2 RELEASE 3.3 ENHANCEMENTS
Liberator

INTRODUCTION

When QLiberator was originally conceived, the majority of QLs were
fitted with AH and JM ROMS. The later ROMS, JS and MG introduced the
WHEN ERROR and WHEN variable constructs, but deficiencies in the
implementation meant that they could not be used reliably although
Toolkit 2 from QJUMP went some way towards correcting them. By that
time we were concentrating on enhancing QLiberator to provide full
compatibility with QJUMP products such as QRAM and HOTKEY 2 and to
provide the wvaluable facility of external procedures and functions.

The emergence of MINERVA prompted us to revisit Q-Liberator to
provide support for its dual screen mode feature and to add some
enhancements we had long planned. At the sane time we have
implemented WHEN error and WHEN variable as they work consistently
with that ROM. The result is QLiberator Release 3.3.

This release will run object code programs compiled by all previous
versions of Q- Liberator. Note however that the 3.3 runtime system
must be used with the 3.3 compiler. Use of an earlier runtimes will
give QLIB error 5 — Internal error.

NOTES FOR MINERVA USERS

This is the first release which we claim to be truly Minerva
compatible. For the record, all release 3 versions of Q Liherator
will run with Minerva in the single screen mode. Release 3.24, which
was issued on a restricted basis to QUANTA first supported dual
screen mode.

Please read the documentation supplied with Minervs as it makes
several references to QLiberator. Compiled programs with machine
code extensions which require more space on the RI stack than is
available can crash the system. Minerva prevents this by the rather
dramatic action of removing the offending job. Thus if you find your
program suddenly aborts without reason then try increasing the stack
size with QLIB PATCH.

Whilst the improvements to the speed of the graphics routines and
floating point routines are exploited to the full by Q Liberator,
the improvements to the speed of the SuperBASIC interpreter will
diminish the perceived speed up factor of the compiler when compared
to the interpreter.

SUPERBASIC CHANGES WITH MINERVA
With the minor exceptions detailed below, all of the enhancements to

SuperBASIC described in the Minerva documentation are supported by
QLiberator. In some cases where there are bug fixes or obvious

enhancements, Q Liberator was already capable of handling things
correctly (e.g. String SELect, FILLS$, and RESPR). The TRACE routines
TRON, TROFF and SSTEP cannot be compiled — this should not come as a
surprise. We have also chosen not to support FOR loops with string
variables. If you really think that we should, write to us and let
us know. QLiberator will attempt to coerce a string FOR variable to
a number. If this is not possible then the runtime system will issue
QLIB error 29 — string is not numeric.

Be careful in the use of Minerva’s enhancements if you want your
software to be portable to other ROMS.

WHEN HANDLING

The major enhancement in Release 3.3 concerns WREN handling. This
feature can only be used with the following ROMS: JS, MG variations
and Minerva. To date there has been no full description of the WHEN
ERROr and WHEN variable constructs which we found to contain
complexities when researching their behaviour prior to
implementation in QLiberator. The sections below are an attempt to
rectify this lack of documentation.

WHEN ERROR

In chapter 11 we explained the need for error trapping in a program
and described the Q ERR facilities supplied with QLiberator. From
Release 3.3 we have implemented error trapping which is completely
compatible with the facilities originally implemented in the JS ROM
and corrected in Minerva. In contrast to the Q ERR error trapping
which provides keyword specific error handling, WHEN ERRor trapping
applies to all keywords.

WHEN ERRor is invoked by including a WHEN ERROr routine somewhere in
the program. A WHEN ERRor routine starts with a WHEN ERRor statement
and ends with an END WHEN statement. When such a routine is executed
the statements between WHEN and END WHEN are ignored, but the
address of the first statement is recorded. After this, whenever an
error is encountered the statements between WHEN and END WHEN are
executed.

For example:

WHEN ERRor
PRINT ‘something went wrong’: STOP
END WHEN

A single line version of WHEN ERROR is also possible along the lines
of single line REPeats and FOR statements. No END WHEN is necessary:

WHEN ERRor: PRINT “Oops!™

WHEN ERRor routines cannot be nested inside each other in your
source program. At runtime they are static. Whilst it is allowable
and is often useful to have more than one WHEN ERRor within a
program, only the last one encountered will be active.

