

The Definitive SuperBASIC Compiler

USER MANUAL

Release 3.36

Liberation Software

USER MANUAL

Q_LIBERATOR USER MANUAL

Second edition February 1988 Updates for Release 3.3 March 1990

Valid for Budget Release 1.0 and Release 3.3

The Q_Liberator software and documentation are copyrighted with all rights reserved. No
part of the software or documentation may be copied, reproduced or stored on any
electronic medium without the prior written consent of Liberation Software, except as
described in this manual.

Whilst all reasonable care has been taken to ensure that Q_Liberator does not contain
errors and that the documentation is accurate, in no circumstances will Liberation Software
be liable for any direct, indirect or consequential damage or loss arising out of the use or
inability to use the software or its documentation.

Liberation Software has a policy of constant development and improvement of its
products. Updates to this manual will be available for later releases.

Copyright (c) 1986,1990

Liberation Software 43 Clifton Road, Kingston upon Thames, Surrey, KT2 6PJ.

IMPORTANT NOTE

In chapters 1 to 14 of this manual, reference is made to Release 3.2 of the compiler. All the
information is also valid for Release 3.3 except where the text is marked with a vertical line
in the right margin. This indicates that 3.3 contains enhancements to the Q_Liberator
specification.

Page 2 of 100

USER MANUAL

CONTENTS

1

Q_LIBERATOR USER MANUAL ..2

Chapter 1 Introduction...9

WHY A SUPERBASIC COMPILER? ...9

EXTRA FEATURES ...9

SYSTEM REQUIREMENTS...9

Q_LIBERATOR RELEASE 3.2 ..10

PACKAGE CONTENTS ...10

MAKING WORKING COPIES ..10

CREATING A RAM DISK COPY ..11

CONFIGURING RELEASES ..11

USING THIS MANUAL ...11

COMMERCIAL USE ...11

REFERENCE MATERIAL ..12

CREDITS ..12

Chapter 2 Getting Started ...13

COMPILING A PROGRAM ..13

THE Q_LIBERATOR SCREEN ..14

RUNNING THE COMPILED PROGRAM ...14

INTRODUCTION TO QX ..15

SEPARATING PHASE 1 AND PHASE 2 ...15

Chapter 3 Fundamentals ..17

THE SUPERBASIC INTERPRETER ...17

THE Q_LIBERATOR COMPILER ..17

MULTITASKING ...18

Page 3 of 100

USER MANUAL

JOB CONTROL ..18

A MULTITASKING EXAMPLE ...18

ADAPTING PROGRAMS TO MULTITASK ...19

KEYBOARD HANDLING ..20

SCREEN HANDLING ...20

FILE HANDLING ..20

Chapter 4 Using Q_Liberator ..21

PHASE 1 - PRODUCING A WORKFILE ...21

PHASE 2 - PRODUCING AN OBJECT FILE ...22

COMBINING PHASE 1 AND PHASE 2 ...22

COMMAND LINE ERRORS ...23

INTERACTIVE CONTROL OF PHASE 2 ..23

BUDGET Q_LIBERATOR PHASE 2 ..23

THE Q_LIBERATOR MENU SYSTEM ..24

MENU ORGANISATION ..25

COMPILING A PROGRAM ..25

COMPILER OPTIONS..26

RELEASE 3.2 COMPILER OPTIONS ...27

COMPILER DIRECTIVES ..27

SETTING THE DATA AREA ..28

LINKING ASSEMBLER EXTENSIONS ...28

OPTIMISATION OF CONSTANTS ..28

SETTING THE INPUT BUFFER SIZE ...29

RELEASE 3.2 COMPILER DIRECTIVES ..29

Chapter 5 Compiler Messages ...30

MESSAGES DURING PHASE 1 ..30

MESSAGES RELATING TO STRUCTURE CHECKS ..30

MESSAGES FROM PHASE 2 ...31

Chapter 6 Runtime Errors ..35

THE ERROR WINDOW ...35

INITIALISATION ERRORS ..35

QDOS ERRORS ...36

QLIB ERRORS ...37

No heap space..37

Page 4 of 100

USER MANUAL

No stack left ..37

Variable undefined ..37

String too long...37

Array too big ...38

Array not DIMed..38

Indices wrong ..38

Index out of range ...38

Slice not allowed ...38

Array not allowed ..38

Division by zero ..38

Overflow ..39

String is not numeric ...39

Cannot retry ..39

Unresolved reference ...39

RETurn missing in function ..39

Out of DATA in READ ..39

GO TO out of range ..39

Internal ..39

FOR type error ..40

Overlay table full ...40

Global missing ..40

Chapter 7 Memory Management...41

OBJECT PROGRAM STRUCTURE ..41

DATA AREA ...41

RUNTIME STATISTICS ...42

QLIB_ PATCH ..43

BUDGET QLIB PATCH ..43

RELEASE 3.2 QLIB_PATCH ...44

PATCHING QLIB_OBJ ...44

Chapter 8 Interpreter/Q_Liberator Comparison ..45

COMPATIBILITY ..45

PROGRAM STRUCTURE ..45

PROGRAM SIZE ..49

UNSUPPORTED KEYWORDS ..49

Page 5 of 100

USER MANUAL

DATA TYPES ...49

FLOATING POINT NUMBERS ..49

INTEGERS ...50

STRINGS ..50

ARRAYS ...51

CHANNELS ..52

INITIAL WINDOWS ..52

Chapter 9 Using Assembler Extensions ...54

LOADING ASSEMBLER EXTENSIONS ..54

TREATMENT OF RESPR ..55

WRITING ASSEMBLER EXTENSIONS ..55

LINKING ASSEMBLER ROUTINES DURING COMPILATION55

Chapter 10 Inter-Job Communication ..58

PASSING INFORMATION TO JOBS...58

PASSING A COMMAND STRING ...59

PASSING CHANNELS TO JOBS ..60

WORKING WITH PIPES ..61

USE WITH QJUMP TOOLKIT II ...62

SETTING THE PRIORITY WITH QX ...63

Chapter 11 Error Trapping...64

EXISTING ERROR TRAPPING FACILITIES...64

Q_LIBERATOR ERROR TRAPPING...64

TURNING ON ERROR TRAPPING ...65

Q_ERR and Q_ERR$...65

TURNING OFF ERROR TRAPPING ...65

A WORD OF CAUTION ...66

ERROR TRAPPING EXAMPLE ...66

Chapter 12 Job Control ..68

LISTING JOBS ...68

REMOVING A JOB ...69

CHANGING THE PRIORITY OF A JOB ..69

FINDING THE CURRENT JOB NUMBER ...69

CURSOR CONTROL ...69

Chapter 13 Solving Problems ..71

Page 6 of 100

USER MANUAL

PROBLEMS WITH MICRODRIVES...71

PROBLEMS WITH COMPILED PROGRAMS ...71

Chapter 14 Release 3 Extensions ...73

INTEGER FOR VARIABLES ..73

DEF_INTEGER...73

COMPATIBILITY WITH REL 2 OBJECTS ...74

INTEGRATION WITH QLOAD ...74

ROMABLE CODE ...74

EXTERNAL PROCEDURES ..74

USING EXTERNALS AS RESIDENT PROCEDURES ...75

USING EXTERNALS AS OVERLAYS ...76

THE PROCEDURE OVERLAY ..76

THE PROCEDURE UNLOAD ..77

EXTERNALS AS COMPILED SUBROUTINE LIBRARIES ...77

COMPILING PROGRAMS WHICH USE EXTERNALS ..78

EXT_PROC and EXT_FN ..78

VARIABLES AND EXTERNAL PROCEDURES ..79

THE PSEUDO KEYWORD GLOBAL ...79

IMPLEMENTATION NOTES ..79

EXTERNALS CALLED BY COMPILED JOBS ..80

EXTERNALS CALLED BY THE INTERPRETER ..80

SEARCHING FOR NAMES ..80

FREE RUNNING PROCEDURES ...81

COMPATIBILITY WITH QRAM ..81

COMPATIBILITY WITH THE QPTR INTERFACE ...81

CONFIGURING THE COMPILER ..82

THE FUNCTION QLIB_LIST$..83

MAKING THE COMPILER RESIDENT ..83

Chapter 15 Release 3.3 Enhancements ...85

Appendix A Budget Compiler Files ...92

Appendix B Release 3 Files ...93

Appendix C UPDATES ...95

RELEASE 3.31 June 1990 ...95

RELEASE 3.32 September 1990 ...96

RELEASE 3.33 September 1990 ...96

Page 7 of 100

USER MANUAL

RELEASE 3.34 November 1990 ..89

RELEASE 3.35 April 1991 ..90

RELEASE 3.36 January 1993 ..90

INDEX ...91

Page 8 of 100

USER MANUAL

CHAPTER 1 INTRODUCTION

WHY A SUPERBASIC COMPILER?

SuperBASIC is an elegant, flexible language designed by programmers for programmers. It

is a considerable advance on other implementations of BASIC and contains some unique

features. It is ideally suited to be the QL's native language.

It is also somewhat slow, and gets slower as programs increase in size. Programs can

take an age to load and there is no possibility of running more than one SuperBASIC

program simultaneously.

To solve these problems we decided to write a SuperBASIC compiler. We did not wish to

deny the programmer any of SuperBASIC’s more exotic features and so the major design

aim was to adhere rigidly to the SuperBASIC syntax. There seemed little point in

supporting a subset similar to that of our competitors.

The result was the first version of Q_Liberator - now available as our budget version. It is a

sophisticated tool which produces compiled programs (known technically as object

programs) from a SuperBASIC program. Object programs load in a fraction of the time and

execute many times faster than the interpreted original. Furthermore such programs can be

multitasked i.e. several programs can be run simultaneously and all are secure from prying

eyes because Q_Liberator programs are indecipherable when examined.

With a few well documented (and obvious) exceptions Q_Liberator can compile virtually

any SuperBASIC program. There is not normally any need to change the original program.

EXTRA FEATURES

Q_Liberator is much more than just a tool to create faster programs; the SuperBASIC

extensions also supplied provide access to facilities within the QL, which until now have

been denied to SuperBASIC. In particular full error trapping can be included in

programs regardless of ROM version, and the interesting possibilities of inter-job

communication through various means including pipes can be explored.

SYSTEM REQUIREMENTS

Q_Liberator has been designed to be fully useable on any QL compatible hardware.

Q_Liberator and the programs which it compiles will work with all extension disk systems

which adhere to the standard QL format and will happily coexist alongside any well behaved

software.

Special provision has been made in the budget version to ensure that large programs can be

compiled and run on an unexpended QL, but if extended memory is available then

Q_Liberator will exploit it.

Page 9 of 100

USER MANUAL

Q_LIBERATOR RELEASE 3.2

This version of Q_Liberator includes all the features of the budget compiler but with many

improvements in speed and functionality. It has a completely different menu driven 'front

end' and adds a major new facility - the ability to build libraries of compiled procedures or

functions. Such procedures can be loaded in a variety of different ways and can be called by

either interpreted or compiled programs.

Release 3.2 is larger than the budget version and is best used with at least 256k of

memory. An alternative for 128k users is to buy the ROM version of 3.2. This 16k ROM

cartridge contains the QLIB runtime system and most of our ancillary SuperBASIC

extensions. This frees RAM for larger compiled programs, and gives the advantage of even

faster execution. In all other respects it is identical to an entirely RAM based version.

PACKAGE CONTENTS

The Q_Liberator package comprises this manual, a registration form and a master

microdrive (or floppy) containing all the Q_Liberator software. The budget master can be

identified by a green label whereas the release 3 master has a red label. The ROM version

also includes a 16k ROM cartridge which plugs into the rear of the QL. (Power off first!)

The master copy should be kept in a safe place and used only for creating working copies as

described below. Replacement, except in cases of faulty materials, is chargeable. If you ever

order an upgrade from us, please return only the master with your remittance (i.e. NOT the

manual).

The files on the master vary between releases and are fully described in appendices A and

B.

MAKING WORKING COPIES

Unlike the earliest versions of Q_Liberator, there is no copy protection on current releases.

You can freely copy the files to any media but please, for your own use only. There is a

CLONE program on the master which will copy the QLIB files and optionally the DEMO and

BOOT files to a device of your choice (including RAMdisk) to produce a working copy.

CLONE is supplied as a BASIC program and is straightforward in use. It expects the

target media to be pre-formatted (but not necessarily empty). If a microdrive copy is being

produced it is wise to format the cartridge in the device in which it will be used to minimise

bad media errors.

CLONE first prompts for the name of the device which contains the master and shows the

default entry mdv2_ in parenthesis. This can be accepted by hitting ENTER, or an

alternative drive name entered.

After specifying the name of the target device in similar way, CLONE asks for the name of the load

device for the part of the compiler called QLIB_OBJ. Enter the name of the device in

Page 10 of 100

USER MANUAL

which this Q_Liberator copy will be used. This will probably be the drive the copy is being

produced in. This entry is necessary because Q_Liberator is organised in two parts. The first

part needs to know where to find the second part is.

You will then be asked if you want to copy the demonstration programs contained on the

master. Do so for your first working copy so that you can work through the examples in

this manual.

The last question inquires if you want to create a standard BOOT program on your working

copy. It is wise to do this for your first experiments. Later you may wish to adapt an existing

BOOT program to include loading the Q_Liberator system. If you have a ROM based

Q_Liberator then the BOOT program is superfluous as the extensions which BOOT loads

are already resident in the ROM.

CLONE then proceeds to copy each of the files from the master to the new working

copy. When it is complete, reset the QL and try loading from it.

CREATING A RAM DISK COPY

If you want to configure Q_Liberator to load from a RAM disk, put the master in mdv2_.

set the working copy as mdv1_, and the load device as ram1_. After the CLONE is

complete, you can modify the BOOT to load QLIB_OBJ into the RAM disk on start up.

CONFIGURING RELEASES

The configuration process which takes place in the CLONE procedure can be further

modified with the procedure QLIB_USE described in Chapter 14 for Release 3 users only.

This should only be attempted when you are completely familiar with Q_Liberator.

USING THIS MANUAL

This manual describes both Budget Q_Liberator and Release 3.2. All information is relevant

to both releases unless otherwise stated. Minor differences are explained in the text, but

where there are major differences there is a separate section describing the features of

each version. An entire chapter is devoted to the unique features of release 3.2.

We intended this manual to be suitable both for those who are unfamiliar with the concepts

of compilation and multitasking, and the more advanced user, who will hopefully find many

stimulating ideas.

A working knowledge of SuperBASIC is assumed. Throughout the text there are many

examples; you are encouraged to try these to aid your understanding.

COMMERCIAL USE

Those who wish to market programs compiled with Q_Liberator are free to do so provided

that :

Page 11 of 100

USER MANUAL

Credit is given to Q_Liberator and Liberation Software within the program or

accompanying documentation.

Liberation Software is notified of all such programs.

Any Liberation Software extensions such as those in QLIB_EXT, are linked to

the object program (see chapter 9).

It is preferable to link the runtime system QLIB_RUN to the object program to produce a

stand-alone file (see Chapter 4). If however the product comprises several compiled

programs this can be inefficient in memory usage. For such cases the runtime system

can be supplied as a separate file.

The parts of Q_Liberator contained within commercial programs remain the intellectual

property of Liberation Software at all times.

No other part of the Q_Liberator system may be distributed in any form.

REFERENCE MATERIAL

The best book for those who wish a fuller description of SuperBASIC than that provided by

the QL User Guide is:

QL SuperBASIC - The Definitive Handbook by Jan Jones, designer and writer of the

language. McGraw Hill 1985 ISBN 0-07-084784-3

This book proved indispensable during the creation of Q_Liberator. The language

described therein is followed precisely except where documented in this manual.

CREDITS

The original Q_Liberator was designed and written in many long evenings between April

1985 and September 1986. It was a joint project and lent itself well to creation by a team

of two.

Adrian Soundy was mainly responsible for the compiler, which itself was written in SuperBASIC then

compiled, whilst I, Ian Stewart wrote the runtime system and the manual.

Thanks are due to Leon Jaeggi for relentless bug hunting and much support, to Tony Tebby

for useful tools and challenging test material and to my wife Julia.

SINCLAIR, QL, SuperBASIC and QDOS are trademarks of SINCLAIR Research Ltd.

The Toolkit referred to throughout this text is the QJUMP Toolkit II, available from CARE

Electronics. Many of the features mentioned are present on the earlier QL Toolkit from

Sinclair.

Page 12 of 100

USER MANUAL

CHAPTER 2 GETTING STARTED

The aim of this chapter is to teach you enough about Q_Liberator to compile a

short SuperBASIC program and to run the compiled version.

First, if you have not already done so, create a working copy of Q_Liberator with all

demo programs present by loading and running the CLONE program. Now reset your

QL, place the working copy in MDV1_ (or FLP1_) and press F1 or F2 as you see fit. The

BOOT program on the microdrive will automatically load all the necessary Q_Liberator

files. In channel 0 you will see the Q_Liberator copyright message briefly appear. Your

system is now ready to compile a program.

If you have a ROM based Q_Liberator the BOOT program is unnecessary. Simply insert the

ROM with the QL powered off, then turn it on. The copyright message will be displayed on

the initial screen above the F1/F2 prompt. You will still need the working copy in MDV1 to

load the remaining parts of the compiler.

Q_Liberator takes as its starting point a working SuperBASIC program which has been

LOADed into memory. This is referred to as the source program. For the demonstration

we will use a small program supplied on the master that sorts integers, strings or floats.

Type LOAD MDV1_DEMO_SORT

and wait for the cursor to reappear. Now type RUN and watch the screen. All being well

you should see the demonstration sort program being put through its paces. Wait until it is

complete and make a note of the times which are displayed.

Now we are ready to see Q_Liberator in action.

COMPILING A PROGRAM

Q Liberator compiles programs in two distinct phases. The first phase does some

initial checking and produces a work file for use by the second phase.

The second phase does all the detailed work of checking the program for errors and

produces an object program. An object program, when executed, behaves in the same way

as the original source program, but loads and runs much faster. Furthermore it can

multitask i.e. run concurrently with other programs.

The two compiler phases can be run independently of each other or, providing there is

enough memory, they can run automatically one after the other. We shall use the

automatic mode for the first demonstration.

Type LIBERATE MDV1_DEMO_SORT,

Page 13 of 100

USER MANUAL

Take care to type in the comma at the end as it is this which causes the two phases to

follow each other. If you did forget it, don’t worry; just retype the line.

You should now see the message "Creating work file" in channel 0 and hear MDV1 spinning.

The work file (its name is MDV1_DEMO_SOKT_wrk) will occupy much the same amount of

space on the microdrive as the source program. Once it has been created, the source

program is no longer necessary for Q_Liberator to complete its job.

After a few seconds you will see the message "Loading Q_Liberator” in channel 0. The

second phase which does most of the work is now being loaded. Phase 2 is itself a

multitasking Q_Liberator program, so while it is running you will still see a cursor in

channel 0 and can continue to use Super BASIC if you wish.

THE Q_LIBERATOR SCREEN

When loading is complete you will see the main Q_Liberator screen. At first the top window

will contain only the product name, but shortly you will see the SuperBASIC line number

which Q_Liberator is currently processing displayed in the top right hand corner. Shortly

after this number has reached the maximum line number in the program the compilation is

complete.

The results of the compilation are displayed in the lower window. Here you will see the size

of, the program, the amount of data area required, the highest channel used and the

compile time (phase 2 only). The demonstration program as supplied compiles perfectly (of

course) but if there had been any errors then they too would have been displayed in the

lower window.

RUNNING THE COMPILED PROGRAM

After compilation, you can try running the object program which Q_Liberator has

produced. The object program name has the extension ' obj' appended to it.

Type EXEC_W MDV1_DEMO_SORT_OBJ

to load and execute the compiled sort program. After a very brief loading time you should see the sort

program running again, but this time much faster. We used EXEC_W because this ensures that only

the sort program is running. You could also use EXEC to start the program in which case both the

compiled program and the SuperBASIC interpreter will run simultaneously. You can switch the

keyboard between the two programs by pressing control-C. This operation which will already be

familiar to many users is explained in more detail in the next chapter. When EXEC is used the times

for the compiled program are slightly longer, because the SuperBASIC interpreter is still active and

using some processor time.

