

INTRODUCTION

When QLiberator was originally conceived, the majority of QLs were

fitted with AH and JM ROMS. The later ROMS, JS and MG introduced the

WHEN ERROR and WHEN variable constructs, but deficiencies in the

implementation meant that they could not be used reliably although

Toolkit 2 from QJUMP went some way towards correcting them. By that

time we were concentrating on enhancing QLiberator to provide full

compatibility with QJUMP products such as QRAM and HOTKEY 2 and to

provide the valuable facility of external procedures and functions.

The emergence of MINERVA prompted us to revisit Q-Liberator to

provide support for its dual screen mode feature and to add some

enhancements we had long planned. At the sane time we have

implemented WHEN error and WHEN variable as they work consistently

with that ROM. The result is QLiberator Release 3.3.

This release will run object code programs compiled by all previous

versions of Q- Liberator. Note however that the 3.3 runtime system

must be used with the 3.3 compiler. Use of an earlier runtimes will

give QLIB error 5 — Internal error.

NOTES FOR MINERVA USERS

This is the first release which we claim to be truly Minerva

compatible. For the record, all release 3 versions of Q_Liherator

will run with Minerva in the single screen mode. Release 3.24, which

was issued on a restricted basis to QUANTA first supported dual

screen mode.

Please read the documentation supplied with Minervs as it makes

several references to QLiberator. Compiled programs with machine

code extensions which require more space on the RI stack than is

available can crash the system. Minerva prevents this by the rather

dramatic action of removing the offending job. Thus if you find your

program suddenly aborts without reason then try increasing the stack

size with QLIB_PATCH.

Whilst the improvements to the speed of the graphics routines and

floating point routines are exploited to the full by Q_Liberator,

the improvements to the speed of the SuperBASIC interpreter will

diminish the perceived speed up factor of the compiler when compared

to the interpreter.

SUPERBASIC CHANGES WITH MINERVA

With the minor exceptions detailed below, all of the enhancements to

SuperBASIC described in the Minerva documentation are supported by

QLiberator. In some cases where there are bug fixes or obvious

enhancements, Q_Liberator was already capable of handling things

correctly (e.g. String SELect, FILL$, and RESPR). The TRACE routines

TRON, TROFF and SSTEP cannot be compiled — this should not come as a

surprise. We have also chosen not to support FOR loops with string

variables. If you really think that we should, write to us and let

us know. QLiberator will attempt to coerce a string FOR variable to

a number. If this is not possible then the runtime system will issue

QLIB error 29 — string is not numeric.

Be careful in the use of Minerva’s enhancements if you want your

software to be portable to other ROMS.

WHEN HANDLING

The major enhancement in Release 3.3 concerns WREN handling. This

feature can only be used with the following ROMS: JS, MG variations

and Minerva. To date there has been no full description of the WHEN

ERROr and WHEN variable constructs which we found to contain

complexities when researching their behaviour prior to

implementation in QLiberator. The sections below are an attempt to

rectify this lack of documentation.

WHEN ERROR

In chapter 11 we explained the need for error trapping in a program

and described the Q_ERR facilities supplied with QLiberator. From

Release 3.3 we have implemented error trapping which is completely

compatible with the facilities originally implemented in the JS ROM

and corrected in Minerva. In contrast to the Q_ERR error trapping

which provides keyword specific error handling, WHEN ERRor trapping

applies to all keywords.

WHEN ERRor is invoked by including a WHEN ERROr routine somewhere in

the program. A WHEN ERRor routine starts with a WHEN ERRor statement

and ends with an END WHEN statement. When such a routine is executed

the statements between WHEN and END WHEN are ignored, but the

address of the first statement is recorded. After this, whenever an

error is encountered the statements between WHEN and END WHEN are

executed.

For example:

 WHEN ERRor

 PRINT ‘something went wrong’: STOP

 END WHEN

A single line version of WHEN ERROR is also possible along the lines

of single line REPeats and FOR statements. No END WHEN is necessary:

 WHEN ERRor: PRINT “Oops!“

WHEN ERRor routines cannot be nested inside each other in your

source program. At runtime they are static. Whilst it is allowable

and is often useful to have more than one WHEN ERRor within a

program, only the last one encountered will be active.