ENTERING WHEN ERROR

Once it is active, the WHEN ERRor routine will be invoked whenever
an error occurs within a program. With the interpreter this includes
errors which occur when entering direct commands.

Once inside a WHEN ERRor, there are few restrictions on the sort of
processing you can do. The environment is that of the routine in
which the error occurred. In particular, local variables which
existed at the time of the error are still accessible and functions
and procedures can he called at will. Note however that within the
error routine further error trapping is effectively turned off. If
an error occurs within an error routine then it will cause the
program to stop. The interpreter prints a message in the normal way
except that ‘in WHEN processing’ is to let you know what has
happened.

With compiled programs if an error occurs during WHEN ERRor
processing then it is displayed on the pop up error console in the
normal way with the error message preceeded by ‘During WHEN,’. You
then have the opportunity to Retry, Continue or Abort.

To be useful, a WHEN ERRor routine needs to be able to determine
where the error occurred and what the error was. Then it may be
possible to take corrective action or at least print a meaningful
message. The ROM contains functions and procedures to support you.
ERLIN is a function which returns the line numherat which an error
occurred. ERNUM is a function which returns the error number as the
usual small negative integer. As an alternative to testing ERNUM,
there is a set of functions with names corresponding to the system
error codes which return true (=1) if that error occurred. ERR NF
for example, returns true IF a ‘not found’ error haa occurred. The
complete list of functions is listed below in the same order as the
error codes in the function QERRS$ from chapter 11.

ERR_NC, ERR NJ, ERR OM, ERR OR, ERR BO, ERR NO, ERR NF, ERR _EX,
ERR IU, ERR EF, ERR DF, ERR BN, ERR TE, ERR FF, ERR BP, ERR FE,
ERR_XP, ERR OV, ERR NI, ERR RO, ERR BN

The procedure REPORT is useful for printing the message associated
with the last error which occurred or with a given error number.

Note that the default channel for REPORT is channel 0. The syntax is
as follows:

REPORT [#channel,] [error]

For example:
REPORT Print last error message on #0
REPORT —5 Prints ‘already exists’ on #0

REPORT #1,ERR_NF Prints ‘not found to #1

REPORT unfortunately insists on printing a line feed after the error
message.

EXITING WHEN ERROR

There are three legal ways by which you can leave a WHEN ERRor
clause.

The keyword END WHEN, which must always be preaent at the end of an
error routine, will return control to the statement after the
statement which caused the error (‘the error statement’).

The procedure CONTINUE can be used at any point in an error routine
to cause a return to the main program. If no parameter is present
then CONTINUE works just like END WHEN and returns to the next
statement. If you have Toolkit 2 then the functionality of CONTINUE
is enhanced to allow continuation from an arbitrary line number
within the program. Of course this line MUST be within the same
procedure as the error statement and will typically be very close to
it.

e.g. CONTINUE 200 continue from line 200

The procedure RETRY can be used without a parameter to restart
execution at the start ot the statement which caused the error. As
with CONTINUE, RETRY can be given a line number if Toolkit 2 is
present, in which case it behaves identically to CONTINUE with a
line number as described above.

Use of CONTINUE and RETRY is only possible inside WHEN ERRor. Note
that although Toolkit 2 is necessary for the interpreter to run
programs which use ‘RETRY line number’ or ‘CONTINUE line number’,

Q Liberator will correctly compile and execute these statementa
without the presence of Toolkit 2. Fortunately the syntax is
accepted on any ROM supporting WHEN, so such programs can be entered
and compiled, evan though the interpreter would not run them
correctly.

RETRY is most useful when used with the ERLIN function. Note the
difference between RETRY which retries the error statement and RETRY
ERLIN which will restart at the beginning of the line which includes
the error statement. This gives you the opportunity to keep things
tidy before the statement is retried. The example below shows how
this technique can be used to catch the error in expression which
occurs if text is entered into a numeric variable. Try it.