Page 14 of 100

USER MANUAL

INTRODUCTION TO QX

The procedure QX offers an easier way to load and start object programs, because there is

no need to specify the extension '_obj'. In other respects it behaves similarly to EXEC. Its

companion, QW is similar to EXEC_W.

Try QX MDV1_DEMO_SORT

Whilst the sort is running, try typing some Super BASIC commands to show that the

interpreter and the compiled program are indeed running simultaneously. QX and

its companion QW have other uses, explained fully in chapter 10.

SEPARATING PHASE 1 AND PHASE 2

When there is insufficient memory to hold both the source program and phase 2 in memory

simultaneously, the program can be compiled in separate phases. The first phase is started

by typing

LIBERATE MDV1_DEMO_SORT

This simply creates the work file then stops. You can now type NEW to clear all the

memory used by the interpreter before starting phase 2 by typing just

LIBERATE

This has the effect of loading Q_Liberator which will then wait to be told what to do. First

press control C to switch the cursor to the compiler window if it is not already there.

What you do next to start compilation differs between the 2 compiler versions.

With the BUDGET release the compiler will be expecting a command line to be typed. In its

simplest form this is just the name of the program to compile. Type

MDVl_DEMO_SORT

and you will see the budget compiler running as before.

With RELEASE 3.2 you will see a more complex screen with a number of menu item boxes.

The box marked 'source file' on the screen will have a highlighted outline. Press SPACE to

select this box, type the file name MDV1_DEMO_SORT terminated by ENTER into the box,

then press C (for Compile) to start compilation. If you find this confusing, don't worry. All will

be explained in chapter 4.

With either release, when Q_Liberator is finished you have the opportunity to compile

another program or to end Q_Liberator. With the BUDGET version, just enter an empty line

to end; with RELEASE 3.2 press the ESCape key.

The work file created by phase 1 is automatically deleted at the end of a compilation. If however

the compile fails because of lack of memory, it will remain on the microdrive. It is

Page 15 of 100

USER MANUAL

not changed in any way during phase 2 and so can be resubmitted to the compiler when

more memory is available.

You should now have enough information to begin compiling your own programs, but

beginners in particular should read the next chapter which gives some guidelines to ensure

they will run successfully in a multitasking environment. Detailed compiler operating

instructions are in chapter 4, while chapters 5 and 6 describe the error messages which you

may encounter.

Release 3.2 owners may find it instructive to play with the menu system and read some

of the online HELP information which is available through the F1l key before proceeding

further.

Page 16 of 100

USER MANUAL

CHAPTER 3 FUNDAMENTALS

The Motorola 68008 chip inside your QL can only execute its own machine code
instructions; it cannot execute SuperBASIC programs directly. Therefore, before a
program can be executed, the SuperBASIC instructions must be translated into
another form. There are two types of program which can perform such a translation;
interpreters and compilers. This chapter explains the essential differences between
them. It also contains an introduction to multitasking and advice on writing
programs designed to execute in the multitasking QDOS environment.

THE SUPERBASIC INTERPRETER

When a SuperBASIC program is LOADed, the interpreter translates the program text
which it reads from the microdrive into an internal program format. The names of all
variables, procedures and functions are put into a name table and memory is
allocated for the program to use.

This process takes time and is the reason why SuperBASIC programs take a long
time to load.

When you LIST a program the interpreter converts the internal format back to a
text format which can be displayed on the screen.

When you type RUN the interpreter starts to translate the program in memory line
by line. Executing a simple statement can involve many hundreds of, machine code
instructions, most of which are spent determining just what is to be done. The actual
operation, accounts for relatively few instructions.

If a statement is placed inside a FOR or REPeat loop then each time round the loop
the interpreter must retranslate the statement.

The interpreter keeps track of the location of each procedure, function, loop etc,
by means of the number at the start of each line. Finding a line number involves
searching from the current line all the way to the target line. This process gets
progressively slower as program size increases.

THE Q_LIBERATOR COMPILER

In contrast, Q_Liberator takes the internal form of the program and translates it once
at compile time, creating a new file called an object file.

In the object file, references to line numbers, procedures, loops etc. are absolute, i.e.
the program knows where everything is and searching is unnecessary.

During compilation, Q_Liberator performs all the work of deciding what has to be
done to execute a given statement. Thus when the program is executed at runtime it
runs much faster.

The object program can only run in conjunction with the run time system.

Page 17 of 100

USER MANUAL

This is either pre-loaded by a BOOT program or linked to the object program at
compile time.

Q_Liberator programs also load much faster than SuperBASIC programs
because no translation takes place during loading.

It is important to realise that Q_Liberator in no way replaces the interpreter. In fact
they complement each other, resulting in a more sophisticated working environment.
The interpreter becomes the ideal program development tool offering the advantages
of interactive operation; whilst Q_Liberator ensures that the finished product loads
and runs efficiently.

MULTITASKING

The QL is rare amongst low cost micros in that its operating system, QDOS, is
inherently multitasking. This means that more than one program can run on the
machine simultaneously. A multitasking program in QL parlance is termed a
job, Q_Liberator identifies jobs by their number or their name.

The SuperBASIC interpreter, together with the program it is interpreting constitute
job 0. Job 0 is unique in that it can grow or shrink in size as necessary, and can
never be removed.

QDOS manages jobs by allocating each job some processor time in turn while the
job is active. The amount of time which a job gets is determined by its priority. The
priority can range from 0 to 255; 0 means that a job is inactive, and gets no
processor time. When changing priorities it is the relative difference in priority
between two jobs that matters, not the absolute priority.

If a job is just waiting for a keyboard input, then it is not using processor resources.

JOB CONTROL

The Q_Liberator package contains a number of procedures to manage jobs. These
let you display which jobs are running, remove jobs and change the priority of jobs.
You may already have similar procedures and know how to use them. If not, you
may find it useful to read chapter 12 so that you can experiment with the
procedures within the example which follows.

You can, for example, see the effect that changing a job's priority has on the rate
at which it counts. Try this when there is more than 1 job running.

A MULTITASKING EXAMPLE

The following short program is contained on the working copy. It is useful
for illustrating some aspects of multitasking.

Page 18 of 100

 USER MANUAL

100 REMark MULTITASKING DEMONSTRATION

105 :

107 REMark DEMO_MULTI

108 :

110 j=Q_MYJOB : REMark see chapter 12

120 REPeat loop

130 AT j,0:PRINT FILL$(" ",20)

140 AT j,O

150 INPUT ("JOB "&j&" >");a

160 IF a=0 THEN STOP

170 FOR x=l TO a

180 AT j,15: PRINT x

190 END FOR x

200 END REPeat loop

This program simply prints its job number and prompts for a number to be entered.
If this number is 0, the program ends; otherwise it counts from 1 to the number
given, whilst displaying the current figure on the screen. The position on the screen
is determined by the job number.

Type QX MDV1_DEMO_MULTI

to start a copy of this program. You will see the prompt "JOB 1 >" at the top of
the screen with a non-flashing cursor beside it. The job is waiting for keyboard
input. Note that there is still a flashing cursor in channel 0, and you can still use
SuperBASIC.

There is only one keyboard on the QL, but there may be many jobs waiting for
keyboard input. QDOS provides a mechanism whereby you can effectively attach the
keyboard to different jobs as required. This is done by pressing Control-C (hold down
CTRL and press C). Doing this makes the flashing cursor move to the next job which
is awaiting input. If you keep pressing Control-C you can select any job which is
awaiting input.

Select the cursor for job 1 and type in a number, say 1000. You will see the program
count from 1 to 1000. Now select the SuperBASIC cursor in channel 0 and start a
few more copies. Use Control-C to select each in turn and set them all counting
simultaneously. Notice how the rate of counting slows down as more and more jobs
are started.

Try changing a job's priority to see the effect this has on the rate at which it
counts, particularly when there is more than 1 job running.

When you are finished, end each program by entering 0.

ADAPTING PROGRAMS TO MULTITASK

Not all programs will be suitable for multitasking because when several programs are
running simultaneously they compete for the QL's resources. You need to take this

Page 19 of 100

USER MANUAL

into account when a program is intended to multitask.

KEYBOARD HANDLING

There are three different ways of reading the keyboard in SuperBASIC, and
each behaves in a different fashion when multitasking.

If a program uses an INPUT statement, there is no problem because INPUT always
puts a cursor on the screen.

The same is not true for INKEY$. You can only divert characters to a program using
INKEY$ if you have first enabled a cursor on the channel used by INKEY$. You can
do this either by placing an INPUT statement for the same channel at the start of the
program, so you can switch the keyboard to it then, or you can use the Q_CURSON
procedure (or equivalent) as described in chapter 12.

It is important to consider this point when compiling interactive games which use
INKEY$. The alternative is to use EXEC_W or QW to start the job so that it runs
on its own. Then you are guaranteed sole use of the keyboard.

The final method of reading the keyboard is to use the KEYROW function. KEYROW
does not care which job the keyboard is currently attached to. It bypasses this
mechanism and reads the keyboard directly. Care is necessary when using
KEYROW as the program will treat all keystrokes as its own making it difficult to type
characters intended for other jobs. It is best to either run such programs on their
own, or use obscure keystrokes to minimise interference.

SCREEN HANDLING

When you have several programs all using the same screen, the result can be
chaos because each job is free to overwrite another job's windows. In such cases it
is useful to separate the windows on the screen. In practice, at any given time most
jobs will simply be waiting for keyboard input. If possible, try to include a routine in
the program which can redraw the screen when necessary.

FILE HANDLING

Microdrive files can be shared by several jobs, so long as all the jobs open the
file using OPEN_IN. Other forms of OPEN grant a job exclusive use of the file;
subsequent OPEN attempts by other jobs will cause an 'in use' error. The error
trapping procedures described in chapter 11 let you catch such conditions.

The same is true for devices such as a printer attached to ser1 - only one
program can normally OPEN it. (In fact you can get round this problem of
exclusive files easily, by sharing channels as described in chapter 10).

Page 20 of 100

USER MANUAL

CHAPTER 4 USING Q_LIBERATOR

This chapter gives a detailed description of how to use both Q_Liberator
compilers. You will already have seen how easy this can be if you have worked
through the demonstration run.

As stated earlier, Q_Liberator compiles programs in two distinct phases. The first
phase produces a work file, generated from the SuperBASIC program which is
currently loaded. The second phase processes the work file to produce an object
file. Phase 1 is implemented as an assembler procedure while phase 2 is in fact a
Q_Liberator object program.

Remember that an object file requires that the runtime system, QLIB_RUN is
present before it can be executed. QLlB_RUN can either be loaded once into the
resident procedure area and shared by several object programs simultaneously, or
an individual copy can be linked to the object program.

PHASE 1 - PRODUCING A WORKFILE

Before attempting a compilation, you must toad the SuperBASIC source into memory
and ensure that your program will run correctly in its interpreted form. Q_ Liberator
cannot be expected to fix programming errors for you! If you have an unexpended
machine, it is wise to type CLEAR to free any available memory before starting
compilation.

Q_Liberator phase 1 is started by using the LIBERATE command in the following
form :

LIBERATE filename

'Filename' specifies the name Q_Liberator will use when forming the work file name
and later in phase 2, the object file name. The work file name will be 'filename_wrk'
and the object name 'filename_obj'. Normally you will have to specify filenames in full
unless you have the Toolkit 2 extensions to support default directories.

LIBERATE prints the message "Creating workfile" on channel 0 while it is busy.
When the cursor reappears the work file is complete. The work file is a complete
representation of the BASIC program in an internal format. After this, the original
BASIC source program is no longer needed for the compilation process and can
be removed if required by typing NEW.

As an example, to produce a work file of the program MDV1_DEMO_SORT
on MDV2, you would type:

LOAD MDV1_DEMO_SORT

LIBERATE MDV2_DEMO_SORT

If you want to compile a really large program on an unexpended system then you

Page 21 of 100

USER MANUAL

need only load the file QLIB_BIN to the resident procedure area when you boot the
system. This contains the LIBERATE procedure and occupies only about 2k of
memory. After producing a work file, clear the program using NEW (or reset), load
the runtime system QLIB_RUN and then start phase 2 as described below to
complete the compilation.

LIBERATE must always be typed as a direct command. It is not meaningful to use
it within a program. If you attempt this you will get the error 'bad name'.

PHASE 2 - PRODUCING AN OBJECT FILE

Phase 2 of the compiler needs to know what work file it is to process and any
special instructions regarding compilation. It obtains this from a command line. A
command line is a string of characters corresponding to the following format:

Work_file_name [option_list]

At a minimum it contains just the name of a work file as produced by phase 1. This
should be specified without the '_wrk' suffix. The option_list specifies which
particular compiler features are to be enabled or disabled. The complete list of
options is described later in this chapter.

There are several ways of passing a command line to phase 2. One method is to
execute the compiler and pass the command line in a command string.
Command strings are described in detail on page 10.2. For example,

QX MDV1_QLIB,”MDV2_DEMO_SORT"

would complete the compilation of the work file produced in the earlier example.
Phase 2 would be loaded from MDV1 and then would process the file
"MDV2_DEMO_SORT_wrk" producing the object file “MDV2_DEMO_SORT_obj".
At the end of the compilation the work file is deleted.

When no option list is present, a default set of options is used. As an example of an
option list, the option -OBJ could be used to change the name of the object
program. For example,

QX MDV1_QLIB,"MDV2_DEMO_SORT -OBJ MDV1_FREDDY"

would create an object version of the sort demo called MDVl_FREDDY_obj.

COMBINING PHASE 1 AND PHASE 2

When there is sufficient memory to hold both the original program and phase 2 of
the compiler in memory simultaneously, the two phases of compilation can be
combined. This is initiated by placing a comma after the filename in a LIBERATE
command. If required an option list can be placed in a string following the comma.

Thus the format is:

Page 22 of 100

USER MANUAL

LIBERATE filename,

LIBERATE filename,"option_list"

Think of the first form as having an empty option list. Internally, LIBERATE first
produces the work file as before, then combines the filename and the option list
to produce a command string. Phase 2 is then executed and passed this
command string.

While phase 2 is being loaded the message "Loading Q_Liberator" is displayed on
channel 0. The device from which phase 2 is loaded is configured when you make a
working copy with the CLONE program. With release 3.2 it can also be configured
by the QLIB_USE procedure described in chapter 14. Alternatively the release 3.2
compiler can be made resident in which case no loading is necessary.

For example,

LIBERATE MDV2_TEST,"-OBJ MDV1_FREDDY"

would produce the file MDV1_FREDDY_OBJ in one operation from
whatever SuperBASIC program was currently loaded.

COMMAND LINE ERRORS

If you make an error in a command line, Q_Liberator will print the bad line on the
listing channel with an arrow pointing to the part in error. You will see one of the
following self explanatory messages:

No source file

Option name expected

Parameter expected

Invalid option

INTERACTIVE CONTROL OF PHASE 2

So far, each time we have used phase 2 it has compiled one program according to
the command line passed to it, then aborted. An alternative method is available by
starting phase 2 without passing a command line. This can be done by typing
LIBERATE with no parameters whatsoever or QX MDV1_QLIB without a command
string. In either case phase 2 loads, opens its windows then awaits your command.
At this point there is a major difference in the way Release 3.2 is controlled from
the budget version. Please read the appropriate section.

BUDGET Q_LIBERATOR PHASE 2

When the budget compiler is started without any parameters, it simply prompts for a

command line to be entered. The command line has precisely the same syntax as

Page 23 of 100

USER MANUAL

earlier defined, but you should not put any quotes around the command string
when it is entered. For example,

Command: MDV1_DEMO_SORT -OBJ MDV2_FREDY_OBJ

would compile the demonstration program as before.

At the end of the compilation, you will be asked if you want to compile another
program. Answering no terminates phase 2. You can also terminate Q_Liberator
by entering an empty command line.

When you have several programs to compile on a microdrive based QL, it may be
more productive to create all the work files first then compile them one after the
other with phase 2. Phase 2 is then only loaded once.

Normally the work file is deleted at the end of a compilation. If however phase 2
fails because there is insufficient memory, the work file remains intact. You should
reset the QL, reload Q_Liberator form the working copy then repeat phase 2.

You should now skip to the end of this chapter where compiler options and
directives are described in detail and further examples are given.

THE Q_LIBERATOR MENU SYSTEM

Q_Liberator Release 3.2 is equipped with an entirely different user interface. In
place of the simple command line of the budget compiler, there is now a menu
driven front end which lets you easily configure the compiler to suit your own
purposes. The menu system exploits, but is not dependent upon the QPTR interface
as used in the QRAM utility package from QJUMP. If you own this package,
preferably with a mouse, then the menu system will be entirely familiar. If not, you
can drive the program from the keyboard and still have access to QRAM like
facilities such as the ability to reposition the compiler window on the screen.

To see the new menu system in action, boot the Q_Liberator system from a working
copy and type LIBERATE, with no parameters. After a short loading time you will see
the Q_Liberator menu screen populated by a set of boxes, mostly containing function
names. These are the menu items. With QRAM installed, you can select these items
with the pointer in the usual manner. If you don't use QRAM then a non-flashing
cursor will be visible in one of the boxes. Press control C to switch the keyboard to
this job (page 3.3) and the cursor will be replaced by a highlighted outline around the
box in which it sat. This is the Q_Liberator cursor. It can be moved back and forth
between the various menu items with the 4 cursor keys up, down, left and right. If
you ever switch to another job with control C the outline cursor will again be replaced
by a conventional QL cursor.

A menu item can lie selected or deselected by hitting the space bar when the cursor
is over it. A selected item is shown with a red background, a deselected item has a
black background. In addition, the items with function names in lower case can be
toggled by entering the first character.

Page 24 of 100

USER MANUAL

Help can be obtained about any item by positioning the cursor over it and pressing
F1. Provided that the file QLIB_HELP is present, a page of relevant information will
be displayed. Please read the help information for each entry as it is designed to
complement this manual. If you wish you can COPY the file QLIB_HELP to a
printer or the screen, since it is stored in a readable form.

Two other keys have a special function. F4 redraws the entire Q_Liberator screen
and ESCape has the effect of QUITting the compiler.

MENU ORGANISATION

The box marked 'Compile' in the centre of the screen will start Q_Liberator
compiling when it is selected providing that a source file name has been entered as
described below.

In a row above 'Compile' and on either side of it the compiler options are
displayed as described in chapter 4. Options can be selected or deselected as
required with the spacebar.

The long horizontal boxes in the tower part of the screen are used to enter file or job
names. By positioning the cursor around one and pressing space the contents of
the field can be edited in the normal QL manner. An edit is terminated by ENTER or
the up or down keys. Note that entering the source file name automatically defaults
the object file name and the job name. They can be altered if required.

The top right corner contains the function MOVE. MOVE is used to change the
position of the Q_Liberator window on the screen. When MOVE is selected a
cursor appears which can be moved around the screen. When ENTER is
subsequently pressed, the window is redrawn so that the top right hand corner is as
close as possible to the cursor with the whole window still visible. The position
which Q_Liberator last occupied is stored between calls to the compiler. See the
description of QLIB_USE in chapter 14 for details.

COMPILING A PROGRAM

Before Q_Liberator can start to compile a program, it must be given the name of the
source file to process. The source file must he either a Q_Liberator work file as
created by the LIBERATE command or a file which has been produced by QSAVE.
There is normally no need to type the extension when you enter a source file name.
Q_Liberator will first append _wrk to the name you give it and try to compile a
temporary work file. If this does not exist then it attempts to compile a QSAVEd file
(_sav). If you want to force the compiler to compile the QSAVEd file, then enter the
name in full i.e. including the extension _sav. The only difference in the treatment of
_wrk and _sav files is that the former are automatically deleted after compilation.