ENTERING WHEN ERROR

Once it is active, the WHEN ERRor routine will be invoked whenever

an error occurs within a program. With the interpreter this includes

errors which occur when entering direct commands.

Once inside a WHEN ERRor, there are few restrictions on the sort of

processing you can do. The environment is that of the routine in

which the error occurred. In particular, local variables which

existed at the time of the error are still accessible and functions

and procedures can he called at will. Note however that within the

error routine further error trapping is effectively turned off. If

an error occurs within an error routine then it will cause the

program to stop. The interpreter prints a message in the normal way

except that ‘in WHEN processing’ is to let you know what has

happened.

With compiled programs if an error occurs during WHEN ERRor

processing then it is displayed on the pop up error console in the

normal way with the error message preceeded by ‘During WHEN,’. You

then have the opportunity to Retry, Continue or Abort.

To be useful, a WHEN ERRor routine needs to be able to determine

where the error occurred and what the error was. Then it may be

possible to take corrective action or at least print a meaningful

message. The ROM contains functions and procedures to support you.

ERLIN is a function which returns the line numherat which an error

occurred. ERNUM is a function which returns the error number as the

usual small negative integer. As an alternative to testing ERNUM,

there is a set of functions with names corresponding to the system

error codes which return true (=1) if that error occurred. ERR_NF

for example, returns true IF a ‘not found’ error haa occurred. The

complete list of functions is listed below in the same order as the

error codes in the function QERR$ from chapter 11.

ERR_NC, ERR_NJ, ERR_OM, ERR_OR, ERR_BO, ERR_NO, ERR_NF, ERR_EX,

ERR_IU, ERR_EF, ERR_DF, ERR_BN, ERR_TE, ERR_FF, ERR_BP, ERR_FE,

ERR_XP, ERR OV, ERR_NI, ERR_RO, ERR_BN

The procedure REPORT is useful for printing the message associated

with the last error which occurred or with a given error number.

Note that the default channel for REPORT is channel 0. The syntax is

as follows:

 REPORT [#channel,] [error]

For example:

 REPORT Print last error message on #0

 REPORT —5 Prints ‘already exists’ on #0

 REPORT #1,ERR_NF Prints ‘not found to #1

REPORT unfortunately insists on printing a line feed after the error

message.

EXITING WHEN ERROR

There are three legal ways by which you can leave a WHEN ERRor

clause.

The keyword END WHEN, which must always be preaent at the end of an

error routine, will return control to the statement after the

statement which caused the error (‘the error statement’).

The procedure CONTINUE can be used at any point in an error routine

to cause a return to the main program. If no parameter is present

then CONTINUE works just like END_WHEN and returns to the next

statement. If you have Toolkit 2 then the functionality of CONTINUE

is enhanced to allow continuation from an arbitrary line number

within the program. Of course this line MUST be within the same

procedure as the error statement and will typically be very close to

it.

 e.g. CONTINUE 200 continue from line 200

The procedure RETRY can be used without a parameter to restart

execution at the start ot the statement which caused the error. As

with CONTINUE, RETRY can be given a line number if Toolkit 2 is

present, in which case it behaves identically to CONTINUE with a

line number as described above.

Use of CONTINUE and RETRY is only possible inside WHEN ERRor. Note

that although Toolkit 2 is necessary for the interpreter to run

programs which use ‘RETRY line number’ or ‘CONTINUE line number’,

Q_Liberator will correctly compile and execute these statementa

without the presence of Toolkit 2. Fortunately the syntax is

accepted on any ROM supporting WHEN, so such programs can be entered

and compiled, evan though the interpreter would not run them

correctly.

RETRY is most useful when used with the ERLIN function. Note the

difference between RETRY which retries the error statement and RETRY

ERLIN which will restart at the beginning of the line which includes

the error statement. This gives you the opportunity to keep things

tidy before the statement is retried. The example below shows how

this technique can be used to catch the error in expression which

occurs if text is entered into a numeric variable. Try it.