100 WHEN ERRor

110 IF ERR XP THEN

120 AT 10,10: PRINT ‘Numbers only!’

130 RETRY ERLIN

140 END TIF

150 PRINT ‘At line - ‘;ERLIN,: REPORT #1: STOP
160 END WHEN

170 :
500 AT 8,7 : PRINT’ V' : at 8,0:INPUT ‘Number ‘;n
510 AT 10,0: PRINT ‘Thank you \

Be careful with expressions using ERLIN because explicit line
numbers are not automatically adjusted if you RENUMber the program.

TURNING OFF WHEN ERROR

When working interactively with the interpreter, any error routine
active within your program will still be active if you interrupt
execution. This can lead to confusion, particularly if the error
routine ignores some classes of error. You sight type a command and
assume it has worked correctly because no error is reported. In
reality the command has failed but there is no routine with the
responsibility of informing you. To avoid this, WHEN ERRor handling
can he turned off and the system returned to normal by typing WHEN
ERRor as a direct command.

WHEN ERROR and Q ERR

These two different forms of error trapping do not compete in any
way; in fact they complement each other. Both forms of error
trapping store the error number in the same location so the
functions Q ERR and ERNUM are in fact interchangeable.

WHEN ERRor is a global form of error trapping. Amy error in a
program invokes it without any other special coding being necessary.
In contrast Q ERR is specific. It only operates on procedures which
have been put on its error trap list by Q ERR ON. However there is
the disadvantage that Q ERR must be tested after each statement
which could potentially lead to an error.

When both forms of error trapping are used within the same program,
putting a procedure on the error trap list with Q ERR ON effectively
redirects all errors associated with that procedure to the Q ERR
routines. The WHEN ERRor routine will never be called for errors in
that procedure. Thus one might use WHEN ERROR for general error
handling and QERR for specific exceptions.

WHEN ERROR IN COMPILED PROGRAMS

We hnve made every effort to ensure that WHEN ERRor is implemented
within QLiberator in a manner completely compatible with the
interpreter. This we have achieved for all the errors which are
returned by procedure calls. However those errors listed as QLIB
errors which are mainly programming errors, cannot be trapped. This
is no great restriction because such errors are usually non
recoverable. One consequence is that division by zero cannot be
trapped and will lead to an abort.

A program which uses WHEN ERRor can only be entered and compiled on
a system with JS, MG or Minerva ROMS. However the object programs
will run on any QL provided that the procedure REPORT is avoided.

Q Liberator will produce compatible code to support use of ERLIN,
ERNUM and all the functions which test for specific errors such as
ERR NF even though those functions are not present in the AH and JM
ROMs.

WHEN ERROR AND EXTERNALS

The scope of a WHEN ERRor routine does not extend to trapping errors

within compiled external procedures called hy a program. If error
trapping is required within an external then a separate WHEN ERRor
should be included within the external itself.

WHEN VARIABLE

WHEN ERRor causes a routine to be automatically called whenever an
error occurs. In a broadly similar fashion, WHEN VARIABLE causes a
routine to he called whenever a specified variable changes. It can
be used to create event driven programs.

The syntax looks as follows:

WHEN expression
statements
END WHEN

where expression is usually of the form:
Variable relational operator expression

When a WHEN clause is executed, the statements within it are ignored
but the first variable in the expression is entered in a table of
watched WHEN variables. Thereafter, every time a value is stored in
this variable the WHEN clause is invoked. If the condition following
the WHEN evaluates to true then the statements which follow will be
executed. More than one variable can precede the relational operator
but it is importsnt to realise that only the FIRST variable after
the WHEN is ‘watched’. Some examples should clarify this:

WHEN x=100 invoked when 100 stored in x
WHEN x>50 invoked when something greater than 50 stored in x
WHEN x=y invoked when x is changed to equal vy.

Changing y to equal x does NOT invoke the routine
WHEN x+y=0 invoked when x is changed such that x+y=0.