Thus if we wish to compile DEMO_SORT on mdv1, we could compile it in the
following different way (Type the UPPER CASE only) :

LOAD MDV1_DEMO_SORT load program to memory

Page 25 of 100

 USER MANUAL

LIBERATE MDV1_DEMO_SORT phase 1, creates 'mdvl_demo_sort_wrk'
LIBERATE phase 2, call up the menu system

 wait till the screen clears
press CONTROL C an outline cursor appears

press SPACE select the source file name lx>x
MDV1_DEMO_SORT enter the source file, the others default
press C start compilation

COMPILER OPTIONS

Compiler options turn various compiler features off or on. One or more options,
separated by spaces can be specified in a string after the filename in a LIBERATE
command or in a command line. Each option consists of a short mnemonic name
preceded by a minus sign. Options can be specified in upper or lower case in any
order. Some require a parameter which must immediately follow the corresponding
option, again separated by 1 or more spaces. The complete list of options is
summarised below. Some relate to topics discussed in detail elsewhere. Further
information is contained in the Release 3.2 HELP file.

-NOLINE Suppress generation of a line number table. This makes the
 object program shorter, but any runtime errors will not contain a
 line number. If your program includes a GO TO expression (e.g.
 GO TO x*10) or other statements which require a line number to
 be calculated, then the compiler will always generate the Iine
 number table because the runtime system requires it.

-STAT Print memory usage statistics at end of job. The format of the
 statistics is described in chapter 7.

-OBJ filename Use filename as the name of the object file. This lets you create
 the object file on a different device from the work file. Note that
 _obj will still be appended to the filename.

-NAME jobname Change the name of the job. This is the name used to reference
 the job whilst it is running. It cannot contain spaces and is best
 kept short.

-RUN [device] Link a copy of the runtime system to the compiled program. The
 object program can then run in standalone mode i.e. without the
 runtime system loaded. Such programs will of course be longer
 than programs compiled without this option. The device parameter
 specifies where the runtime system QLIB_RUN is to be copied
 from, e.g. mdv1_. It MUST be present when using the BUDGET
 compiler and MUST NOT be present when using release 3, which
 always obtains the runtime system from memory.

-LIST filename Divert the error listing to the specified device or file. This can be a
 printer, a disk file etc.

 Page 26 of 100

USER MANUAL

The defaults when no options are present are:

Line number table included, no statistics, no runtime linkage, listing to
Q_Liberator window. The object name and job name are derived from
the filename.

RELEASE 3.2 COMPILER OPTIONS

The following options can only be used in command lines if you have Release 3.2.
It is often more convenient with this release to turn options on or off interactively via
the menu system.

-NONAMES Normally Q_Liberator includes the name of all variables which are
used as procedure parameters in the object file. This is necessary
to support procedures such as OPEN which can use a variable's
name as a parameter. For example, OPEN#3,MDV1_DATAFILE.
If this option is selected, then such names are not included, and
the object file is correspondingly shorter. Statements such as the
example above then have to be rewritten with the file name inside
quotes, e.g. OPEN#3,"MDV1_DATAFILE".

-AUTOF When this option is used, all FOR variables in the program are
treated as integer variables if possible. See chapter 8 for further
details.

- DEBUG This option tells the computer NOT to obey the compiler directive
$$off described later in this chapter. If any debugging routines
are included within the program, they will always be compiled
when -DEBUG is used.

-WINDS If this option is present then a compiled program will have
channels #0, #1 and #2 already open when it starts. If the option
is off then the program must open all its own windows.

The defaults for the above options are:

Names generated, -AUTOF on, debug mode off and -WINDS on.

COMPILER DIRECTIVES

These are special REMark statements inserted into a SuperBASIC program to
instruct the compiler how to compile specific parts of a program or about
special storage requirements at runtime.

A line containing a directive must start with a REMark followed by 2 dollars then
the first directive.

Each directive consists of a 4 character name followed by an equal sign and then
a parameter. There must not be any spaces separating these items. More than 1

Page 27 of 100

USER MANUAL

directive can be placed on a line by separating each with a comma.

SETTING THE DATA AREA

The following three directives affect the size of the object program data area. They
are only necessary when the default values are inadequate or over generous. When
present, they are best placed at the start of the program, where they can be easily
seen. Explanations of the parameters which are changed can be found in chapters 7
and 10.

REMark $$heap=SIZE Set size of initial user heap allocation. Default 2048,

minimum 32, maximum 512k

REMark $$stak=SIZE Set size of the working stack. Default 800, minimum 128,
maximum 512k

REMark $$chan=MAX Define maximum channel number to be used. This

reserves space for the channel table. See chapter 8 under
CHANNELS for more information

LINKING ASSEMBLER EXTENSIONS

REMark $$asmb=FILENAME,INIT,TABLE

This directive causes SuperBASIC extensions written in
assembler or with release 3, compiled libraries, to be
linked into the object program during compilation. It
may be specified up to 8 times. Each library can contain
any number of procedures or functions. See chapter 9
for details of how to use this directive.

OPTIMISATION OF CONSTANTS

REMark $$i Turn on integer mode. This directive instructs the compiler
to generate integer constants whenever possible. This will
reduce the size of the object code and give increased
performance when integer variables are used. Integer
constants are also 4 bytes shorter than floating point

constants.

REMark $$f Turn on floating point mode. This directive instructs the

compiler to generate floating point constants, thus
optimising the code for floating point work.

The default case is equivalent to $$f and is suitable for general use. Where space is
at a premium, using $$i gives space savings of around 10% on average programs.
When maximum speed is required, these directives can be used any number of
times within a program to turn on the appropriate optimisation for specific routines.

Page 28 of 100

USER MANUAL

SETTING THE INPUT BUFFER SIZE

When data is read from a device using INPUT, it is placed in a temporary buffer. This
buffer has a fixed size of 128 bytes in ROM versions AH and JM. If the input data
exceeds this size then a 'buffer overflow' error will occur. Page 11.4 shows how to
trap such a condition with Q_Liberator.

JS and later ROMS have a dynamic buffer which expands as necessary. If you wish
to compile programs which INPUT more than 128 bytes then you must use the
$$buff directive described below to set the maximum buffer size required.

REMark $$buff=size Set INPUT buffer to size specified. $$buff gives no
advantages with AH and JM ROMS.

RELEASE 3.2 COMPILER DIRECTIVES

The following directives are only available with the release 3.2 compiler.

REMark $$off This causes the compiler to ignore all subsequent program

lines until a $$on directive is encountered. Its purpose is to
suppress compilation of test and debugging routines
included within the program. $$off is ignored if the -DEBUG
option has been used.

REMark $$on This turns compilation back on after a $$off directive has

been used.

REMark $$external Informs the compiler that the procedure or function definition

which immediately follows this directive is to be accessible
from other programs, (see Chapter 14)

REMark $$ext_all Informs the compiler that every procedure and function is

external and accessible from other programs.

Page 29 of 100

USER MANUAL

CHAPTER 5 COMPILER MESSAGES

This chapter explains all of the messages which can occur when you are compiling a
program with Q_Liberator. It concentrates on those messages which pertain to errors
or inconsistencies in your program. However both phase 1 and phase 2 can
encounter errors when accessing microdrives e.g. 'drive full' or 'file not found'. These
messages are self explanatory.

MESSAGES DURING PHASE 1

Phase 1 will give the error 'bad name1 if you try to use the LIBERATE procedure
within a program and 'invalid Job’ if there is no program to compile. You can also get
'bad parameter’ if the name you have chosen for the object corresponds to one of
your procedure or function names.

MESSAGES RELATING TO STRUCTURE CHECKS

A correctly written SuperBASIC procedure or function should have only one END
DEFine statement. However the interpreter will tolerate and correctly handle
multiple END DEFines.

e.g.

DEF PROCedure TEST (x)
IF x=l then END DEFine

PRINT X

END DEFine

Q_Liberator always checks that there is only one END DEFine for each procedure or
function. If a procedure or function contains multiple END DEFines then Q_Liberator
changes all but the last END DEFine into a RETurn, which is the correct way to exit
prematurely from a procedure.

Thus the above example would become:

DEF PROCedure TEST(X) #

IF x=l then RETURN

PRINT X

END DEFine

BUDGET Q_Liberator performs such checks on program structure during phase 1
and may issue some of the errors below. RELEASE 3.2 performs all structure
checks during phase 2 and issues more explicit warnings or errors. It is also
capable of compensating for a greater range of errors.

END DEFine error Budget QLIB only

This means that you have either nested DEFinitions or an END DEFine has been
found outside of a procedure. The rules concerning DEFine and END DEFine are

Page 30 of 100

USER MANUAL

listed in chapter 8.

END DEFine altered Budget QLIB only

One or more conditional END IFs have been changed to a RETURN. The BUDGET
compiler actually makes this change to your source program in memory during
phase 1. They can be seen when the program is listed. This message is only issued
once, regardless of how many RETurns had to be inserted. See chapter 8 for more
details.

MESSAGES FROM PHASE 2

Phase two reports errors on the screen or other listing device as they are
encountered. Q_Liberator continues to process your program after an error has
been found, but will not generate any object program, since it would be unusable.

Some conditions generate warnings rather than errors. These happen because of
subtle differences in the way in which the interpreter and Q_Liberator work.
Q_Liberator recognises a problem and takes corrective action. In such cases an
object file is generated and will often run correctly. You are advised however to
examine your source program to understand the warning, then make the
necessary corrections and recompile.

All warnings and errors are preceded by a line number and the statement number
within the line, e.g. Line 100,3 is the third statement on line 100. The line number is
the line at which the error was detected. This will usually be the line which needs
changing. Sometimes however the real error may lie elsewhere, usually earlier, in
the program.

If your program is still in memory you can examine it and correct errors while phase
2 of Q_Liberator is running.

To draw your attention to these messages, Q_Liberator gives a short high pitched
beep when warnings are issued and a low pitched beep for errors.

Warning..END IF without IF

The compiler has spotted an END IF where one is not needed. It simply ignores it
in the same way as the interpreter does.

Warning..END IF missing

Any IF statements within a procedure or function ought to have a corresponding
END IF within the same procedure or function. The interpreter is not as fussy about
this as the compiler and will quite happily use the next END IF which it finds. This
will almost certainly not be what you intended. Thus if the compiler arrives at an
END DEFine with one or more unterminated IFs outstanding, it will insert them
automatically in the object program just before the END DEFine and give you a
warning. It does not change your source program; that is your responsibility.

Page 31 of 100

USER MANUAL

Warning-Procedure cannot be compiled

You have used a procedure which makes no sense in a compiled environment.
Rather than forcing you to remove it, Q_Liberator simply ignores it. See chapter 8 for
further explanation. The illegal procedures are:

AUTO CONTINUE DLINE EDIT LIST LOAD LRUN MERGE MRUN NEW
RETRY RENUM SAVE

Warning..Variable used for channel number

This message is printed once at the end of compilation if somewhere in the
program you have specified a channel number in a variable. Q_Liberator does not
know how big to generate the channel table and generates the default size (0 to
15). It may be necessary to insert a $$chan directive to increase this.

The following 4 messages relate to program structure errors as described on
page 8.2 and at the start of this chapter.

Warning-Conditional END DEFine , RETURN

assumed Warning-Nested DEFINES , END DEFINE

inserted Warning-END DEFine missing – inserted

Error....END DEFine without DEFINE

Release 3.2 only

Release 3.2 only

Release 3.2 only

Release 3.2 only

Error—Not a Q_Liberator work file.

The file which phase 2 is processing is unrecognisable as the output of
phase 1. Either you have been tampering with the work file or a corruption
has occurred. Repeat phase 1.

Error—Unrecognised symbol

The line being processed starts with an unrecognised character. Normally
such errors are trapped by the SuperBASIC editor which flags them as a
MISTake. The likely cause is that the work file is corrupt. Repeat phase 1.

Error....Unsupported statement

The line contains a statement which is not supported by Q_Liberator. In
practice this means SuperBASIC has recognised an error and inserted a
MISTake, or you are trying to use the constructs in JS and later ROMS
for error trapping i.e. WHEN ERROR etc.

Error....Too many nested IFs

Each time you use an IF statement within an IF statement the compiler needs space

to keep track of this nesting. It can do this up to 32 times; beyond this it

Page 32 of 100

USER MANUAL

gives up with this error. If you get this error then it most probably means that
your program needs restructuring. If a limit of 32 really causes you a
problem it can be increased. Write to us.

Error....Too many nested SELects

This is similar to the nested IF error described above. The maximum
nesting is again 32. Note that there is a separate storage area for
administering SELects and IFs.

Error....SELect missing

The compiler has found a SELect clause (e.g. ON x=1 or simply =1) but
there has been no previous SELect which must precede such a construct.
Your program must be corrected as the interpreter's behaviour in such
circumstances is to go searching through your program for the next END
SELect (any one will do!) then continue execution after this point. An END
SELect without a prior SELect will also give this error.

Error....ELSE without IF

An ELSE statement has been found outside of an IF construct. When the
interpreter encounters this it searches down your program until it finds the
next END IF then continues execution at that point. This is a good source
of bugs. If no END IF is found the interpreter just stops. This is an example
of how using Q_Liberator can help to track down problems in your program.

Error....END SELect missing

In a correctly structured SuperBASIC program, every SELect must have a
corresponding END SELect. Furthermore they should both be contained
within the same/ procedure. If the compiler finds itself at an END DEFine
with an unfinished SELect then it issues this error.

Error....END REPeat missing

Each REPeat started within a function or procedure should be terminated with
an END REPeat within the same procedure. If this rule is violated then this
error will be given at the end of the procedure.

Error....Ambiguous name

A name has been used to represent more than one entity, e.g. as a variable
and as a procedure or function. You will also get this error if you try to make
an assignment to a function. Programs containing such errors will usually
be rejected by the interpreter with a 'bad name’ error.

Error....Too many assembler routines

A maximum of 8 assembler extensions can be linked to an object module

Page 33 of 100

USER MANUAL

using the directive $$asmb.

Error....Cannot open assembler routine

The assembler extension cannot be found on the device which you stated
in the directive $$asmb.

Error-.. Key word must be at start of program Release- 3.2 only

GLOBAL, DEF_INTEGER, EXT_PROC and EXT_FN (in any order) must be
placed before the first line of your program (excluding REMarks).

Error....Syntax error (in REM $$ directive)

Directives are explained in chapter 4.

Page 34 of 100

USER MANUAL

CHAPTER 6 RUNTIME ERRORS

When an error occurs within a running object program it is termed a runtime error.

You will already be familiar with many of the runtime errors because they are
identical to those generated by the interpreter. However, the interpreter is often
vague about the exact cause of an error with some of the messages being used
to cover more than one situation. Q_Liberator improves upon this with more
explicit messages. Furthermore the chance to recover from certain errors is
included as a standard feature.

THE ERROR WINDOW

When a runtime error occurs, Q_Liberator opens a 3 line error window in which to
display it. This window stays on the screen until you select the cursor within it by
pressing control C. Now you must acknowledge the error with any key or if
prompted, answer the Retry question. The error window will then disappear. Note
that when memory permits, this window is transient, i.e. when it is closed it restores
what was present on the screen at the time it was opened.

The name of the job that caused the error is always printed in the top left hand
corner of the error window. The rest of the error information depends upon the
category of runtime error. There are three categories, initialisation errors, QDOS
errors and QLIB errors.

INITIALISATION ERRORS

Initialisation errors occur immediately after an object program is loaded if
something essential to support the program cannot be found.

The first thing a job looks for is the runtime system. If this is not found or has the
wrong version then you will see

Runtimes missing!

on channel 0. The error window cannot be used because it is controlled by the
runtime system! The runtime system, QLIB_RUN should be loaded by a boot
program prior to running an object program, or the program should have its own
copy linked to it. The release 3.2 runtime system will support programs compiled
by the budget compiler but NOT vice versa.

The second thing that a Q_Liberator object program does is check that any
extension procedures or functions which it needs are present. The action taken if any
are not found differs between the compiler releases. The BUDGET compiler
produces a list of the missing names in the error window. The program can go no
further and aborts.

For example if you had a game which required 2 assembler procedures and you forgot

to load them with a boot program, and had not linked them during compile

Page 35 of 100

USER MANUAL

time, you might see:

JOB : Spacegame ZAP EXPLODE missing!

with the BUDGET compiler.

RELEASE 3.2 does NOT report missing procedures at initialisation - they are
assumed to be overlays which will later be loaded and are marked as currently
undefined. If they are called when they are undefined a QDOS 'bad name’ error
is reported. Chapter 14 explains overlays in detail.

QDOS ERRORS

QDOS errors are the standard error messages which are also used by the
interpreter. They are listed in the Concepts section of the QL User Guide, and will
be familiar to most users. There is a procedure described in chapter 11 which
contains every QDOS error.

Only some of the QDOS errors are actually used. The only occasion which can result
in a QDOS error is when a machine code procedure or function returns an error
code. The only exception is 'bad name’ as described above for Release 3.
Q_Liberator has its own messages for other circumstances. For example trying to
position the cursor outside of a window results in a QDOS 'out of range’ error. Trying
to access an array element which does not exist gives a QLIB 'Index out of range'
error.

QDOS errors are reported along with the line number at which they occurred,
providing that you have not suppressed generation of the line number table by a
compiler option. Following the line number the name of the offending procedure is
printed, then the text of the QDOS message.

QDOS errors are usually input/output errors, i.e. they occur in procedures which
move data to and from devices. Often such errors will be recoverable. For this
reason Q_Liberator always lets you retry when a QDOS error occurs. The point at
which the retry restarts is immediately before the procedure name which caused the
error. For example the program TEST might contain the following:

10 CLS:OPEN_IN#3,MDV2_TESTDATA

If you ran this with the wrong tape in mdv2 then you would see the following in
the error window:

Job 1 TEST Line 10 OPEN_IN

not found
Retry Y/N

Note that this means the procedure OPEN_IN has reported error 'not found'. It does
NOT mean that OPEN_IN itself cannot be found.

Page 36 of 100

USER MANUAL

Placing the correct tape in mdv2 and answering "Y” to the retry question would result in the

program restarting just after the CLS procedure and continuing successfully.

If you answer “N” then the program will print its runtime statistics and abort.

Note that RETRY may not be possible under some circumstances, and of no value in
others, but at least you can try. In addition to this standard form of error recovery,
QDOS errors can be trapped using Q_ERR error trapping, explained in chapter 11.

QLIB ERRORS

QLIB errors are more serious. They indicate either a programming problem or a lack
of memory. Whereas the error messages generated by the interpreter are often ill
defined and unhelpful, Q_Liberator has many explicit runtime messages to shed
light on where an error really lies. Some of these are related solely to Q_Liberator's
internal workings while others are used to replace an ambiguous QDOS message.

Each QLIB message has one or more error numbers associated with it which can
sometimes convey additional information. Where this is the case, details are
given after the explanation of the message in the complete list below. QLIB errors
are always fatal; no retry is possible.

No heap space

The job has requested more data storage from the common heap but has been
unsuccessful. There are too many jobs running, the heap is fragmented or you have
exceeded the memory capacity of your QL. Possibly you have written a program
which runs riot and grabs more and more memory. Read the section on memory
organisation for further details.

No stack left

There is insufficient stack space to continue. Allocate more stack using
QLIB_PATCH or include a $$stak directive in the source program and recompile.

6 Occurred within runtime system

12 Occurred within procedure

Variable undefined

You have referenced a variable which has not been assigned a value.
SuperBASIC would give "error in expression”.

String too long

The maximum string size is 32767 characters. This error is generated when
concatenating two strings (e.g. a$&"ABC") produces a string which exceeds
this limit.

Page 37 of 100

USER MANUAL

Array too big

The dimensions of the array when multiplied together are too large. See the section
on arrays for further details.

Array not DIMed

You have tried to access an array which is currently undefined. Place the DIM
statement before this point in the program.

Indices wrong

You have specified too many or too few indices for an array or string, or the 'array' is
actually a variable.

19 Type is wrong
20 Number of indices wrong

27 Occurred in a procedure parameter

Index out of range

An index is negative or greater than the dimension.

23 Occurred during a slicing operation

28 Occurred in a procedure parameter

35 Occurred during array or string access

Slice not allowed

You have attempted to perform a slicing operation on the wrong sort of data. This
can happen if you pass a simple variable to a procedure which expects to work with
arrays, or if you don't specify enough indices to uniquely identify an element of an
array. Note that only slices of strings or string arrays can be used within an
expression, but any array slice can be used as a procedure or function parameter.

