

to work with the real windows.
to save the background of a
restore this background after
is known as 'refreshing'.

Saves and area of the screen

nr: a number from 0 - 15. This number represents the label
for the saved screen. It has to be specified in the
other commands referring to the saved screen area.

XS, yS: size of the window to be saved

X, V: left upper position of the window to be saved

e SCRLOAD nr

Redisplays a saved area of the screen

nr: label number (0 - 15)

e SCRCLEAR nr

Clears the part of memory containing the saved screen

nr: label number (0 - 15)

< page - 19 - >

INDEX

ACLOCK, 14
ACT1VE, 13
ANIMATE, 7
BGET, 3

BPUT, 3

CAT, 15

CBIN, 4
CBINS, 4
CHEX, 4
CHEXS$, 4
CLRANIMATE, 7
CLRBLOCK, 11
CLS, 6, 10, 17
COLLISION, 7
COMMANDS, 15
DCLOCK, 14
DUMP, 15

END, 10, 17
FREE, 15

GET, 3

GET POINTER, 3
GETMENU, 12, 13
HMENU, 12, 13
HRDCOPY, 15
ICON, 11
INVBLOCK, 11
INVMASK, 6, 11
INVSPRITE, 6

JOB_INF, 4
KEY, 14
KEYS, 14
KEYSOFF, 14
KEYSON, 14
LBYTES, 16

MENU, 10, 12
MENUBLOCK, 10, 11
MENUDIM, 10, 12
MENUPR, 10, 11
MODE, 8

MONSCR, 17

GIGA-SOFT

MOUSE, 10, 11
MOVESPR, 6
PAINT, 2
PRINT, 10
PRIOR JOB, 5
PUT, 3
REFRESH, 6
REL JOB, 5
RESPR, 16
SCRCLEAR, 18
SCREEN, 15
SCRLOAD, 18
SCRSTORE, 17

SD4, 8, 9
sD8, 8, 9
SELect, 10

SET POINTER, 3
SETANIMATE, 7
SETFONT, 16, 17
SETMDEV, 10
SETMEMU, 13
SETMENU, 12
SETMODE, 17
SETMON, 17

SETTV, 17
SPRACTIVE, 9
SPRCLR, 6
SPRDEFBLOCK, 8, 9
SPRDIM, 5, 6, 9, 12

SPRLOAD, 9
SPROFF, 6
SPRON, 6
SPRSAVE, 9
SPRXPOS, 9
SPRYPOS, 9
STEPSPRITE, 7
SUs_JOB, 5
SYSTEM, 15
TVSCR, 17

VMENU, 12, 13

< page - 20 - >