Changing y so that x+y=0 will NOT invoke routine

You can have as many WHEN clauses in a program as you choose, each
related to the same or different variables. Changing a watched
variable will result in at most one WHEN clause being executed. Thus
the order in which WHEN clauses are tested can be significant and
depends upon the order in which they are encountered at runtime.
Unlike WHEN ERRor which is static and operates on one level only,
statements inside one WHEN clause may trigger entry to another WHEN
clause. The only restriction is that it is NOT possible to re—enter
the WHEN clause which is currently being processed. The example
overleaf should help to clarify the behaviour of WHEN. It’s worth
trying it on your own system.

100 WHEN a=1

110 PRINT ‘a=1',
120 a=0: b=1

130 END WHEN

200 WHEN b=1

210 PRINT ‘b=1',
220 b=0: a=1

230 END WHEN

300 WHEN a>0

310 PRINT ‘a>0’',

320 END WHEN

500 a=1

510 PRINT ‘end’

When this is executed the sequence is as follows. At 500, setting a
to 1 triggers the WHEN at line 100 which is first in the list. The
WHEN at 300, is not activated even though its condition is true. At
120, whilst still inside the first WHEN, b is set to 1 triggering
the WHEN at 200. At 220, a is again set to 1. The WHEN at 100 is
already activated and so is ignored, but the condition for the WHEN
at 300 is met and is therefore triggered. Then we return from the
three nested WHENs via lines 320, 230, 130 and finally back to the
main program at line 510. Thus the output from the program is:

a=1 b=1 a>0 end
STOPPING WHEN PROCESSING

A variable cam be removed from the watched list by a statement of
the form:

WHEN variable

The first WHEN clause for the specified variable is removed. Others
for the same variable may still remain in force.

WHEN VARIABLE IN COMPILED PROGRAMS

Nothing much to say here. Q Liberator WHEN handling is precisely
compatible with the behaviour of the interpreter described above. As
with WHEN ERRor, WHEN handling does not extend into externals called
by a program, but externals can have their own WHENs if required.

MISCELLANEOUS IMPROVEMENTS
TRACE OPTION

A TRACE option has been added to the compiler. When it is turned ON
statement separators are inserted In the object code. This only
marginally increases the code size as they usually replace redundant
filler bytes. The only advantage currently is that a statement
number is printed on the error console after the error line number.
In future we may develop a debugger for Q Liberator code in which
case the TRACE option will allow code to be single stepped. Please
write to us if you are interested in such a tool. TRACE occupies the
first reserved entry in the QLIB USE parameter list.

ERROR CONSOLE

When a QLib error is reported on the pop up error console in place
of the RETRY Y/N prompt you can now opt to Retry, Continue or Abort
by typing the appropriate character. Retry repeats the offending
statement, continue ignores it and abort terminates the Jjob. You

might also spot that the border of the error console has been
changed to a chequered pattern.

With Minerva in two screen mode, the error console pops up on the
current default screen for that job.

FREE RUNNING PROCEDURES

The concept of free running procedures was introduced on page 14.9
of the user manual. In releases prior to 3.3, such procedures could
only be started from the interpreter. Release 3.3 removes this
restriction and allows compiled programs to spawn new independent
jobs by a simple procedure call.

QLIB SYS

Over the years the Q Liberator system has grown in size and has
become spread over several files. As an alternative to individually
loading each file of extensions we have linked all those commonly
required in one file named QLIB SYS. QLIB SYS was produced using RPM
(of course!). The RPM control file is also supplied as QLIB RPM for
those who night want to change it to include say QLOAD/QREF or the
compiler itself, QLIB OBJ. QLIB SYS is now part of the standard BOOT
routine. QLIB BOOT still contains the instructions to load files
individually.

NEW ERROR MESSAGES

the compiler has two new error messages associated with WHEN
constructs. Their meaning should be obvious.

Error...END WHEN without matching WHEN
Error...Nested WHEN not allowed

The runtime error message, ‘Can’t retry’ is now issued if RETRY or
CONTINUE are used outside of a WHEN ERRor clause.

M&
7