7 Occurred within an expression

24 Occurred when storing data into a variable e.g. a(2

to 4)=1

26 Occurred in a procedure parameter

Array not allowed

You have attempted to use an array when a simple variable was expected. This
happens when an array is passed to a procedure or function which can only deal
with simple variables.

Division by zero

This is of course illegal in both floating point and integer form.

Page 38 of 100

USER MANUAL

25 Integer operation

37 Floating point operation

Overflow

If floating point overflow, you have exceeded the range of QL floating point
arithmetic or more likely, divided by zero. If integer overflow then an integer has
exceeded the range -32768 to +32767. This can only happen when making an
assignment to an integer variable. When evaluating an integer expression,
Q_Liberator will automatically switch to floating point if integer overflow occurs.

13 Integer overflow

36 Floating point overflow

String is not numeric

You have tried to perform a calculation on, or set a variable to, a string which does
not contain a valid number.

Cannot retry

The error is too severe for retry to work. This is unlikely to occur in practice.

Unresolved reference

Your program is trying to go to an undefined place. This may be caused by EXITing
from a FOR loop which has no END FOR.

RETurn missing in function

Every function should RETurn a value. This error occurs if the program reaches the
END DEFine of a function.

Out of DATA in READ

The READ procedure has run out of DATA statements. Use EOF to test for
this condition prior to calling READ.

GO TO out of range

You are attempting to GO TO a line number beyond the last line in the program.

Internal

Oh dear, you should never see this! An error has occurred inside Q_Liberator. If it
really happens to you, check that it is not a spurious corruption, that you are not
violating any rules and that your program works correctly under the interpreter. If the
error persists, please write to us including, if possible, a concise demonstration of the
error.

Page 39 of 100

USER MANUAL

The following errors can only occur with Release 3.

FOR type error

The wrong type of variable has been used in a FOR loop. The compiler must allocate
extra storage for FOR variables. This error happens if the FOR control variable is a
formal procedure parameter and the actual parameter is a normal float or integer.

e.g.

10 DEFine PROCedure BADFOR(X)

20 FOR X=1 to 10: PRINTX

30 END DEFine

40 A=l
50 BADFOR A

A 'For type error' is reported at line 20 because variable A is substituted for X is the
procedure. The interpreter would give a 'bad name' error under these circumstances.

Overlay table full

You have attempted to use too many external files simultaneously either as overlays
or resident procedures in one program.

Global missing

A GLOBAL variable referenced in an external is not present in the root.

Page 40 of 100

USER MANUAL

CHAPTER 7 MEMORY MANAGEMENT

SuperBASIC is privileged among QL jobs in that it is the only one which is allowed to
shrink and expand its entire area to suit its needs. EXECutable jobs such as
Q_Liberator object programs have to make do with a fixed job area allocated when
they are started. If they require more storage then they must use the common heap.

The common heap is an area of memory which QDOS administers. When a job asks
for some memory, QDOS splits off an area of the common heap for the job to use.
When a Job is removed, any heap it has borrowed is returned to QDOS. If many jobs
are running each using common heap, a problem called heap fragmentation can
occur. This is when the heap is split into many small parts none of which are big
enough for a given job to use.

Q_Liberator is flexible about memory organisation. Object programs can be tailored
to confine all data within a job's boundaries, or they can expand into the common
heap as required. The choice can be made before a program is compiled by using a
compiler directive or after compilation using the utility program QLIB_PATCH.

OBJECT PROGRAM STRUCTURE

A Q_Liberator object program consists of a code area and a data area.

The code area contains the compiled form of the program and parameters
associated with it. If you have linked in the runtime system or any
assembler routines, then they too are contained within the code area.

The data area, contains various control areas described below and storage for
variables. Note that it is only the code area that occupies file space on a microdrive.
However when the program is loaded into memory, there must be enough space to
accommodate both the code and the data.

The sizes of the code and data areas are printed at the end of a successful
compilation. They can also be obtained by using QLIB_PATCH, whilst the total
area occupied by a job in memory can be displayed by the procedure QJ.

DATA AREA

The following parts of the data area are of interest to the user because their size can
be modified:

Channel table

The size of this table dictates the highest channel number that can be used within
a program. It is sensible to keep channel numbers low because a 40 byte entry is
reserved for all channels up to the highest which you specify. (This is also true for
the interpreter).

The number of channels is normally set automatically by the compiler. The minimum

Page 41 of 100

USER MANUAL

number of channels is 3 and the default if variables are used for channel numbers is
16. This can be changed by using the $$chan directive. Note that an attempt to open
a channel with a number higher than the table size allows will probably result in a
system crash.

Stack

The stack area is a general work area used to store return addresses, local
variables, procedure parameters and miscellaneous control information. The
amount of stack used depends very much on individual programs. Deeply nested
procedure calls or recursive routines will require a large stack to run successfully, as
will machine code routines which manipulate large strings. If a program runs out of
stack then it will normally stop with a Q_LIB error.

Occasionally the stack shortage occurs within a machine code procedure
which cannot handle the condition. This is likely to cause a crash.

The default size for the stack is 512 bytes which is generous for small programs.
It can be changed by placing a $$stak directive in the source program.

Heap area

The heap area is the section of the job's data area used for the storage of dynamic
data types (i.e. those that grow or shrink in size during runtime). All strings and
arrays and any associated descriptors are stored here. When a program is compiled,
Q_Liberator cannot tell how large these items might become and so it simply
reserves space in the data area to be administered at runtime. If this space proves
to be too small then an object program will automatically request one or more areas
from the common heap and expand into them. Thus a program will never crash
because of a heap shortage until the whole of the common heap is exhausted.

The default size of the heap area is 512 bytes. It can be increased up to a maximum
size of 512k. When extra storage is requested from the common heap, it is allocated
in 512 byte chunks at a minimum. To avoid any possibility of common heap
fragmentation you should obtain the statistics for a given job and set the heap area
high enough so that no common heap requests are necessary.

RUNTIME STATISTICS

Most programs will run correctly with the default parameter settings, but they will
not be making the optimum use of memory. To assist in setting the stack size and
data size parameters, the runtime system can produce statistics. These are
produced when a job ends if the -stat option was selected during compilation or
subsequently turned on by using QLIB_PATCH. The statistics are always produced
when a job terminates with an error.

The statistics appear in the error window in the form:

Data aaaa bbbb cc Stack dddd eeee

Page 42 of 100

 USER MANUAL

where aaaa gives the size of the heap area within the job, as set by the $$heap
 directive.

bbbb gives the total number of bytes requested from the common heap.

cc is the total number of common heap requests.

dddd is the size allocated to the stack as set by the $$stak directive.

eeee is the amount of stack which was actually used.

If you compile a program which uses strings or arrays using the standard defaults,
then the first time that it is run you will see that bbbb and cc are non zero i.e. the job
has 'spilled over' into the common heap. By setting the heap size to a figure slightly
greater than the sum of aaaa and bbbb the entire user heap can be confined to the
job's data area.

Similarly the Stack area can be reduced by setting the stack size to a figure closer
to eeee. It is wise to always leave some spare.

QLIB_ PATCH

The program QLIB_PATCH, supplied in object form on your working copy, can be
used to change parameters after a program has been compiled. It may be used
interactively by loading it with the command: QX QLIB_PATCH The presentation
of QLIB_PATCH on the screen varies between the budget version and release 3.2.

BUDGET QLIB PATCH

With this version you will first be asked for the object name which you want to
change (no need to append _obj). The current parameters are displayed and
you can overwrite them if necessary. If you decide not to patch the file you can
QUIT before the changes are applied.

Budget QLIB_PATCH can also be started by passing it a command string in a
similar format to the LIBERATE command. The first parameter in the command
string is the name of the file to be patched. It should be followed by a list of options
separated by spaces or commas. All options expect a parameter except for -stat and
-nostat. The options are as follows:

-chan number change the size of the channel table

-stak number change the size of the stack area

-heap number change the size of the job's user heap

area

-name jobname change the name of the job (NOT the

object name)

Page 43 of 100

 USER MANUAL

-stat turn on statistics

-nostat turn off statistics

Example

QX mdvl_qlib_patch,"mdvl_demo_sort -stak 400 -chan 4 -stat"

If a parameter is out of range then QLIB_PATCH enters the interactive mode to allow
the error to be corrected. If the patch is successful the message "QLIB_PATCH
complete" is printed on channel 0.

RELEASE 3.2 QLIB_PATCH

This version is controlled by the pointer interface in the same way as the compiler
itself. New values for the parameters can be typed into the appropriate box. The
changes are applied when PATCH is selected. There is no command line
interface, but the utility can be made resident or overlaid and called up with the
procedure name PATCH.

PATCHING QLIB_OBJ

In the unlikely event of Q_Liberator itself running out of stack when compiling, it is
possible to increase its stack with QLIB_PATCH. The other option parameters
should not be modified.

Page 44 of 100

USER MANUAL

CHAPTER 8 INTERPRETER/Q_LIBERATOR COMPARISON

Q_Liberator was designed to provide maximum compatibility with the SuperBASIC
interpreter. There are however areas where a compiler must by its nature do
things differently from an interpreter. Furthermore there are SuperBASIC keywords
which are meaningless in a compiled environment.

This chapter compares the operation of Q_Liberator with the interpreter and
documents deviations, enhancements and restrictions. A number of rules are
formulated which if applied will help .to ensure that your programs compile without
errors. These rules should not be regarded as restrictions; they are all really part of
the syntax of SuperBASIC and are therefore built into Q_Liberator. The interpreter is
less rigorous in its interpretation (of the rules) and can be made to disregard them by
bad programming.

COMPATIBILITY

Q_Liberator was designed to support the version of SuperBASIC present in JM and
AH ROMS as documented in reference 1. The additional keywords present in JS and
subsequent ROMS are not supported as they are incomplete and not formally
documented. The Q_ERR form of error trapping is adequate compensation for their
omission and has the advantage of being useable with all ROMS.

Compiled programs are fully portable across different ROM types.

Compatibility means that a Q_Liberator object program should behave identically
to the corresponding SuperBASIC program running under the interpreter. This is
generally true providing that the first rule is met:

Rule 1: The source program must run correctly under the interpreter.

Compiling programs which conform to the SuperBASIC syntax but give rise to
serious runtime errors can produce unpredictable results; there is no guarantee
of identical behaviour in such cases.

Sometimes, however, it can be enlightening to compile a program which is
behaving strangely, because Q_Liberator's more explicit error messages may pin
down the problem either at compile time or runtime.

PROGRAM STRUCTURE

SuperBASIC, in contrast to earlier BASIC implementations is well equipped with
constructs which add structure to a program. PROCedures, FuNctions, REPeat
loops, FOR loops etc., simplify a program and make it easier to read. Programs can
be well structured or badly structured. We shall not attempt to formally define 'well
structured' but will simply state that a well structured program would already obey
all the rules presented here, would probably be indented to reveal the underlying
form and would compile without problems.

Page 45 of 100

USER MANUAL

Badly structured programs will result in compilation errors and warnings, and
may well be impossible to fathom.

During compilation, Q_Liberator has to ascertain the structure of an entire program
as it reads it from top to bottom. The interpreter however tackles a program's
structure as it encounters the keywords at runtime. It is quite possible to exploit this
phenomenon to produce ill-structured programs which will nevertheless run. As an
extreme example consider

10 bad_practice: STOP

20 END DEFine bad_practice

30 DEFine PROCedure bad_practice

40 PRINT "breaking the rules"

50 GO TO 20

The interpreter does not care that the procedure seems to end before it starts. At
runtime it sees a DEFine then an END DEFine which is all it requires. Of course
Q_Liberator cannot predict the order in which statements will be executed and
so would reject the above program during phase 1.

DEFine....END DEFine

The.rules relating to procedure definitions are simple:

Rule 2 Every DEFine statement must have a corresponding END DEFine
later in the program.

Rule 3 DEFinitions cannot be nested inside each other.

It is also a bad habit to have more than one END DEFine in a procedure or function. Some

programmers use this as a method of escaping prematurely from a routine. Q_Liberator

tolerates this by changing such END DEFines into RETurns. This is performed during phase

1 with the budget compiler and in phase 2 with Release 3.2.

FOR....END FOR

The SuperBASIC FOR....NEXT....END FOR construct is a vast improvement over
the FOR....NEXT loop present in earlier BASIC implementations. However some of
the books purporting to teach SuperBASIC fail to make clear exactly now it
operates and how it should be used.

With the exception of the single line (inline) form, each FOR statement ought to have
a corresponding END FOR statement. This is the point at which the loop ends.

If you wish to prematurely process the next item whilst within a FOR loop, the NEXT
statement should be used. This passes control back to the line containing FOR,

If you wish to prematurely escape from the entire loop, then the EXIT statement

should be used. The program jumps to the statement after the END FOR,

Page 46 of 100

USER MANUAL

For example,

10 FOR x=l to 10,20,30,40

20 IF x=a THEN NEXT x : REMark skip print if x=a

30 IF x=b THEN EXIT x : REMark abort loop if x=b

40 PRINT x

50 END FOR x

In practice, often due to experience of earlier BASICS, programmers will use NEXT
in place of END FOR. Q_Liberator supports this usage and such programs will
compile without errors. They will also run without problems with two exceptions:

If an EXIT is attempted, the QLIB error "Unresolved reference" will
be reported.

An empty FOR loop (e.g. FOR x=2 TO 1) will cause the same error because
the program expects to continue after an END FOR, and none is present.

In these cases, the interpreter would simply stop or, worse still, use the
next matching END FOR which it could find.

The inline form of a FOR NEXT loop has an implied END FOR at the end of the line.
If a superfluous END FOR (or NEXT) is present, it is simply ignored.

i.e. 10 FOR x=1 TO 10: PRINT x

and 10 FOR x=1 TO 10: PRINT x: END FOR x

are equivalent.

The control variable of a FOR...END FOR loop cannot be a formal procedure
parameter or an error will occur.

FOR loops can be nested to any desired depth; there is no stack penalty. FOR
loops ought not to be nested as shown below, but Q_Liberator will in fact handle
such nesting in precisely the same manner as the interpreter.

10 FOR x=1 TO 10

20 FOR y=1 TO 10
30 PRINT x,y

40 END FOR x

50 END FOR y

With Release 3.2, integer FOR loops are possible. This is described in chapter 14.

REPeat....END REPeat

This construct has no counterpart in earlier BASICs. Consequently there is
no excuse for not obeying the rules.

Page 47 of 100

USER MANUAL

Rule 4 Every REPeat should have a corresponding END REPeat later in the
program.

Rule 5 REPeat loops started within a procedure or function must be terminated
inside that procedure or function.

The use of NEXT as a substitute for END REPeat is not supported because such a
loop cannot be EXITed. (EXIT causes a jump to the statement after END REPeat).
Q_Liberator will generate the error 'END REPeat missing’ with the line number of
the END DEFine statement where it was detected. There is of course no restriction
on the use of NEXT within the body of the loop.

A superfluous END REPeat at the end of an inline REPeat is ignored. REPeats can
be nested to any desired depth.

SELect ON....END SELect

It is regrettable that the interpreter only permits floating point numbers as the
variable which is tested in a SELect construct. It is in fact possible to enter and run a
program containing a SELect on a string or integer, but it will not give correct results
with the interpreter. It will, however, run correctly when compiled. This is a construct
well worth using if you can put up with the inconvenience of not being able to test it
with the interpreter.

e.g.

10 SELect on a$

20 ON a$="STOP": PRINT "stopped"

30 END SELect

IF....THEN....END IF

With the exception of the inline form, each IF should have a corresponding END
IF within the same procedure or function. Missing END IFs detected at the end of
a routine will automatically be inserted immediately prior to the END DEFine and a
warning will be issued. You are strongly advised to check that this is the correct
place for the END IF.

Superfluous END IFs are always ignored.

THE DREADED GO TO

GO TO in all its forms is fully supported. If you use a computed GO TO and end up
beyond the last line of a program then you will get an error. Use of computed GO
TOs requires that a table of SuperBASIC line numbers is included in the object
program. This is also true for GO SUB expression and RESTORE expression.

You should never use GO TO to jump into or out of a procedure or function. This
can cause problems for both interpreted and compiled programs.

Page 48 of 100

USER MANUAL

PROGRAM SIZE

There is no restriction on source program size other than the memory size of your
QL. For all but the shortest program the object produced will be smaller than the
source. This is particularly noticeable on very large programs where the savings
can approach 50% when the option to suppress line numbers is used.

The work file is typically slightly larger than the source program. It is important to
ensure that there is enough space on microdrive or disk for both the work file and
the object file before starting compilation. A useful rule of thumb is that an area
approximately twice the size of the source program should: be available. When
space is at a premium, it is possible to place the work file on one device and
produce the object on another by using the compiler option -OBJ. The fastest results
will be obtained when a RAM disk is used.

UNSUPPORTED KEYWORDS

If any name from the following list is used within a program then Q_Liberator will
ignore the entire statement, issue a warning and continue compilation.

AUTO, DLINE, EDIT, RENUM and LIST because they are of use only during

program development with the interpreter

CONTINUE and RETRY which are designed for interactive use.
They can be replaced by Q_ERR error
trapping

LOAD, LRUN, MERGE, MRUN, NEW
and SAVE

because they relate only to the source
form of a program. They are replaced in
part by QX and QW which load and run
object programs.

Note that other procedures concerned with program development contained
within some toolkits will also be unsuitable for compilation.

DATA TYPES

Q_Liberator always stores and manipulates data in a manner compatible, though not
necessary identical to SuperBASlC. This is necessary to provide maximum
compatibility for additional assembler procedures. In general the storage
requirements of an object program at runtime will be less than that used by the
corresponding source program, due to more efficient packing of numeric variables.

FLOATING POINT NUMBERS

Floating point numbers (floats) occupy six bytes. The range supported is identical
to that of the interpreter. Arithmetic operations on floats are fully compatible with
those performed by the interpreter, but are often faster.

Page 49 of 100

USER MANUAL

INTEGERS

Integers occupy two bytes. The interpreter provides very little support for the use of
integers. Simple integer variables occupy as much space as floats (eight bytes, the
minimum storage allocation) and, with the exception of DIV and MOD operations,
the interpreter always converts integers to floating point before performing any
calculations. This conversion makes working with integers actually slower than
working with floating point.

Integer variables are normally identified by the % at the end of their name, but
with release 3.2, other names can be treated as integers by using DEF_INTEGER
as described in chapter 14.

When presented with two integer quantities Q_Liberator will use 16 bit twos
complement integer arithmetic for the arithmetic operations +, -, *, DIV and MOD.
Note that division, /, always produces a floating point result. Such arithmetic is
much faster than floating point arithmetic.

Integers should be used wherever possible to achieve maximum execution speed.
The $$i directive described in chapter 4 will ensure integer constants are generated.
Making all array indices integers is particularly beneficial.

If integer overflow occurs when evaluating an integer expression, then both integers
are converted into floats and the calculation is repeated, this time giving a floating
point result. Integer overflow errors can only occur when attempting to store an out of
range number in an integer variable.

STRINGS

Strings are stored within the user heap (see memory organisation). They have the
same format as in SuperBASIC i.e. one word length followed by the string
characters. Q_LIberator supports both strings and string arrays of one or more
dimensions. The subtle difference in the way in which the interpreter handles strings
from one dimensional string arrays is reproduced precisely.

If a program manipulates large strings then a stack area larger than the longest
string is needed for some machine code procedures to run properly. Furthermore
the job's heap area also needs to be large (use statistics to see how large). For
some applications, DIMensioning all strings will reduce the memory requirement.
The strings then become one dimensional string arrays and always occupy the
same area in memory.

Many string operations are actually performed by manipulating pointers to strings
rather than the actual strings. This increases speed, but leads to a very minor
restriction. If a string variable is used two or more times within an expression and its
value changes between these occurrences, then Q_Liberator will use the latest value
throughout the expression, leading to false result. This is best illustrated by an
example:

Page 50 of 100

USER MANUAL

10 a$="old"

20 print a$&test(a$)
25 :

30 DEFine FuNction test (s$)

40 s$="new"
50 END DEFine

Under SuperBASIC line 20 prints "oldnew", whilst Q_Liberator prints
"newnew" because a$ is changed within the function test. Note that

20 PRINT a$;test(a$)

correctly prints "oldnew". Here the a$ and test(a$) do not occur within the same
expression.