 100 WHEN ERRor

 110 IF ERR_XP THEN

 120 AT 10,10: PRINT ‘Numbers only!’

 130 RETRY ERLIN

 140 END IF

 150 PRINT ‘At line – ‘;ERLIN,: REPORT #1: STOP

 160 END WHEN

 170 :

 500 AT 8,7 : PRINT’ ‘ : at 8,0:INPUT ‘Number ‘;n

 510 AT 10,0: PRINT ‘Thank you ‘

Be careful with expressions using ERLIN because explicit line

numbers are not automatically adjusted if you RENUMber the program.

TURNING OFF WHEN ERROR

When working interactively with the interpreter, any error routine

active within your program will still be active if you interrupt

execution. This can lead to confusion, particularly if the error

routine ignores some classes of error. You sight type a command and

assume it has worked correctly because no error is reported. In

reality the command has failed but there is no routine with the

responsibility of informing you. To avoid this, WHEN ERRor handling

can he turned off and the system returned to normal by typing WHEN

ERRor as a direct command.

WHEN ERROR and Q_ERR

These two different forms of error trapping do not compete in any

way; in fact they complement each other. Both forms of error

trapping store the error number in the same location so the

functions Q_ERR and ERNUM are in fact interchangeable.

WHEN ERRor is a global form of error trapping. Amy error in a

program invokes it without any other special coding being necessary.

In contrast Q_ERR is specific. It only operates on procedures which

have been put on its error trap list by Q_ERR_ON. However there is

the disadvantage that Q_ERR must be tested after each statement

which could potentially lead to an error.

When both forms of error trapping are used within the same program,

putting a procedure on the error trap list with Q_ERR_ON effectively

redirects all errors associated with that procedure to the Q_ERR

routines. The WHEN ERRor routine will never be called for errors in

that procedure. Thus one might use WHEN ERROR for general error

handling and QERR for specific exceptions.

WHEN ERROR IN COMPILED PROGRAMS

We hnve made every effort to ensure that WHEN ERRor is implemented

within QLiberator in a manner completely compatible with the

interpreter. This we have achieved for all the errors which are

returned by procedure calls. However those errors listed as QLIB

errors which are mainly programming errors, cannot be trapped. This

is no great restriction because such errors are usually non

recoverable. One consequence is that division by zero cannot be

trapped and will lead to an abort.

A program which uses WHEN ERRor can only be entered and compiled on

a system with JS, MG or Minerva ROMS. However the object programs

will run on any QL provided that the procedure REPORT is avoided.

Q_Liberator will produce compatible code to support use of ERLIN,

ERNUM and all the functions which test for specific errors such as

ERR_NF even though those functions are not present in the AH and JM

ROMs.

WHEN ERROR AND EXTERNALS

The scope of a WHEN ERRor routine does not extend to trapping errors

within compiled external procedures called hy a program. If error

trapping is required within an external then a separate WHEN ERRor

should be included within the external itself.

WHEN VARIABLE

WHEN ERRor causes a routine to be automatically called whenever an

error occurs. In a broadly similar fashion, WHEN VARIABLE causes a

routine to he called whenever a specified variable changes. It can

be used to create event driven programs.

The syntax looks as follows:

 WHEN expression

 statements

 END WHEN

where expression is usually of the form:

 Variable relational operator expression

When a WHEN clause is executed, the statements within it are ignored

but the first variable in the expression is entered in a table of

watched WHEN variables. Thereafter, every time a value is stored in

this variable the WHEN clause is invoked. If the condition following

the WHEN evaluates to true then the statements which follow will be

executed. More than one variable can precede the relational operator

but it is importsnt to realise that only the FIRST variable after

the WHEN is ‘watched’. Some examples should clarify this:

 WHEN x=100 invoked when 100 stored in x

 WHEN x>50 invoked when something greater than 50 stored in x

 WHEN x=y invoked when x is changed to equal y.

 Changing y to equal x does NOT invoke the routine

 WHEN x+y=0 invoked when x is changed such that x+y=0.