In practice, this problem will rarely, if ever be encountered.

ARRAYS

All of SuperBASIC's powerful array handling features are fully supported. Thus slices
can be made of arrays to produce sub-arrays, and arrays or sub-arrays can be
passed as parameters to procedures.

Arrays can be DIMensioned dynamically at runtime, e.g. DIM a(x,y).
ReDIMensioning an array is a fast way of clearing all elements to zero.

The maximum size of an array in both SuperBASIC and Q_Liberator is determined
by three things:

a) The memory available

b) The restriction that an index can have a maximum value of 32767

c) The SuperBASIC array descriptor, which limits the multiplier for a given
dimension to an unsigned word.

To determine if a numeric array satisfies (c), write down the dimensions of the array
then add 1 to each dimension (to allow for the zeroth element). Now starting from
the second dimension, multiply all remaining dimensions together. The result must
be less than 65535 for the array to be viable. The calculation is similar for a string
array, but the final dimension should first be increased by 2 then rounded up to an
even number.

For example, on an expanded system

10 DIM a%(2,4,13106)

is acceptable because (4+1) * (13106+1) = 65535.

10 DIM a%(2,4,13107)

Page 51 of 100

USER MANUAL

causes an error because (4+1) * (13107+1) > 65535.

Since the first dimension plays no part in this calculation, making it the largest
dimension can eliminate such problems.

Thus

10 DIM a%(13107,4,2)

is entirely acceptable.

The total storage required for an array can be calculated by taking the result from
the calculation above and multiplying it by the first dimension (incremented by 1),
then by the size of the array element. This will be 6 for a float array, 2 for an integer
array and 1 for a string array.

CHANNELS

SuperBASIC will quite happily let you open channels with numbers such as 150, but
this is in fact a very wasteful practice. The channel table contains a 40 byte entry for
each channel from 0 up to the highest used. You can obviously save memory by
keeping your channel numbers low.

At compile time, Q_Liberator allocates a similar channel table large enough to
accommodate the maximum channel number used. This can only be established
when all channel numbers are literals. If any channel number is a variable, then
Q_Liberator issues a warning and allocates either a default table which supports
channel numbers from 0 to 15, or a larger table if the highest literal channel number
exceeds 15. You can override the default by using a $$chan directive as described in
chapter 4.

The minimum size of a channel table is 3 entries, for channels 0,1 and 2.

Note that attempting to access a channel number higher than the
table accommodates will probably result in a total system crash.

INITIAL WINDOWS

When a SuperBASIC program starts, channels 0, 1 and 2 are usually open. The
size and location of the associated windows, the paper and ink colours etc, are as
left behind by the last program. It is therefore wise to always redefine these windows
in the program.

When a Q_Liberator object program starts to run, the windows for channels 0,1 and
2 are identical to the default windows present after the system is reset. If the
screen is in 8 colour mode then the windows correspond to those set up when F2 is
pressed; 4 colour mode corresponds to F1.

The initial windows are overridden if a channel is replaced by a channel passed
to the job. This subject is discussed in chapter 10.

Page 52 of 100

USER MANUAL

With release 3.2 the -WINDS option must be enabled for channels 0,1 and 2 to
be opened. If this option is off then the program must open all its own windows.

Take care when calling compiled externals from the interpreter not to close
channel 0 as this will prevent you from entering any further commands.

Page 53 of 100

USER MANUAL

CHAPTER 9 USING ASSEMBLER EXTENSIONS

One of the major advantages of SuperBASIC is its extensibility. New procedures
and functions can be written in assembler and linked to SuperBASIC, whereupon
they behave as if they were an integral part of the language. Many such extensions
are in existence. Some are designed to be of general use, such as the error trapping
facilities supplied with this package, whilst others are specific to a given application.

The exceptional compatibility of Q_Liberator means that the vast majority of
extensions will operate correctly in compiled programs. This includes those that
access interpreter data structures like the name table, or alter variable values using
the utility routine BP_LET. Any which try to manipulate the internal form of the
program will of course be doomed to failure.

The rule when using assembler extensions is that they MUST be resident at the
time your program is compiled, and they MUST be present in some form when the
object is run. Q_Liberator will give you a runtime error if this is not the case.

LOADING ASSEMBLER EXTENSIONS

Normally a program which uses extensions will be started by a BOOT program of
the form:

10 base=RESPR(size) :REMark reserve space

20 LBYTES mdvl_extensions_code,base :REMark load the file

30 CALL base :REMark add the new names

40 LRUN mdvl_mainprogram :REMark load the main

 program (MERGE might also

 be used)

The BOOT program is separate from the main program so that all the new
procedure names are recognised before the main program is loaded. Such boot
programs CANNOT BE COMPILED by Q_Liberator for the following reasons:

a) The standard function RESPR gives an error if any jobs are running
and so has been modified (see below).

b) Each file of extensions contains a small piece of code to link the new
names into SuperBASIC's name table which is designed to grow as
necessary. The Q_Liberator name table is of a fixed size, determined
during compilation.

c) LRUN is an illegal procedure as far as Q_Liberator is concerned, (see
chapter 8).

This is not a serious restriction since BOOT programs are usually short and are only
executed at the start of a session. By simply changing line 40 in the program above,
it can be used to load extensions prior to running a Q_Liberator object:

Page 54 of 100

USER MANUAL

40 EXEC mdvl_mainprogram_obj

TREATMENT OF RESPR

The function RESPR is designed to create a permanent space at the top of
memory for new resident procedures. It is, however, often used in programs to
reserve memory for other purposes. This is a practice which should be avoided if
possible, because each time such a program is run, more and more memory is
reserved. RESPR cannot do its work if any job is running and so is given special
treatment by the compiler.

In an object program RESPR will allocate an area of common heap. This area is
owned by the object program and will be released when the job ends.

For applications which need a permanent storage area to run correctly, memory can
be allocated using RESPR in a SuperBASIC program. The address can then be
passed to the job in a command string (see chapter 10).

WRITING ASSEMBLER EXTENSIONS

The rules for this are of course the same as those for SuperBASIC. Be careful,
however, not to hard code any values into your code which relate only to the
interpreter and remember that the job number will not be 0. Channel identifiers
should always be taken from the job's channel table, accessible relative to A6.

A procedure can tell if it is running in a compiled form by testing the long
word BV_TGBAS(A6). This will be 0 for a compiled program and non zero
when interpreted.

BV_CHRIX can be used to reserve space on the arithmetic stack, but the stack will
never actually be expanded. If there is insufficient memory then a runtime error will
occur. The current stack pointer is in BV_RIP(A6), the lower limit is stored in
BV_RIBAS(A6X

Functions which work with large strings will require a correspondingly large
stack area.

Unlike the interpreter, Q_Liberator permits addresses passed relative to A6 to be
converted to absolute addresses. Some routines can be speeded up considerably
when they are not restricted to the doubly indexed addressing mode. Note that
A6 itself must never be changed.

LINKING ASSEMBLER ROUTINES DURING COMPILATION

The compiler directive $$asmb can be used to permanently link SuperBASIC
extensions into an object program. This removes the need to use a boot program
and gives the benefit of not filling the interpreter's name table with names which
it does not need. To use this feature you need to understand the structure of
such extensions and should preferably have access to the source.

Page 55 of 100

USER MANUAL

The directive $$asmb may reference up to 8 modules containing extensions.
Each module can contain any number of procedures or functions.

The format of a $$asmb directive is:

REMark $$asmb=FlLENAME,lNIT,TABLE

where

FILENAME is the full name of the module e.g. MDV1_EXTENS1ONS_CODE

INIT is the address in module of any initialisation routine. If present it must
end with RTS and MUST NOT contain a call to BP_INIT. If there is no
routine let INIT=0.

TABLE is the address of the SuperBASIC procedure /function table as used by
the ROM routine BP_IN1T.

IT IS ESSENTIAL THAT SUCH EXTENSIONS ARE ALREADY LOADED
WHEN THE PROGRAM IS COMPILED. If this is not observed, the compiler will
find ambiguous names or unpredictable runtime behaviour will result.

This condition is relaxed with release 3.2 which allows missing procedures to be
declared with the keywords EXT_PROC and EXT_FN (see chapter 14). Externals
compiled with release 3.2 can also be linked using this directive, in this case the INIT
and TABLE parameters should be omitted.

The extensions in QLIB_EXT can be linked to your programs with the
following directive:

REMark $$asmb=mdvl_qlib_ext,0,12

The following page contains an example of the use of $$asmb.

Page 56 of 100

USER MANUAL

As an example of procedure linkage TO Q_Liberator, here is a shortened form of
the file QLIB_EXT. The directive in the source program would be:

REMark $$asmb=mdvl_qlib_ext,0,12

000 43FAOOOA start lea.l table,al standard procedure

004 34780110 move.w bp_init,a2 linkage (not used

008 4E92 jsr (a2) by Q_Liberator)
**** possible additional initialisation routine
**** 2nd parameter for $$ASMB ***

OOA 4E75 INIT rts must end with rts
**** Procedure and function table
**** 3rd parameter for $$ASMB

00C 0002 TABLE dc.w 2 2 procedures

00E 0028 dc.w curson-*

010 08515F435552 dc.b 8,'Q_CURSON',0

01A 0014 dc.w cursoff-*

01C 09515F435552 dc.b 9,'Q_CURSOFF'

028 000000000000 dc.w 0,0,0

02E 6112 CURSOFF bsr.s channel Q_CURSOFF

030 660E bne.s curs2 procedure

032 700F moveq #sd_curs,dO

034 6006 bra.s cursl

036 610A CURSON bsr.s channel Q_CURSON

038 6606 bne.s curs2 procedure

03A 700E moveq #sd_cure,d0

03C 76FF cursl moveq #-1,d3

03E 4E43 trap #3

040 4E75 curs2 rts

042 34780112 CHANNEL move.w ca_gtint,a2 subroutine to

046 4E92 jsr (a2) return channel

048 6618 bne.s chanl in a0

04A 70F1 moveq #-15,d0

04C 5303 subq.b #l,d3

04E 6612 bne.s chanl

050 7028 moveq #40, d0

052 COF69800 mulu.w 0(a6,al.l),d0

056 206E0030 move.l bv_chbas(a6),a0

05A DOCO add.w d0,a0

05C 20768800 move.1 0(a6,a0.1),a0

060 7000 moveq #0,d0

062 4E75 chanl rts

Page 57 of 100

USER MANUAL

CHAPTER 10 INTER-JOB COMMUNICATION

Q_Liberator object programs, like other independent programs can be loaded and
started using the procedure EXEC. You have to specify the full name of the
object program.

e.g. EXEC MDV1_DEMO_SORT_OBJ

When you type this as a direct command the sort program starts to run, but you will
still be able to use SuperBASIC, i.e. they run concurrently. Sometimes it is more
useful to suspend SuperBASIC when the object program is running, particularly to
avoid conflicts over the use of the keyboard. EXEC_W will do this automatically.

e.g. EXEC_W MDV1_DEMO_SORT_OBJ

Now while the sort program is running, it is not possible to use SuperBASIC. Be
careful to provide a "way out" of programs started using EXEC_W, or you will
have to reset the machine to stop them.

EXEC and EXEC_W can also be used within compiled programs to start other jobs
running. For the following discussion we shall refer to the job which contains the
EXEC as the parent job and the job which it starts as its daughter. Within the limits
of QDOS, any job can spawn as many daughters as it pleases. A job also has an
owner associated with it, which may or may not be the same job as the parent.

Jobs only survive for as long as their owner exists. If the owner is removed or
comes to a natural end, all jobs which it owns are automatically removed.

EXEC makes job 0 the owner of the daughter job.

EXEC_W makes the parent the owner of the daughter job. The parent is suspended
whilst the daughter job is running. SuperBASIC and any other jobs continue to run.

PASSING INFORMATION TO JOBS

QDOS defines mechanisms for passing useful information to jobs upon their creation but

EXEC and EXEC_W in their standard form provide no support for this facility.

Q_Liberator has been designed to exploit QDOS to the full and so three closely
related procedures are supplied to complement EXEC and EXEC_W. They are QX,
QW, and QX_JOB0. They share a common syntax which is described below, but first
let us make plain the differences between them.

QX loads and starts an object program making the parent the owner. The
parent continues to run.

QW loads and starts an object program making the parent the owner. The parent is
suspended until the daughter is complete, (cf EXEC_W)

Page 58 of 100

USER MANUAL

QX_JOB0 loads and starts an object program, but makes the owner Job 0. (cf
EXEC) Since Job 0 cannot be removed, using QX_JOB0 will spare the new job from
a premature death if its parent is removed. It is only useful within programs.

THE PROCEDURE QX

The simplest form of QX is:

QX objectname

In this form the procedure behaves identically to the EXEC procedure except that:

a) There is no need to supply the extension _OBJ, since QX
assumes that you are running a Q_Liberator object program.

b) The job is given a priority of 8 whereas EXEC gives it 32 (except

when using the Toolkit)

c) The owner is the parent job.

Like EXEQ, QX can be typed directly at the keyboard or used within a compiled
program. When used as a direct command the parent is job 0.

For example QX MDV1_DEMO_SORT

This has the same effect as EXEC MDV1_DEMO_SORT_OBJ.

PASSING A COMMAND STRING

It is very useful to pass information to a program when it is started. For example a
program which prints a file could be passed the file name or the heading for the
top of each page. QDOS provides facilities to pass a command string to a job via
its stack when it is created, but few programs exploit this feature. QX makes this
possible for Q_Liberator programs.

Using Q_Liberator, this command string can be any string literal or string variable up
to a length of 127 characters. If you wish to pass numeric data to a job then it must
first be moved to a string. The command string can also be a SuperBASIC name, but
then the range of characters available is restricted.

To pass such a string it must be given as the first parameter after the object name in
a QX procedure call.

E,g. QX MDVl_PRlNTFILE,"accounts_dataJuly 1986"

QX MDV2_spooler,contents_doc

In your program the command string appears automatically in a reserved string
variable called CMD$. This will contain an empty string, length 0 if no command has
been passed. This is the only special characteristic of CMD$; it can be used as a

Page 59 of 100

USER MANUAL

normal string variable throughout the rest of the program.

When developing programs with the interpreter to work with a command string, you
will need to set up CMD$ manually to test the program.

PASSING CHANNELS TO JOBS

Finally, QX can be used to pass a list of channels to a daughter job. Such channels
must already have been opened by the parent job or they will cause a runtime error.
They are entered into the daughter job's channel table as being already OPENed.
They must not be reOPENed or CLOSEd by the daughter job or behaviour will be
unpredictable. In general you need not worry about closing channels because
QDOS tidies up for you when the job is removed.

Channels passed to a job in this way can be accessed by both parent and
daughter job. This means that 2 or more jobs could all write to the same file without
any 'in use' errors occurring.

The first channel in the parameter list is passed to the new job to replace its own
channel 0. The second replaces channel 1. Thereafter the channels which are
replaced number sequentially from 3. Channel 2 ought to be reserved for LISTing
and so cannot be passed.

e.g. QX mdvl_testprog,#3,#3

Start testprog using the parent's channel 3 as test progs's channel 0 and also as its
channel 1.

If you want to leave a channel as it is, then a gap can be left in the parameter list by
typing a comma.

QX mdvl_demo,"TITLE",,#1,#4

Start testprog, passing "TITLE" as the command string. It will use its own channel 0,
the parent's channel 1 as its channel 1, and the parent's channel 4 as its channel 3 !

Remember, the channel numbers relate to the parent job; the position of the
parameter determines the channel which is replaced in the daughter job.

An example which can easily be tried should help to clarify the above. Enter
the following 1 line program and compile it with the name MDV1_COMMAND.

10 PRINT cmd$

All it does is print the command string which it is passed. Now type QX
MDV1_COMMAND,"Where am I now?"

This will result in the program printing the command string "Where am 1 now?" on its
own channel 1. Now the fun starts. Try

Page 60 of 100

USER MANUAL

OPEN#3,scr_50x50a50x50

QX MDVl_COMMAND;"Inslde your window",,#3

The message appears inside the window which you just OPENed because
COMMAND is using SuperBASIC's channel 3.

WORKING WITH PIPES

A pipe is a one-way connection between two channels. Pipes are a very useful
means of passing messages or data between jobs. Messages are PRINTed into
one end of a pipe and retrieved from the other end using INPUT. In the following
description we shall refer to the end which PRINTs as the active end and the other
as the passive end.

A pipe has a fixed length, determined when the active end is opened and
behaves as a 'first in first out' buffer.

The active end of a pipe can be opened with a normal SuperBASIC OPEN. The
length is appended to the device name PIPE.

e.g. OPEN#4,PIPE_1024

The passive end of a pipe can only be opened with the Q_Liberator extension
Q_PIPE. There are two forms:

Q_PIPE #pipe_chan

This takes channel pipe_chan, as passed by another job using QX, assumes it is a
pipe already opened, and opens the passive end. The passive channel id replaces
the active one in the job's channel table. Either the parent or the daughter can
elect to open the passive end, permitting pipes to be set up in both directions.

There is also a form of Q_PIPE for creating a pipe between two channels owned
by the same job.

Q_PIPE #active to #passive

Here #active is a pipe already actively opened and #passive is an unused channel
number less than #active. You will get a 'bad parameter’ if this is not the case. It is
a useful convention to make the active end an even channel number and the
passive end odd.

Such a pipe can serve as a useful temporary memory buffer.

e.g.

10 OPEN#4,PIPE_256

20 Q_PIPE#4 to #3

30 PRINT#4,"plumbing"

Page 61 of 100

USER MANUAL

40 INPUT#3,a$

50 PRINT a$

If you completely fill a pipe with data, the active end will wait until the pipe is emptied.
End of file (EOF) is signalled at the passive end when the active end is closed.

There is a demonstration showing this technique being used to create a
sorted microdrive directory in DEMO_PIPEDIR.

USE WITH QJUMP TOOLKIT II

This Toolkit also contains procedures which support the creation of pipes between
jobs and a host of other useful functions. Q_Liberator was designed to be
compatible with, and to complement this product.

The Toolkit procedures and functions have been extensively tested with
Q_Liberator. Almost all will work correctly in compiled programs. There are a few
functions and procedures which are not useable (e.g. ED), and some which should
be used with care (wildcard commands). PARNAM$ and PARSTR$ cannot be used
because they require interpreter data structures which are not emulated. EW and EX
had problems in Toolkit version 2.05.

Default directories are supported throughout Q_Liberator and the object
programs which it produces.

The extended EXEC command, EX, contained in the Toolkit can pass a command
line to a Q_Liberator program in the same way as QX. Pipes can also be created
between a chain of jobs. Q_Liberator is the ideal tool for writing short filter programs
to exploit this.

The convention adopted for channel numbering when writing filters is

#0 is the input channel

#1 is the output channel

Other channel numbers passed to the job start from #3 as with QX

The following is an example of a short filter program, DEMO_PAGER which splits a
document into numbered pages, putting a title at the top of each. End of page can be
forced by placing '.pa’ at the start of a line. An example of its use to print a text file on
a printer might be:

EX demo_pager_obj,flp2_textfile,serl;"AGENDA”

10 REMark DEMO_PAGER

20 REMark page size is 72

30 REMark

100 L-0: P=l

105 title

Page 62 of 100

USER MANUAL

110 REPeat page

115 IF EOF(#0) THEN formfeed: STOP

120 INPUT#0,a$

130 IF a$=".pa" THEN

140 formfeed: title

150 ELSE

160 PRINT#l,a$: L=L+1

170 IF L>64 THEN formfeed:TITLE

180 END IF

190 END REPeat page

200 :

210 DEFine PROCedure formfeed

220 PRINT CHR$(12);:P=P+1: L=0

230 END DEFine

240 :

250 DEFine PROCedure title

260 PRINT cmd$,"Page : ";P\\\

270 END DEFine

SETTING THE PRIORITY WITH QX

QX, QW and QX_JOB0 can also set the priority of the job which they load. The
priority is simply specified as a number or variable anywhere in the parameters for
QX.

e.g. QX mdvl_testprog,"command string",100

Start testprog with a priority of 100 and pass a command string.

A string variable or unset name is treated as a command string, a numeric variable
or literal is treated as the priority and a variable or number preceded with # is
treated as a channel to be passed.

Page 63 of 100

USER MANUAL

CHAPTER 11 ERROR TRAPPING

Writing and running computer programs is an activity fraught with errors. How
many times have you seen 'not found’, 'bad or changed medium', 'error in
expression' etc, at a critical point in operations?

In professional programs, considerable attention has to be given to trapping errors so that

recovery where possible takes place automatically. If the user must be troubled with an

error message then the program can present it in a meaningful way.

When working with the SuperBASIC interpreter, you can often recover manually from
errors by, for example, listing the program to see what was expected and restarting
at a specific point.

When a program has been compiled however, this is not possible because the
source form is no longer present. It becomes essential to include some error trapping
routines in the program.

EXISTING ERROR TRAPPING FACILITIES

Most QL systems are equipped with either a JM or AH ROM. You can check which
yours has by typing PRINT VER$. The versions of SuperBASIC in these QLs provide
no support for programmed error trapping whatsoever. Manual error recovery is
possible with RETRY and CONTINUE.

A few of the later QLs have JS or MG ROMS. These implemented a form of
error trapping based on the WHEN ERROR keyword, but unfortunately the
implementation itself contained errors and was never formally documented.
Consequentially few programs are written to use this error trapping. For these
reasons this form of error trapping is not supported by Q_Liberator.

Another approach to error trapping is to turn the procedures which commonly
generate errors e.g. OPEN, into functions such as FOPEN. These return an error
code to the program as the value of the function. A considerable number of such
functions is contained within the Toolkit, and in many disk system ROMS. Their
use is fully supported by Q_Liberator.

Q_Liberator has an alternative way of handling errors, suitable for any QL ROM.

Q_LIBERATOR ERROR TRAPPING

Every Q_Liberator program automatically contains a rudimentary form of error
trapping which can help to avoid disastrous failures. This is the 'Retry’ mechanism
described in Chapter 6. Whenever a call to a ROM routine returns an error code,
you are invited to intervene manually and repeat the operation.

Secondly Q_Liberator provides a suite of SuperBASIC extensions which let you
selectively trap errors reported from any ROM procedure. These can be used in both
compiled and interpreted programs on any version of the QL.

Page 64 of 100

USER MANUAL

TURNING ON ERROR TRAPPING

Before you can trap errors from a procedure its name must be added to an internal
list using the procedure Q_ERR_ON. We shall refer to this as the error trap list. The
parameters for Q_ERR_ON are one or more strings containing the procedure names
to be trapped. Q_ERR_ON will give a 'bad parameter' error if any name is not a
machine code procedure. Note that functions and user written procedures cannot be
error trapped in this way.

e.g. Q_ERR_ON "OPEN"
Q_ERR_ON "OPEN","OPEN_IN","INPUT","COPY"

You can print the complete error trap list on channel 0 using the procedure
Q_ERR_LIST, which takes no parameters.

Q_ERR and Q_ERR$

When an error is detected by a procedure on the error trap list, your program will not
stop with a message. Instead the error number is stored internally and the procedure
returns normally. A program can check if an error occurred by using the function
Q_ERR, which returns the last error number, or zero if no error occurred. Q_ERR
ought to be tested every time a procedure on the error trap list is called, but this
need not be in the next statement since its value is only overwritten on the next call
to a trapped procedure.

e.g.

10 Q_ERR_ON "INPUT"

20 INPUT x

30 IF Q_ERR<>0 THEN PRINT "Error ";Q_ERR;" detected"

The error numbers returned by Q_ERR are the standard QOOS error keys and will
normally be negative. To assist in producing error messages a function Q_ERR$ is
included in the demonstration library. This will return a string containing the QDOS
error text for any error number. It is reproduced at the end of this chapter to serve
as a list of error numbers.

TURNING OFF ERROR TRAPPING

Once a procedure has been placed on the error trap list it stays there even if you
type NEW, CLEAR or LOAD another program. The only way to clear the error
trap list is to use the procedure Q_ERR_OFF.

Q_ERR_OFF will remove one or more procedures from the error trap list. It takes
one or more strings as its parameters in the same way as Q_ERR_ON. However if
no parameters are supplied then Q_ERR_OFF will remove all procedures from the
error trap list.

e.g. Q_ERR_OFF "INPUT”,”COPY"

Page 65 of 100

USER MANUAL

Q_ERR_OFF

Compiled programs which use error trapping each have their own error trap
list, which does not interfere with the interpreter's error trap list.

A WORD OF CAUTION

The error trapping facilities presented here require care in their use. If you turn on
error trapping and omit to test Q_ERR, you can have the illusion that your program
is operating correctly when it is in fact generating errors.

If you are getting strange results, check what is on the error trap list.

ERROR TRAPPING EXAMPLE

As a simple example of Q_ERR here is a robust numeric INPUT procedure which
won't stop with 'error in expression' if alpha characters are typed and which will
give a meaningful error if 'buffer overflow' occurs.

100 REMark DEMONSTRATION OF ERROR HANDLING

110 REMark demo_qerr

120 :

130 REPeat demo

140 numinput x

ISO PRINT x

160 END REPeat demo

170 :

180 DEFlne PROCedure numinput(n)

190 Q_ERR_ON "INPUT"

200 REPeat getnum

210 INPUT "Number >';n

220 IF Q_ERR=0 THEN EXIT getnum

230 BEEP 200,10

240 PRINT

250 IF Q_ERR=-17 THEN PRINT "Only numbers please"

260 IF Q_ERR=-5 THEN PRINT "Too many characters”

270 END REPeat getnum

280 Q_ERR_OFF "INPUT"

290 END DEFine numinput

Page 66 of 100

USER MANUAL

Finally, here is the listing of the function Q_ERR$ which returns the last QDOS error

as a string.

1000 DEPlne FuNction Q_ERR$

1010 REMark demo_qerr

1020 LOCal e

1030 e=Q_ERR

1040 SELect ON e

1050 -0 : RETurn ""

1060 —1 : RETurn "not complete"

1070 —2 : RETurn "invalid job"

1080 —3 : RETurn "out of memory"

1090 —4 : RETurn "out of range"

1100 —5 : RETurn "buffer overflow"

1110 —6 : RETurn "channel not open"

1120 —7 : RETurn "not found"

1130 —8 : RETurn "already exists"

1140 —9 : RETurn "in use"

1150 —10 : RETurn "end of file"

1160 —11 : RETurn "drive full"

1170 —12 : RETurn "bad name"

1180 —13 : RETurn "transmission error"

1190 —14 : RETurn "format failed"

1200 —15 : RETurn "bad parameter"

1210 —16 : RETurn "file error"

1220 -17 : RETurn "error In expression"

1230 -18 : RETurn "arithmetic overflow"

1240 -19 : RETurn "not Implemented"

1250 -20 : RETurn "read only"

1260 -32 : RETurn "bad line"

1270 -REMAINDER : RETurn "error "&e

1280 END SELect

1290 END DEFine Q_ERR$

Page 67 of 100

USER MANUAL

CHAPTER 12 JOB CONTROL

When working with multitasking programs, it is useful to have procedures to list
which jobs are currently running, to remove jobs which are no longer needed, and
to set the relative priority of jobs.

Such procedures are available from many sources. They are included in the
Toolkit, on most disk system ROMs, have been published in magazines and books,
and are available from the QUANTA (QL user group) library.

For those who have no access to these routines, we have included a suite of
procedures to control jobs in the file QJOB_BIN. This file is an optional extra which
can be omitted from the BOOT program if required. Whilst these procedures
perform in roughly the same manner as other job control procedures, they have
some advantages and are generally useful. They have been given short names
because they are often typed.

LISTING JOBS

QJ[#channel][,owner_job]

This procedure lists the tree of jobs starting from the specified owner job to a
given channel. If no channel is specified then channel 2 is used. If no owner job is
specified then job 0, SuperBASIC, is assumed and all jobs in the system will be
listed. The format of the listing is best shown by example.

Typing QJ might produce the following:

Job Owner Size Priority Name

0 0 20k S 32 BASIC

1 0 10k 8 Qdemo_1

2 1 15k S 8 Qdemo_2

where Job is the job number,

 Owner is the job number of the owner,

 Size is the memory area occupied by the job,

 Priority is the priority on a scale from 0 (inactive) to 255,

 Name is the job's name (if it has one).

The 'S’ before the priority indicates that a job is suspended, e.g. waiting for the
keyboard or another job.

The 'Q’ before the name indicates a Q_Liberator job.

Note that in the example, job 2 is owned by job 1. If you wanted to see only the tree

Page 68 of 100

USER MANUAL

owned by job 1 then

QJ 1

would display the following:

Job Owner Size Priority Name

1 0 10 8 Qdemo_l

2 1 15k S 8 Qdemo_2

If you want to process this list with a program then you can divert the listing to a
channel other than the screen. A useful technique is to list the jobs into a PIPE,
both ends of which are available to the same program. The records can then be
read back from the PIPE into an array and processed as required. Note that the
layout of the fields is fixed to make this easy.

REMOVING A JOB

The procedure QR will remove, i.e. terminate, a given job. If a job owns other jobs,
then they will be removed also. It is not possible to remove job 0. The format is:

QR jobname [,error_code] or

QR jobnumber [,error_code]

As you can see, the job can be specified by name or number. The optional error
code, if present, is passed back to the program which started the job, e.g. as .the
result of EXEC_W or QW. It can be trapped using Q_ERR error trapping. If no
error code is specified, 0 is returned.

CHANGING THE PRIORITY OF A JOB

The procedure QP will set the priority of a job to a given value in the range 0 to
255. A priority of 0 means that a job is inactive and uses no CPU time.

QP jobname,priority or

QP jobnumber,priority

FINDING THE CURRENT JOB NUMBER

It can be useful for a job to know its own job number. The function Q_MYJOB will
return this as an integer.

eg PRINT Q_MYJOB

CURSOR CONTROL

Each console device has a cursor associated with it. It is normally only turned on
during an INPUT statement. It is useful to be able to enable the cursor at other times,

Page 69 of 100

USER MANUAL

in particular to allow Control-C to switch the keyboard to that device. The cursor
will flash when the keyboard is attached to it.

Q_CURSON[#channel]

will turn on the cursor for a given channel. The default is channel is 1.

Q_CURSOFF[#channel]

turns it off again.

Page 70 of 100

USER MANUAL

CHAPTER 13 SOLVING PROBLEMS

This chapter is designed to help you if you experience problems with Q_Liberator.

PROBLEMS WITH MICRODRIVES

If you find that you cannot read either the Master or your Working copy, and you
normally do not experience loading problems, then it is possible that the microdrive
is defective. In such circumstances we will replace it free of charge if it is returned to
us.

If both microdrive cartridges will not read then there is a fair probability that your
machine is misaligned. We will replace the microdrives if you return them, but if the
problem persists, your machine should be serviced.

Note that we can tell how many copies have been made from a Master. Claims that a

Master does not read when it has in fact expired will be viewed with suspicion.

PROBLEMS WITH COMPILED PROGRAMS

At some time you may come across a program which does not function
correctly when compiled or worse still, which crashes the machine. Before
assuming that there is an error in Q_Liberator, please check the following:

Does the program run correctly under the interpreter every time?

Did you ignore warnings at compile time? If so, go back and check them. .

Try running the program with QW in place of QX. If it now runs correctly
the problem is likely to be keyboard handling. Try enabling the cursor.

If the program uses assembler extensions.

Are you sure that the correct versions are loaded?

Do they make assumptions which are invalid when run from other than job 0
? For example we have seen routines to set up user defined graphics which
have a hard coded reference to one of the SuperBASIC channels.

The same applies to machine code routines which are CALLed.

If the whole system crashes,

It is possible that your program is running out of heap or stack at a critical
point. Try increasing these parameters using QLIB_PATCH and see if it
makes any difference. Use the statistics option.

Are you accessing a channel number larger than the channel table
allows? Again QLIB_PATCH can help.

Page 71 of 100

USER MANUAL

If all else fails, please try to isolate the error down to a small program which
demonstrates it consistently. Please send the program, a description of the error and
as much supporting documentation as possible, to the address below. Include the
serial number of Q_Liberator and don't forget your telephone number and address.

Please do not telephone with such problems; it is not realistic to solve them in this
way.

Remember that Q_Liberator has been extensively tested before release. The
solution to most problems is contained within this manual. Please read it carefully
and persevere. Check too for any additional INFO files which may have been
supplied.

Address for all correspondence:

Liberation Software 43
Clifton Road Kingston
upon Thames Surrey

KT2 6PJ

Page 72 of 100

USER MANUAL

CHAPTER 14 RELEASE 3 EXTENSIONS

In general release 3.2 compiles programs faster than the budget compiler. The generated

code is more concise and also runs faster. In addition to these advantages, release 3 has

an exciting range of features, described in this chapter.

INTEGER FOR VARIABLES

The SuperBASIC interpreter insists that the control variable of a FOR...END FOR
loop be floating point. Release 3.2 supports two methods for speeding up compiled
programs by allowing integer FOR variables.

The first method is suitable for most programs and is achieved via a new option,
AUTO (-AUTOF if using in the command line interface). This instructs the runtime
system to treat any FOR variable as an integer if the start, end and step are all
integer quantities. If the same variable is later used in a floating point FOR loop,
then the runtime system alters its type to a float automatically. Q_Liberator can do
this because it knows a variable's type at runtime, a prerequisite for a full
implementation of the language.

Selecting the AUTO option can greatly speed up many programs, particularly if the
FOR variable is used as an array index, but there is one drawback which may be
encountered. If such a FOR variable is currently an integer and used as a
parameter to an INPUT statement, then INPUT won't let you enter a floating point
number into the variable. INPUT does not know that the variable's type is
changeable. You can get round this easily by INPUTing to another float variable,
then assigning it to the FOR variable. This will change the type to a float.

AUTO can also be turned on or off for any program after compilation using
the QLIB_PATCH utility.

DEF_INTEGER

The second method for supporting integer FOR variables is through the pseudo
keyword, DEF_INTEGER. DEF_INTEGER should be followed by a list of floating
point variables which are to be treated as integers by the compiler, even though their
name does not end in %. If a variable named in a DEF_INTEGER statement is used
as a FOR variable, then the compiler generates a fast integer loop. Unlike AUTO
variables, the type of such variables is fixed, and the compiler can generate slightly
faster code.

Any DEF_INTEGER statements must be placed right at the start of a program.
Only REMarks, other DEF_INTEGER statements and the special keywords
EXT_FN, EXT_PROC and GLOBAL (described later) can precede DEF_INTEGER.
DEF_INTEGER is totally ignored by the interpreter.

Example 10 DEF_INTEGER i,j,k : REMark Treat i,j and k as
integer

Page 73 of 100

USER MANUAL

DEF_INTEGER is of course also useful outside of FOR loops to get the benefit of
integer arithmetic. For maximum performance (and smaller code), the $$i directive
which makes the compiler treat constants as integers should be used either
globally or locally when working predominantly with integer variables.

Be aware when testing programs which use DEF_INTEGER, that the interpreter
will regard such variables as floats and that / (divide) always produces a floating
point result. DIV can be substituted if appropriate.

COMPATIBILITY WITH REL 2 OBJECTS

The release 3.2 runtime system will support old programs compiled under release 2
or the budget compiler. However it is generally worth recompiling with release 3 to
make them both smaller and faster. Note however that Release 2 objects cannot be
used as resident procedures, or processed with QLIB_PATCH.

INTEGRATION WITH QLOAD

QLOAD is our indispensable utility for loading interpreter programs in much the
same time as compiled programs. Because the files used by QLOAD are identical
in format to Release 3 work files, Q_Liberator can compile from such '_sav' files
directly. Using QSAVE followed by LIBERATE is similar to the two stage method of
compiling large programs on unexpended systems. It has the advantage of
ensuring that the latest interpreted version of a program is always saved and
consistent with the compiled program.

ROMABLE CODE

All Q_Liberator 3.2 object programs are ROMable provided that any
extensions linked to them using $$asmb are also ROMable, i.e. they should
not have any storage areas within their code.

The utility program RPM (Romable Program Manager) is available to support
creation of ROMs containing any desired mixture of compiled programs, subroutine
libraries and assembler extensions.

EXTERNAL PROCEDURES

One of the great strengths of SuperBASIC is its provision for extending the language
with new resident procedures. (Throughout this section, the term 'procedure'
includes functions too.) Such extensions are normally loaded into the resident
procedure area using RESPR and LBYTES and remain available until the machine is
reset. To date it has not been possible to create such extensions without recourse to
assembly language programming.

Q_Liberator Release 3.2 changes this. Now the compiled procedures and functions within

any Release 3.2 object file can be called by other programs, just as if they were built in

procedures! We will term such compiled procedures 'external procedures', or just

'externals', because they have been separately compiled from

Page 74 of 100

USER MANUAL

any program which uses them. External procedures can be linked to a program in
a variety of ways as described below.

An object file can contain zero, one or more resident procedures (or functions).
There is no limit to the complexity of an external procedure - it could if required be
an entire program. They can be called interactively from the interpreter, by
interpreted or compiled programs with parameters passed back and forth. Externals
can even call other external procedures.

There is also no limit to the number of external procedures which an object file can
contain, but since it is not always desirable to have all the procedures in a file
available externally, Q_Liberator requires that you indicate the procedures which are
external by placing the compiler directive 'REMark $$external' on the line preceding
the DEFine statement. Alternatively you can use 'REMark $$ext_all' which indicates
that all procedures and functions are external. As an example, consider the
following short program:

10 REMark $$external

20 DEFine PROCedure SQUARE(x)
30 PRINT x*x

40 END DEFine

45 :

50 REMark $$external
60 DEFine Function FRA(x)

70 RETurn x-INT(x)

80 END DEFine
85 :

90 SQUARE 10: PRINT FRA(1.5)

If this is compiled, the object program (assume it’s called demo_obj) would contain
SQUARE and FRA as externals. To indicate this, Q_Liberator prints their names at
the end of compilation. Note that this program can still be executed as a job in which
case line 90 would be executed. When used as an external procedure file however,
line 90 would never be executed as it is not within any procedure.

Candidates for turning into external procedures might be that set of useful routines
which you always include in your programs, or a graphics routine library, or
perhaps a utility which you want to make resident.

In the following sections we will see three different ways in which these
external procedures can be used.

USING EXTERNALS AS RESIDENT PROCEDURES

You are probably already familiar with the way in which additional procedures can
be added to SuperBASIC using RESPR and LBYTES. Externals can be used in the
same way. If you have Toolkit 2, simply LRESPR the object file. Otherwise you need
to note the size of the code area of the object program as displayed at the end of
compilation. (You can also get it from a WSTAT type of command). Then type

Page 75 of 100

USER MANUAL

something like:

base=RESPR(600): LBYTES mdvl_demo_obj,base: CALL base

assuming the code size in the example is 600 bytes.

After loading the external procedures can be used by any job in the system,
indeed by several jobs simultaneously if required. Try it with the demo program.

It is NOT possible to load externals into the resident procedure area in a
compiled program - they must be always be loaded by an interpreted program
prior to execution.

USING EXTERNALS AS OVERLAYS

Resident procedures are very useful, but they have a big drawback - once loaded
they can never be removed. If you continually load more and more of them, sooner
or later you will run out of memory.

But of course, Liberation Software has the answer - overlays. An overlay is simply a file

containing external procedures, but it can be loaded and unloaded as and when required.

When they are loaded, the procedures behave like resident procedures.
When they are unloaded, all space which they formerly occupied is released.
Overlays can be loaded and unloaded by both the interpreter and compiled jobs,
but there is an important difference in their behaviour. We term a program which
calls overlays a ROOT program.

When an overlay is loaded by a compiled program, ONLY that compiled program can

access the externals in the overlay. This is not true of overlays leaded by SuperBASIC. In

this case the externals behave just like resident procedures and other jobs may use them.