 Changing y so that x+y=0 will NOT invoke routine

You can have as many WHEN clauses in a program as you choose, each

related to the same or different variables. Changing a watched

variable will result in at most one WHEN clause being executed. Thus

the order in which WHEN clauses are tested can be significant and

depends upon the order in which they are encountered at runtime.

Unlike WHEN ERRor which is static and operates on one level only,

statements inside one WHEN clause may trigger entry to another WHEN

clause. The only restriction is that it is NOT possible to re—enter

the WHEN clause which is currently being processed. The example

overleaf should help to clarify the behaviour of WHEN. It’s worth

trying it on your own system.

100 WHEN a=1

110 PRINT ‘a=1’,

120 a=0: b=1

130 END WHEN

200 WHEN b=1

210 PRINT ‘b=1’,

220 b=0: a=1

230 END WHEN

300 WHEN a>0

310 PRINT ‘a>0’,

320 END WHEN

500 a=1

510 PRINT ‘end’

When this is executed the sequence is as follows. At 500, setting a

to 1 triggers the WHEN at line 100 which is first in the list. The

WHEN at 300, is not activated even though its condition is true. At

120, whilst still inside the first WHEN, b is set to 1 triggering

the WHEN at 200. At 220, a is again set to 1. The WHEN at 100 is

already activated and so is ignored, but the condition for the WHEN

at 300 is met and is therefore triggered. Then we return from the

three nested WHENs via lines 320, 230, 130 and finally back to the

main program at line 510. Thus the output from the program is:

 a=1 b=1 a>0 end

STOPPING WHEN PROCESSING

A variable cam be removed from the watched list by a statement of

the form:

 WHEN variable

The first WHEN clause for the specified variable is removed. Others

for the same variable may still remain in force.

WHEN VARIABLE IN COMPILED PROGRAMS

Nothing much to say here. Q_Liberator WHEN handling is precisely

compatible with the behaviour of the interpreter described above. As

with WHEN ERRor, WHEN handling does not extend into externals called

by a program, but externals can have their own WHENs if required.

MISCELLANEOUS IMPROVEMENTS

TRACE OPTION

A TRACE option has been added to the compiler. When it is turned ON

statement separators are inserted In the object code. This only

marginally increases the code size as they usually replace redundant

filler bytes. The only advantage currently is that a statement

number is printed on the error console after the error line number.

In future we may develop a debugger for Q_Liberator code in which

case the TRACE option will allow code to be single stepped. Please

write to us if you are interested in such a tool. TRACE occupies the

first reserved entry in the QLIB_USE parameter list.

ERROR CONSOLE

When a QLib error is reported on the pop up error console in place

of the RETRY Y/N prompt you can now opt to Retry, Continue or Abort

by typing the appropriate character. Retry repeats the offending

statement, continue ignores it and abort terminates the job. You

might also spot that the border of the error console has been

changed to a chequered pattern.

With Minerva in two screen mode, the error console pops up on the

current default screen for that job.

FREE RUNNING PROCEDURES

The concept of free running procedures was introduced on page 14.9

of the user manual. In releases prior to 3.3, such procedures could

only be started from the interpreter. Release 3.3 removes this

restriction and allows compiled programs to spawn new independent

jobs by a simple procedure call.

QLIB_SYS

Over the years the Q Liberator system has grown in size and has

become spread over several files. As an alternative to individually

loading each file of extensions we have linked all those commonly

required in one file named QLIB_SYS. QLIB SYS was produced using RPM

(of course!). The RPM control file is also supplied as QLIB_RPM for

those who night want to change it to include say QLOAD/QREF or the

compiler itself, QLIB_OBJ. QLIB_SYS is now part of the standard BOOT

routine. QLIB_BOOT still contains the instructions to load files

individually.

NEW ERROR MESSAGES

the compiler has two new error messages associated with WHEN

constructs. Their meaning should be obvious.

 Error….END WHEN without matching WHEN

 Error….Nested WHEN not allowed

The runtime error message, ‘Can’t retry’ is now issued if RETRY or

CONTINUE are used outside of a WHEN ERRor clause.