You must ensure however that you don't unload an overlay while a job is using one of its

procedures - a system crash would be inevitable.

Overlays find application as a means of supporting large programs in minimum memory.

The major sub functions of a program suite should be made into overlays which will

individually fit into the memory available. Then a small root program can load and unload

the appropriate overlays as different functions are called.

If you want to work with overlays, then you should ensure that the file QLIB_OVL
has been loaded as a resident procedure. (BOOT normally does this). This file
contains the extensions OVERLAY and UNLOAD described below. If you use
overlays in a compiled program you can link these extensions to your program with
the following directive:

REMark $$asmb=flpl_qlib_ovl,0,10

THE PROCEDURE OVERLAY

Syntax: OVERLAY overlay_number,exteral_file

Page 76 of 100

USER MANUAL

Errors:

-3 Out of memory

-7 File not found

-8 Already exists - Overlay number occupied

-12 Bad name - not a valid file or no external procedures in file

This procedure loads an object file into memory (common heap) and links the
external procedures which it contains to the current job. If the job is the interpreter,
they are marked as machine code functions and procedures in the name table.

OVERLAY requires two parameters. The first is an OVERLAY NUMBER (1 to 15)
which is used to identify the overlay in a job specific overlay table. The second is the
name of the object file containing them. It is the responsibility of the user program to
keep track of which overlay numbers are occupied.

For example, the procedure and function in the file DEMO_OBJ could be made
available by typing:

OVERLAY 1,MDV1_DEMO_OBJ

Up to 15 different files can be simultaneously used as overlays. An overlay can itself
call other overlays subject to this maximum. Note that OVERLAY only works with
Release 3.2 object files. Trying to OVERLAY other files of machine code
procedures will not work.

THE PROCEDURE UNLOAD

Syntax: UNLOAD [overlay_number]

This procedure removes one or all overlays from memory. All the procedures within
the overlay disappear and the space they occupied is reclaimed. A subsequent
attempt to use a now missing external procedure will result in a QDOS 'Bad name' (-
12) error. This is true for both compiled and interpreted programs.

The optional parameter specifies which overlay is to be unloaded. If none is specified
then all overlays are unloaded. When overlays are used with the interpreter, they
remain even after NEW has been typed. UNLOAD is the only way to clear them.

EXTERNALS AS COMPILED SUBROUTINE LIBRARIES

The third method of using externals is only available to compiled programs. With
these, it is possible to LINK an object file containing external procedures to a
program at compile time. The technique is similar to that described for assembler
extensions on page 9.3 of the user manual. The directive $$asmb is used, specifying
the object file name but with no initialisation address and no table address. For
example,

Page 77 of 100

USER MANUAL

10 REMark $$asmb=mdvl_demo_obj

when placed at the start of a program would allow that compiled program to use the
externals SQUARE and FRA. For each compiled subroutine library used, an entry in
the overlay table is created. The runtime system allocates these from 15
downwards, leaving the lower range for externals.

This feature is useful to speed development of large programs. As a section of
code is completed, it can be compiled and treated as a library. The source code for
that section can be deleted or hidden from the compiler with the $$off directive.

COMPILING PROGRAMS WHICH USE EXTERNALS

At compile time Q_Liberator needs to know for certain the precise type associated
with each name in a program, otherwise an 'Ambiguous name' error will be
reported by the compiler. In general, if you can RUN a program then all names will
be unambiguous and compilation will be successful. However when a program
uses externals, the compiler must be explicitly informed about all references to
external procedures and functions by pseudo keywords placed within the program
IF those externals are not currently loaded into the system.

In general you should write your external routines first, test them and then compile
them. To avoid ambiguities, ensure that the interpreted source form of the externals
has been deleted from memory. Now load the external file as an overlay and code
and test the root program. When you are ready to compile the root no changes
have to be made if you have sufficient memory to leave the overlay loaded. If you
have not, you must UNLOAD the overlay and inform QLIB of the procedures which
it contained by using the pseudo keywords EXT_PROC or EXT_FN.

EXT_PROC and EXT_FN

Syntax: EXT_PROC string [, string]

EXT_FN string [, string]

These procedures inform Q_Liberator of external procedures or functions which are
not currently loaded. Each parameter MUST be a STRING containing a procedure
or function name. These keywords have no effect on interpretation, but a syntax
check to ensure that the parameters are strings is carried out when the program is
run under the interpreter. EXT_PROC and EXT_FN must be placed at the beginning
of the program. They can also be used to define the types of assembler extensions
which are linked using $$asmb directive for occasions when they are not resident at
compile time.

For example, if a program makes use of the FRA and SQUARE defined earlier, and
the file demo_obj has not been loaded as an overlay or in the resident procedure
area, then the following statements should be placed at the start of the program:

EXT_FN "FRA" EXT_PROC "SQUARE"

Page 78 of 100

USER MANUAL

If this is not done then Q_Liberator will think that FRA is a variable and SQUARE
will give an 'ambiguous name' error.

VARIABLES AND EXTERNAL PROCEDURES

The treatment of variables when a program calls an external procedure is a logical
extension of the SuperBASIC concept of LOCAL variables. All variables used within
an external file are considered LOCAL to that external i.e. they are only accessible
by the procedures within the external file. Thus the value of a variable in a root
program is not influenced if a similarly named variable is altered within an external.
Externals behave as program modules, insulated from the programs which call
them. There are however two very important exceptions.

The first exception concerns any parameters passed to an external. If the value of a
parameter is altered by an external procedure then the corresponding variable In the
main program is also altered as you might expect. Compiled programs can pass any
type of parameter back and forth between externals, including arrays. Furthermore,
since Q_Liberator is a true SuperBASIC compiler, the types of the actual parameters
are used within the external.

When calling externals from an interpreted program, only scalar parameters i.e.
floats, integers and strings can be passed. See the implementation notes later in
this chapter for an explanation.

The second exception concerns GLOBAL variables. A global variable is a variable
defined in a root program which is to be accessible by one or more external routines.
Global variables must be indicated to the compiler by means of a GLOBAL
statement. They cannot be used with the interpreter.

THE PSEUDO KEYWORD GLOBAL

Syntax: GLOBAL variable [, variable]

This keyword when placed at the start of a program indicates that all variables in the
list of parameters are to be treated as GLOBAL. Any externals which this program
calls should also contain a GLOBAL statement if the global variables are to be
accessed. One GLOBAL statement serves for all the procedures in a file and only
those globals which are actually referenced need be specified, i.e. the external's
global variable list may be a subset of the root program's global variable list. Only
compiled programs can share global variables. Global statements are simply
ignored by the interpreter. This may change in a subsequent release.

IMPLEMENTATION NOTES

There are important differences in the behaviour of externals when called from the
interpreter and when called by a compiled job. Before it can be executed, an
external job must allocate it own variables area and have available a Q_Liberator
runtime data area containing amongst other things a heap area, a stack area and a
channel table.

Page 79 of 100

USER MANUAL

EXTERNALS CALLED BY COMPILED JOBS

When called by a compiled job, an external uses its host job's data area and so can
use any channels already opened or can open its own. You must be careful to
allocate sufficient stack in the root program to accommodate any externals which
are called.

The external's variables area is created on the first call to ANY external procedure
within the external file. It remains until the job ends or, if the external is being used
as an overlay, until the overlay is removed. On subsequent calls a change of
pointers is all that is necessary to provide the correct environment.

Note that the values of all variables within an external remain valid
between procedure calls, i.e. they are static.

EXTERNALS CALLED BY THE INTERPRETER

When an external procedure is called by the interpreter, a new job has to be
created to provide the runtime data area needed to execute the external. This is
done on each and every call to an external routine.

After creation, any parameters to be passed are copied to the new job along with a
list of opened channels. The external can freely use any channels which have
already been opened, but if it opens further channels, they will not be present when
outside of the overlay. You must be very careful not to allow the external to close
channel 0, or you win be unable to enter SuperBASIC lines when you return from
the external.

The job is now activated and the interpreter is suspended. When the new job ends,
the interpreter is activated, the parameters are copied back and the external job is
removed.

Parameters have to be copied because SuperBASIC has a tendency to move
around memory. It is not possible to pass array parameters because the
overheads would be too great. If you try it you will get a 'Not implemented' error.

Because a new job is created each time a procedure is called, variable values are
lost between procedure calls. This mechanism is considerably slower than that
used by compiled jobs, but is fine for development purposes and for calling
compiled toolkits or utility routines.

Note that whilst the interpreter can call compiled external routines, it is NOT
possible for external routines to call interpreted procedures.

SEARCHING FOR NAMES

At compile time, Q_Liberator only needs to know the name and type of each
procedure and function; the address is resolved at runtime. When a root program or
external is first initialised it searches in various places for the procedures it requires

Page 80 of 100

USER MANUAL

to run, using the procedure's name as its search key. The order of searching is
as follows:

1. The linked resident procedures table of the current job. This contains the
names of any external procedures and assembler routines linked at
compile time using $$asmb.

2. (Externals only) The linked resident procedure table of the root program.

3. (Externals only) Procedures in the root program which are marked

as external.

4. The SuperBASIC name table which contains the names of all built in

and resident procedures.

If all searches fail then the procedure is marked as undefined. Calling it will result
in a 'bad name' error. It may well become defined later if it is loaded as an overlay.

It should be clear from the above that it is possible for a compiled program to
effectively override resident procedures if its own external procedures have the same
name.

FREE RUNNING PROCEDURES

To further add to the rich range of facilities available through externals, we
have provided a means of calling external procedures (NOT functions) such
that they execute as independent jobs while the host program continues to run.
Such procedures can have parameters passed to them in the normal way, but
no parameters are copied back when the external job ends.

To start such a procedure simply put an exclamation mark after the last parameter.
For example, if the compiler QLIB_OBJ is resident then typing

QLIB!

will start the compiler and still let you use BASIC.

COMPATIBILITY WITH QRAM

Q Liberator and the programs it compiles thrive in the QRAM environment. They can
also be processed by the QRAM utility routine to make them available on a hotkey.

COMPATIBILITY WITH THE QPTR INTERFACE

As supplied, Release 3.2 can be used to compile programs which use the
SuperBASIC interface to the QJUMP QPTR package. The instructions in the
QPTR manual describing how to modify release 3.1 to be compatible should not be
followed.

Page 81 of 100

USER MANUAL

CONFIGURING THE COMPILER

You can customise the compiler to suit your particular hardware configuration
and define your own set of default options with the procedure QLIB_USE. This
would normally be done inside a BOOT program. The syntax is

QLIB_USE load_device, help_device, x_pos, y_pos,"options bits"

All parameters are optional. You need only specify the parameters you wish to
change - the others can be defaulted by using a comma.

load_device The device where the file QLIB_OBJ is located.

help_device The device where the file QLIB_HELP can be found

x_pos The X coordinate of the top left hand corner of the window

y_pos The Y coordinate of the top left hand corner

"option bits" This is a 10 character string in which each position refers to

an option. A '1’ in a given position enables the
corresponding option, a '0' disables it

Device parameters can be up to 10 characters long, giving the possibility of
specifying not only a device, but a directory.

For example, QLIB_USE flpl_abc_,flpl_abc_

The compiler would be found under flp1_abc_qlib_obj and the HELP file as
flp1_abc_qlib_help.

X_pos, X_pos and the option bits string are updated in memory each time the
compiler terminates and are remembered for the next compiler call.

The option bits are in the following order:

Bit Description Default

1 -STAT 0

2 -DEBUG 0

3 -LINES 1

4 -NAMES 1

5 -RUN 0

6 -AUTOF 1

7 -BEEP 1

8 -WINDS 1

9 Reserved

10 Reserved

There is however little need to refer to this table because an easy method of deriving

Page 82 of 100

USER MANUAL

the parameters to QLIB_USE is available.

THE FUNCTION QLIB_LIST$

This function returns a string containing the current default value of each of the
parameters maintained through OLIB_USE. Each parameter is separated from the
next by a new line character. Therefore the line

PRlNT QLIB_LIST$

will display all the defaults on the screen. The simplest way to configure the
compiler is to load it and select the options and positions which you require as your
defaults then exit. Then use QLIB_LIST$ to display the values and construct a
QLIB_USE line to put into your BOOT program.

The default parameters for a microdrive based QL as set in the standard BOOT
program is

QLIB_USE mdvl_,mdvl_,74,50,"0011010100"

This combination will compile most programs without any changes and debugging is
simplified by the inclusion of line numbers. AUTOmatic integer FOR is turned on for
speed. If you want to obtain the smallest possible object size at the possible expense
of some minor changes, turn off the NAMES and LINES options, and include $$i at
the start of the program to force integer mode.

MAKING THE COMPILER RESIDENT

If you have sufficient memory, you can make Q_Liberator resident and instantly
available. This can be done in several different ways as summarised below. Details
of the techniques behind these facilities are explained in the section on external
procedures.

1) To make the compiler a permanent resident procedure

b=RESPR(size): LBYTES MDV_QLIB_OBJ,b : CALL b

where size is the length of the file QLIB_OBJ. This is given in Appendix B. It is
likely to change in future releases.

2) To load the compiler as an overlay (temporary resident procedure)

OVERLAY 1,MDV1_QLIB_OBJ

3) A QLIB system file can be created with the RPM utility containing the compiler,
runtime system, toolkit routines and anything else you choose to include. This file
could be loaded as a resident procedure or put into a ROM. This is already done for
you if you have the 64K ROM version.

The Q_Liberator menu can then be called up by typing the procedure name QLIB. If

Page 83 of 100

USER MANUAL

you wish you can append an option string in a string variable, in which case
Q_Liberator will run automatically. If you want to continue working with SuperBASIC
while the compiler is running, append an exclamation mark after the last parameter.
For example,

QLIB "MDV1_DEMO"!

would automatically compile the file MDV1_DEMO_WRK or MDV1_DEMO_SAV.

Page 84 of 100

USER MANUAL

INTRODUCTION

When QLiberator was originally conceived, the majority of QLs were fitted with AH
and JM ROMS. The later ROMS, JS and MG introduced the
WHEN ERROR and WHEN variable constructs, but deficiencies in the
implementation meant that they could not be used reliably although
Toolkit 2 from QJUMP went some way towards correcting them. By that
time we were concentrating on enhancing QLiberator to provide full
compatibility with QJUMP products such as QRAM and HOTKEY 2 and to
provide the valuable facility of external procedures and functions.

The emergence of MINERVA prompted us to revisit Q-Liberator to provide support
for its dual screen mode feature and to add some enhancements we had long
planned. At the sane time we have implemented WHEN error and WHEN variable
as they work consistently with that ROM. The result is QLiberator Release 3.3.

This release will run object code programs compiled by all previous versions of Q-
Liberator. Note however that the 3.3 runtime system must be used with the 3.3
compiler. Use of an earlier runtimes will give QLIB error 5 — Internal error.

NOTES FOR MINERVA USERS

This is the first release which we claim to be truly Minerva compatible. For the
record, all release 3 versions of Q_Liherator will run with Minerva in the single
screen mode. Release 3.24, which was issued on a restricted basis to QUANTA
first supported dual screen mode.

Please read the documentation supplied with Minervs as it makes several
references to QLiberator. Compiled programs with machine code extensions which
require more space on the RI stack than is available can crash the system. Minerva
prevents this by the rather dramatic action of removing the offending job. Thus if
you find your program suddenly aborts without reason then try increasing the stack
size with QLIB_PATCH.

Whilst the improvements to the speed of the graphics routines and floating point
routines are exploited to the full by Q_Liberator, the improvements to the speed of
the SuperBASIC interpreter will diminish the perceived speed up factor of the
compiler when compared to the interpreter.

SUPERBASIC CHANGES WITH MINERVA

With the minor exceptions detailed below, all of the enhancements to SuperBASIC
described in the Minerva documentation are supported by QLiberator. In some
cases where there are bug fixes or obvious enhancements, Q_Liberator was
already capable of handling things correctly (e.g. String SELect, FILL$, and
RESPR). The TRACE routines TRON, TROFF and SSTEP cannot be compiled —

this should not come as a surprise. We have also chosen not to support FOR loops
with string variables. If you really think that we should, write to us and let us know.
QLiberator will attempt to coerce a string FOR variable to a number. If this is not
possible then the runtime system will issue QLIB error 29 — string is not numeric.

Be careful in the use of Minerva’s enhancements if you want your software to be
portable to other ROMS.

WHEN HANDLING

The major enhancement in Release 3.3 concerns WREN handling. This feature can
only be used with the following ROMS: JS, MG variations and Minerva. To date
there has been no full description of the WHEN ERROr and WHEN variable
constructs which we found to contain complexities when researching their
behaviour prior to implementation in QLiberator. The sections below are an attempt
to rectify this lack of documentation.

WHEN ERROR

In chapter 11 we explained the need for error trapping in a program and described
the Q_ERR facilities supplied with QLiberator. From Release 3.3 we have
implemented error trapping which is completely compatible with the facilities
originally implemented in the JS ROM and corrected in Minerva. In contrast to the
Q_ERR error trapping which provides keyword specific error handling, WHEN
ERRor trapping applies to all keywords.

WHEN ERRor is invoked by including a WHEN ERROr routine somewhere in the
program. A WHEN ERRor routine starts with a WHEN ERRor statement and ends
with an END WHEN statement. When such a routine is executed the statements
between WHEN and END WHEN are ignored, but the address of the first statement
is recorded. After this, whenever an error is encountered the statements between
WHEN and END WHEN are executed.

For example:

 WHEN ERRor

 PRINT ‘something went wrong’: STOP

 END WHEN

A single line version of WHEN ERROR is also possible along the lines of single line
REPeats and FOR statements. No END WHEN is necessary:

 WHEN ERRor: PRINT “Oops!“

WHEN ERRor routines cannot be nested inside each other in your source program.
At runtime they are static. Whilst it is allowable and is often useful to have more
than one WHEN ERRor within a program, only the last one encountered will be
active.

ENTERING WHEN ERROR

Once it is active, the WHEN ERRor routine will be invoked whenever an error
occurs within a program. With the interpreter this includes errors which occur when
entering direct commands.
Once inside a WHEN ERRor, there are few restrictions on the sort of processing

you can do. The environment is that of the routine in which the error occurred. In
particular, local variables which existed at the time of the error are still accessible
and functions and procedures can he called at will. Note however that within the
error routine further error trapping is effectively turned off. If an error occurs within
an error routine then it will cause the program to stop. The interpreter prints a
message in the normal way except that ‘in WHEN processing’ is to let you know
what has happened.

With compiled programs if an error occurs during WHEN ERRor processing then it
is displayed on the pop up error console in the normal way with the error message
preceeded by ‘During WHEN,’. You then have the opportunity to Retry, Continue or
Abort.

To be useful, a WHEN ERRor routine needs to be able to determine where the error
occurred and what the error was. Then it may be possible to take corrective action
or at least print a meaningful message. The ROM contains functions and
procedures to support you.
ERLIN is a function which returns the line numherat which an error occurred.
ERNUM is a function which returns the error number as the usual small negative
integer. As an alternative to testing ERNUM, there is a set of functions with names
corresponding to the system error codes which return true (=1) if that error
occurred. ERR_NF for example, returns true IF a ‘not found’ error haa occurred.
The complete list of functions is listed below in the same order as the error codes in
the function QERR$ from chapter 11.

ERR_NC, ERR_NJ, ERR_OM, ERR_OR, ERR_BO, ERR_NO, ERR_NF, ERR_EX,

ERR_IU, ERR_EF, ERR_DF, ERR_BN, ERR_TE, ERR_FF, ERR_BP, ERR_FE,

ERR_XP, ERR OV, ERR_NI, ERR_RO, ERR_BN

The procedure REPORT is useful for printing the message associated with the last
error which occurred or with a given error number. Note that the default channel for
REPORT is channel 0. The syntax is as follows:

 REPORT [#channel,] [error]

For example:

 REPORT Print last error message on #0

 REPORT —5 Prints ‘already exists’ on #0

 REPORT #1,ERR_NF Prints ‘not found to #1

REPORT unfortunately insists on printing a line feed after the error message.

EXITING WHEN ERROR

There are three legal ways by which you can leave a WHEN ERRor clause.

The keyword END WHEN, which must always be preaent at the end of an error
routine, will return control to the statement after the statement which caused the
error (‘the error statement’).

The procedure CONTINUE can be used at any point in an error routine to cause a
return to the main program. If no parameter is present then CONTINUE works just
like END_WHEN and returns to the next statement. If you have Toolkit 2 then the
functionality of CONTINUE is enhanced to allow continuation from an arbitrary line

number within the program. Of course this line MUST be within the same procedure
as the error statement and will typically be very close to it.

 e.g. CONTINUE 200 continue from line 200

The procedure RETRY can be used without a parameter to restart execution at the
start ot the statement which caused the error. As with CONTINUE, RETRY can be
given a line number if Toolkit 2 is present, in which case it behaves identically to
CONTINUE with a line number as described above.

Use of CONTINUE and RETRY is only possible inside WHEN ERRor. Note that
although Toolkit 2 is necessary for the interpreter to run programs which use
‘RETRY line number’ or ‘CONTINUE line number’, Q_Liberator will correctly
compile and execute these statementa without the presence of Toolkit 2.
Fortunately the syntax is accepted on any ROM supporting WHEN, so such
programs can be entered and compiled, evan though the interpreter would not run
them correctly.

RETRY is most useful when used with the ERLIN function. Note the difference
between RETRY which retries the error statement and RETRY ERLIN which will
restart at the beginning of the line which includes the error statement. This gives
you the opportunity to keep things tidy before the statement is retried. The example
below shows how this technique can be used to catch the error in expression which
occurs if text is entered into a numeric variable. Try it.

 100 WHEN ERRor

 110 IF ERR_XP THEN

 120 AT 10,10: PRINT ‘Numbers only!’

 130 RETRY ERLIN

 140 END IF

 150 PRINT ‘At line – ‘;ERLIN,: REPORT #1: STOP

 160 END WHEN

 170 :

 500 AT 8,7 : PRINT’ ‘ : at 8,0:INPUT ‘Number ‘;n

 510 AT 10,0: PRINT ‘Thank you ‘

Be careful with expressions using ERLIN because explicit line numbers are not
automatically adjusted if you RENUMber the program.

TURNING OFF WHEN ERROR

When working interactively with the interpreter, any error routine active within your
program will still be active if you interrupt execution. This can lead to confusion,
particularly if the error routine ignores some classes of error. You sight type a
command and assume it has worked correctly because no error is reported. In
reality the command has failed but there is no routine with the responsibility of
informing you. To avoid this, WHEN ERRor handling can he turned off and the
system returned to normal by typing WHEN ERRor as a direct command.

WHEN ERROR and Q_ERR

These two different forms of error trapping do not compete in any way; in fact they
complement each other. Both forms of error trapping store the error number in the
same location so the functions Q_ERR and ERNUM are in fact interchangeable.

WHEN ERRor is a global form of error trapping. Amy error in a program invokes it
without any other special coding being necessary. In contrast Q_ERR is specific. It
only operates on procedures which have been put on its error trap list by
Q_ERR_ON. However there is the disadvantage that Q_ERR must be tested after
each statement which could potentially lead to an error.

When both forms of error trapping are used within the same program, putting a
procedure on the error trap list with Q_ERR_ON effectively redirects all errors
associated with that procedure to the Q_ERR routines. The WHEN ERRor routine
will never be called for errors in that procedure. Thus one might use WHEN ERROR
for general error handling and QERR for specific exceptions.

WHEN ERROR IN COMPILED PROGRAMS

We have made every effort to ensure that WHEN ERRor is implemented within
QLiberator in a manner completely compatible with the interpreter. This we have
achieved for all the errors which are returned by procedure calls. However those
errors listed as QLIB errors which are mainly programming errors, cannot be
trapped. This is no great restriction because such errors are usually non
recoverable. One consequence is that division by zero cannot be trapped and will
lead to an abort.

A program which uses WHEN ERRor can only be entered and compiled on a
system with JS, MG or Minerva ROMS. However the object programs will run on
any QL provided that the procedure REPORT is avoided. Q_Liberator will produce
compatible code to support use of ERLIN, ERNUM and all the functions which test
for specific errors such as ERR_NF even though those functions are not present in
the AH and JM ROMs.

WHEN ERROR AND EXTERNALS

The scope of a WHEN ERRor routine does not extend to trapping errors within
compiled external procedures called hy a program. If error trapping is required
within an external then a separate WHEN ERRor should be included within the
external itself.

WHEN VARIABLE

WHEN ERRor causes a routine to be automatically called whenever an error
occurs. In a broadly similar fashion, WHEN VARIABLE causes a routine to he
called whenever a specified variable changes. It can be used to create event driven
programs.

The syntax looks as follows:

 WHEN expression

 statements

 END WHEN

where expression is usually of the form:

 Variable relational operator expression

When a WHEN clause is executed, the statements within it are ignored but the first
variable in the expression is entered in a table of watched WHEN variables.
Thereafter, every time a value is stored in this variable the WHEN clause is
invoked. If the condition following the WHEN evaluates to true then the statements
which follow will be executed. More than one variable can precede the relational
operator but it is importsnt to realise that only the FIRST variable after the WHEN is
‘watched’. Some examples should clarify this:

 WHEN x=100 invoked when 100 stored in x

 WHEN x>50 invoked when something greater than 50 stored in x

 WHEN x=y invoked when x is changed to equal y.

 Changing y to equal x does NOT invoke the routine

 WHEN x+y=0 invoked when x is changed such that x+y=0.

 Changing y so that x+y=0 will NOT invoke routine

You can have as many WHEN clauses in a program as you choose, each related to
the same or different variables. Changing a watched variable will result in at most
one WHEN clause being executed. Thus the order in which WHEN clauses are
tested can be significant and depends upon the order in which they are
encountered at runtime. Unlike WHEN ERRor which is static and operates on one
level only, statements inside one WHEN clause may trigger entry to another WHEN
clause. The only restriction is that it is NOT possible to re—enter the WHEN clause
which is currently being processed. The example overleaf should help to clarify the
behaviour of WHEN. It’s worth trying it on your own system.

100 WHEN a=1

110 PRINT ‘a=1’,

120 a=0: b=1

130 END WHEN

200 WHEN b=1

210 PRINT ‘b=1’,

220 b=0: a=1

230 END WHEN

300 WHEN a>0

310 PRINT ‘a>0’,

320 END WHEN

500 a=1

510 PRINT ‘end’

When this is executed the sequence is as follows. At 500, setting a to 1 triggers the
WHEN at line 100 which is first in the list. The WHEN at 300, is not activated even
though its condition is true. At 120, whilst still inside the first WHEN, b is set to 1
triggering the WHEN at 200. At 220, a is again set to 1. The WHEN at 100 is
already activated and so is ignored, but the condition for the WHEN at 300 is met
and is therefore triggered. Then we return from the three nested WHENs via lines
320, 230, 130 and finally back to the main program at line 510. Thus the output
from the program is:

 a=1 b=1 a>0 end

STOPPING WHEN PROCESSING

A variable cam be removed from the watched list by a statement of the form:

 WHEN variable

The first WHEN clause for the specified variable is removed. Others for the same
variable may still remain in force.

WHEN VARIABLE IN COMPILED PROGRAMS

Nothing much to say here. Q_Liberator WHEN handling is precisely compatible with
the behaviour of the interpreter described above. As with WHEN ERRor, WHEN
handling does not extend into externals called by a program, but externals can have
their own WHENs if required.

MISCELLANEOUS IMPROVEMENTS

TRACE OPTION

A TRACE option has been added to the compiler. When it is turned ON statement
separators are inserted In the object code. This only marginally increases the code
size as they usually replace redundant filler bytes. The only advantage currently is
that a statement number is printed on the error console after the error line number.
In future we may develop a debugger for Q_Liberator code in which case the
TRACE option will allow code to be single stepped. Please write to us if you are
interested in such a tool. TRACE occupies the first reserved entry in the QLIB_USE
parameter list.

ERROR CONSOLE

When a QLib error is reported on the pop up error console in place of the RETRY
Y/N prompt you can now opt to Retry, Continue or Abort by typing the appropriate
character. Retry repeats the offending statement, continue ignores it and abort
terminates the job. You might also spot that the border of the error console has
been changed to a chequered pattern.

With Minerva in two screen mode, the error console pops up on the current default
screen for that job.

FREE RUNNING PROCEDURES

The concept of free running procedures was introduced on page 14.9 of the user
manual. In releases prior to 3.3, such procedures could only be started from the
interpreter. Release 3.3 removes this restriction and allows compiled programs to
spawn new independent jobs by a simple procedure call.

QLIB_SYS

Over the years the Q Liberator system has grown in size and has become spread
over several files. As an alternative to individually loading each file of extensions we
have linked all those commonly required in one file named QLIB_SYS. QLIB SYS
was produced using RPM (of course!). The RPM control file is also supplied as
QLIB_RPM for those who night want to change it to include say QLOAD/QREF or
the compiler itself, QLIB_OBJ. QLIB_SYS is now part of the standard BOOT
routine. QLIB_BOOT still contains the instructions to load files individually.

NEW ERROR MESSAGES

The compiler has two new error messages associated with WHEN constructs. Their
meaning should be obvious.

 Error….END WHEN without matching WHEN

 Error….Nested WHEN not allowed

The runtime error message, ‘Can’t retry’ is now issued if RETRY or CONTINUE are
used outside of a WHEN ERRor clause.

APPENDIX A BUDGET COMPILER FILES

QLIB_BIN

This contains phase 1 of the compiler, LIBERATE, and the extensions for
loading object programs, QX, QW and QX_JOBO. It must be loaded by a
BOOT program if you intend to compile programs. QLIB_BIN is configured
during the CLONE procedure.

QLIB_RUN

This is the run time system. It must be present to run object programs except
for those programs which have had the run time system linked at compile time.
The second phase of the compiler itself requires this file.

QLIB_OBJ

This is the second phase of the compiler. It is loaded by the LIBERATE
command and requires that QLIB_BIN and QLIB_RUN are present.

QLIB_EXT

This file is optional; it is not required by the compiler. You may choose not to
load it by amending the BOOT program. It contains the following SuperBASIC
extensions:

QJ, QP, QR, Q_MYJOB, Q_CURSON, Q_CURSOFF, Q_PIPE, Q_ERR_ON,
Q_ERR_OFF, Q_ERR_LIST and Q_ERR.

QLIB_BOOT

This file is the source of the BOOT program created by CLONE. In its standard
form it loads QLIB_BIN, QLIB_RUN and QLIB_EXT. You can create other
BOOT programs (e.g. to load only phase 1) by editing this one.

QLIB_PATCH_OBJ

This is a utility in object form for changing certain runtime parameters
without having to recompile. It requires QLIB_RUN to be resident.

CLONE

This is a BASIC program supplied in source form for making copies of the
Q_Liberator system.

In addition to the above, various demos are supplied in source form with the master.

Page 85 of 100

USER MANUAL

APPENDIX B RELEASE 3 FILES

QLIB_BIN

This contains phase 1 of the compiler and the following extensions:

LIBERATE, GLOBAL, EXT_FN, EXT_PROC, DEF_INTEGER, QLIB_USE,
QLIB_LIST$, QX, QW and QX_JOB0. It must be loaded by a BOOT program if
you intend to compile programs.

QLIB_RUN

This is the run time system. It must be present to run object programs except
for those programs which have had the run time system linked at compile time.
The second phase of the compiler itself requires this file.

QLIB_OBJ

This is the second phase of the compiler. It is loaded by the LIBERATE
command and requires that QLIB_BIN and QLIB_RUN are present. The size of
this file as required when making the compiler resident can be found in
QLIB_BOOT

QLIB_EXT

This file is not necessary for the compiler to operate. It contains the
following extensions:

QJ, QP, QR, Q_MYJOB, Q_CURSON, Q_CURSOFF, Q_PIPE, Q_ERR_ON.
Q_ERR_OFF, Q_ERR_LIST and Q_ERR.

QLIB_OVL

This contains the procedures OVERLAY and UNLOAD.

QLIB_HELP

This is the HELP text file for the compiler. It need only be present on a working
copy if you think you need it.

QLIB_BOOT

This file is the source of the BOOT program created by CLONE. In its standard
form it loads QLIB_BIN, QLIB_RUN and QLIB_EXT. You can create other
BOOT programs (e.g. to load only phase 1) by editing this one.

QLIB_PATCH_OBJ

This is a utility in object form for changing certain runtime parameters
without having to recompile. It requires QLIB_RUN to be resident.

Page 86 of 100

USER MANUAL

QLIB_SYS

This contains QLIB_BIN, QLIB_RUN, QLIB_EXT, QLIB_OVL as a
single loadable file.

QLIB_RPM

The Resident Program Manager source file to used to create QLIB_SYS

CLONE

This is a BASIC program supplied in source form for making copies of
the Q_Liberator system.

In addition to the above, various demos are supplied in source form with the master.

Page 87 of 100

USER MANUAL

APPENDIX C UPDATES

This appendix describes the changes to Q_Liberator since the last
printed edition of the manual (Release 3.30).

RELEASE 3.31 June 1990

ERROR CONSOLE

Under some rare program error conditions, earlier versions of Qlib had difficulty
reporting errors. Release 3.31 has changed the error handling so that an error
message always appears somewhere, and usually on the error console. The
sequence when an error occurs is as follows:

The runtime system first attempts to open a console window with parameters
CON_480x36a16x160. The screen contents beneath this window are saved, i.e. it
'pops up'. (With Minerva this window will be on the current default screen). If the
open operation fails then the job's channel 2 is used to report errors, if it exists. If
it does not, then SuperBASIC's channel 2 is used and failing that, channel id 0.

Note that when using the QJump extended environment the shape of the error
console may change if OUTLN has been used to define a primary window
which cannot encompass the standard error console.

COMPILER CONFIGURATION

Users who have a copy of the QJump level 1 configurator, config, can now use
this utility to modify the compiler, QLIB_OBJ. The colour scheme and various
compiler defaults including stack, heap, and buffer size can be configured.

WHEN VARIABLE

Under the interpreter, a watched variable cannot trigger a WHEN clause as the result
of an assignment through a READ or INPUT operation. This behaviour though
inconvenient is replicated in Q_Liberator for the sake of compatibility. If you want to
trigger a WHEN clause on a keyboard input assign the variable to itself immediately
afterwards:

INPUT X
X=X REMark may trigger when

PROGRAM STRUCTURE

It is not possible to use EXIT to leave a REPeat or FOR loop from within a WHEN clause

as the 'during WHEN processing' state is never left. Thus the following program structure

though possible under the interpreter is considered illegal under

Page 88 of 100

USER MANUAL

Q_Liberator.

WHEN x=5
EXIT loop

END
WHEN x=1

REPeat loop
x=x+1

END REPeat loop

RELEASE 3.32 September 1990

MINERVA INTEGER TOKENISATION

Minerva versions from 1.79 onwards introduced integer tokens to the internal format
of a SuperBASIC program resulting in faster and more efficient interpreted code.
Q_Liberator release 3.32 will now correctly process such programs giving similar
performance benefits to compiled programs (regardless of which ROM they are
executed on). This feature effectively renders the $$i and $$f directives as obsolete.

The changes to support integer tokenisation include the LIBERATE command in the
file QLib_bin which generates the work file. If you wish to compile directly from
QLOAD files (_sav) then QLOAD version 1.7 is needed.

RELEASE 3.33 September 1990

Bug in QLIB_OBJ not releasing memory after compilation corrected.

Bug in QLIB_OBJ with TRACE on and REMarks at start of file corrected.

QLIB_PATCH recompiled to allow resident use with Minerva & MultiBASIC.

RELEASE 3.34 November 1990

Parameter passing from compiled code to free running procedures corrected.

Bug introduced in 3.32 which stopped overlays working from compiled code
corrected.

Page 89 of 100

USER MANUAL

RELEASE 3.35 April 1991

Removal of runtime error which occasionally caused premature reporting of EOF
when processing lines with multiple DATA statements.

Path name for QLIB_OBJ and QLIB_HELP extended to 26 characters to
allow greater flexibility for winchester users.

Bug in QLIB_OBJ with TRACE on and Define integer corrected.

Bug in QLIB_OBJ with entry of object filenames without the extension '_obj'.

Warning now given if REM $$on / REM $$off out of sequence.

Compiler stack changed from 1500 to 5500 to allow it to compile the
PSION INSTALL_BAS without having to run Qlib_patch on the compiler.

Bug in QLIB_OBJ in setting stack size fixed.

Bug fixed in QLIB_PATCH when loaded as resident procedure.

RELEASE 3.36 January 1993

Corrected a bug in INSTR which occasionally returned a positive result when in fact
no match was found.

Improvement to set up of basic variables area to tolerate poorly written machine
code extensions.

Page 90 of 100

USER MANUAL

INDEX

- DEBUG, 26
$$asmb, 27, 33, 54, 55, 56, 73, 75, 76,

77, 80
$$buff, 28
$$chan, 27, 31, 41, 51
$$ext_all, 28, 74
$$external, 28, 74 $$f,
27
$$heap, 27, 42
$$i, 27, 49, 73,
82 $$off, 26, 28,
77 $$on, 28
$$stak, 27, 36, 41, 42
-AUTOF, 26, 72, 81 -
BEEP, 81
BOOT, 9, 10, 12, 17, 53, 67, 75, 81,

82, 84, 85
BUDGET, 14, 22, 25, 29, 30, 34, 35, 42
BUDGET version, 14
CLONE, 9, 10, 12, 22, 84, 85,
86 CMD$, 58, 59
-DEBUG, 26, 28, 81
DEF_INTEGER, 33, 49, 72, 73, 85
EXT_FN, 33, 55, 72, 77, 85
EXT_PROC, 33, 55, 72, 77, 85
GLOBAL, 33, 39, 72, 78, 85
INKEY$, 19
KEYROW, 19
LBYTES, 53, 73, 74, 75, 82

LIBERATE, 12, 14, 20, 21, 22, 23, 24,
25, 29, 42, 73, 84,

85 -LINES, 81
LRESPR, 74
-NAMES, 81 -
NONAMES, 26
OPEN, 19, 26, 35, 60, 63,
64 OPEN_IN, 19, 35, 64
OVERLAY, 75, 76, 82, 85

overlays, 35, 39, 75, 76

PARNAM$, 61
PARSTR$, 61
Q_CURSOFF, 56, 69, 84, 85
Q_CURSON, 19, 56, 69, 84, 85
Q_ERR, 36, 44, 48, 64, 65, 66, 68, 84,
85 Q_ERR$, 64
Q_ERR_ON, 64
Q_MYJOB, 18, 68, 84,

85 Q_PIPE, 60, 84, 85
QJ, 40, 67, 68, 84, 85

QJOB_BIN, 67
QJUMP, 11, 23, 61, 80
QLIB_BIN, 21, 84, 85
QLIB_EXT, 11, 55, 56, 84, 85,
86 QLIB_HELP, 24, 81, 85
QLIB_LIST$, 82, 85
QLIB_OBJ, 9, 10, 43, 80, 81, 82, 84,
85 QLIB_OVL, 75, 85, 86
QLIB_PATCH, 36, 40, 41, 42, 43, 70, 72,

73, 84, 85
QLIB_RUN, 11, 20, 21, 25, 34, 84, 85, 86
QLIB_USE, 10, 22, 24, 81, 82, 85
QLlB_RUN, 20
QP, 68, 84, 85
QPTR, 23, 80
QR, 68, 84, 85
QRAM, 23, 80
QSAVE, 24, 73
QW, 14, 19, 48, 57, 62, 68, 70, 84, 85 QX,

14, 18, 21, 22, 42, 43, 48, 57, 58, 59,

60, 61, 62, 70, 84, 85
RELEASE 3.2, 9, 14, 26, 28, 29, 35,
43 RESPR, 53, 54, 73, 74, 75, 82
-RUN, 25, 81
-STAT, 25, 81

UNLOAD, 75, 76, 77,
85 WHEN ERROR, 31,
63 -WINDS, 26, 52, 81

Page 91 of 100

