Resident Program Manager
Liberation Software

Version 1.0
(c) 1988 Liberation Software

Introduction

Resident Program Manager is a utility program for creating resident tiles. A resident
file contains one or more programs or SuperBASIC procedures and functions
designed to be permanently linked to the QL and thus available instantly when
required.

RPM produces a resident file by copying one or more source files and some special
interface code into a new file. The source file in this context can be any one of the
following:

A files of SuperBASIC extensions

An EXECutable program

A Q_Liberator object program, possibly with externals
A SuperBASIC program

Data files (for sequential reading only)

RPM can produce two variants of resident file.

A RAM resident file is designed to be loaded into the resident procedure area at the
top of the OL memory map. - Space must be first be allocated in this area using the
RESPR function. The RAM resident file can then be loaded using LBYTES from an
external medium (eg microdrive) by a BOOT program. When the start address is
called once by a program, the routines in the resident file are linked into the QL
operating system. They remain present until the system is next reset. This operation
will be familiar to moat users as it is the normal way in which SuperBASIC extensions
are added.

A ROM resident file is very similar to RAM resident file, but is designed to be copied
to an EPROM. Such files have a header at the start which 0005 recognises during
initialisation of the QL. The routines which are present are linked automatically and
are immediately available.

There are some rules which must be followed for a program to be ROMable. The

code must be position independent, should not be self modifying and there should
be no data areas contained within the code itself.

Subject to these rules, RPM allows developers to produce prototypes of ROMs in a
RAM based form for testing. This saves repeated EPROM blowing and erasing during
the testing phase.

The way in which the various source file types are treated by RPM and the manner in
which they can be used is described in the following sections.

RESIDENT SUPERBASIC EXTENSIONS

Files containing SuperBASIC procedures or functions are already effectively resident
files. RPM makes it easy to put them into ROM and gives you the facility to put all the
extensions which are normally loaded individually into one convenient file.

Extensions are used in precisely the same way as before, ie the new procedures and
functions are linked into the SuperBASIC name table and can be called by interpreted
programs or compiled programs.

Be wary of extensions which use an area within the code as a data area. Such
extensions can only be used by one job at a time (ie they are not re—entrant) and
can give wrong results when used in compiled programs. They will not work at all if
put into ROM. If an extension requires a data area it should either use the buffer in
the SuperBASIC area (start address in O(A6)) or allocate its own space in the common
heap.

RESIDENT EXECUTABLE PROGRAMS

Every executable program in a resident file has a user defined procedure name
associated with it. This name and some other parameters are specified when the
resident file is created. This procedure is linked to the name table in the same way as
for extensions. When the procedure is called a new independent job is created to
execute the resident program. No parameters can be passed in the procedure call.

Jobs can be started with the equivalent of an EXEC or EXECW call. In the latter case
the program which calls the procedure is suspended until the resident program ends.

Not every executable program is immediately capable of running in a resident form.
We distinguish 2 categories, pure programs and impure programs. A pure program is

designed to be re—entrant so that several jobs can use the program code
simultaneously, each with its own associated data area. Q_Liberator object programs
from release 3.0 onwards are always pure.

Impure programs are more demanding about the environment they run in and must
be treated specially by RPM. They may contain nasties like data areas within the code
or address their data area in an invalid way as described below. Code produced by
other QL compilers is often impure.

When a program is EXECed, QDOS allocates an area of memory for the new job
which is created. The program code is loaded at the bottom of this area and a data
area follows it of a size determined by the header of the program tile.

When a job is created by an RPM procedure call, the program code within the
resident file is used. An area of memory sufficient to hold a short piece of bootstrap
code and a complete data area is allocated. Thus the program code and its data are
in separate memory areas. Some impure programs cannot handle this, probably
because they use addresses calculated relative to the job base. All addressing in the
code area will be PC relative in a pure program.

However RPM does provide a mechanism for making impure programs resident, but
is it much less memory efficient than that for pure programs. A parameter can be set
so that each time an impure program is activated by a procedure call, a complete
copy of the code is made in RAM with the required data area immediately following.
This mode of operation should work for all EXECutable programs, even those with
data areas within their code.

RESIDENT SUPERBASIC PROGRAMS

SuperBASIC programs can also be made resident but in this case they are not
activated as procedures. Instead a new serial device driver with a name chosen by
the user is created. The familiar procedures to LOAD, LRUN or MERGE programs can
be used to access this pseudo device and bring the SuperBASIC program into
memory. The device is treated as read only and only supports sequential access.

This feature is primarily intended for loading short bootstrap routines because the
inherent slow loading of the interpreter means that resident SuperBASIC programs
will not load appreciably faster than from a real physical device such as a microdrive.
The current version of RPM does not support the creation of resident QLOAD files
which would remove this restriction, but of course the best way to make SuperBASIC

programs resident is to compile them with Q_Liberator and load them as either
extensions or EXECutable programs.

RESIDENT DATA FILES

Data files can be made resident in the same manner as SuperBASIC programs, by
associating them with a device driver. They can be accessed sequentially by OPENing

the device driver and the use of INPUT or INKEYS in the same manner as accessing a
serial port. Such files are of course read only.

USING RPM
RPM is supplied as an EXECutable program produced using Q_Liberator. Before
running the program please copy it from the supplied master to a working disk using
the COPY command.
To run RPM, simply type

EXEC mdvl_rpm_obj
or if you have the Q_Liberator extensions loaded, QX rpm.

RPM opens a window then prompts for the name of a control file.

THE RPM CONTROL FILE

RPM receives all its instructions from a control file. This must be first be created by a
text editor or by a short SuperBASIC program. Examples of control files are given
later.

The control file contains a: number of statements. Each statement comprises a 4
character directive followed by 0 or more parameters. The directives define which
source files are to be linked into the resident file and how they are to be called up
when later used by programs. Comments can be put into the control file by starting a
line with a *.

As a convention we suggest appending _rpm to the control file name.

RPM processes the control file in a manner similar to a compiler. The statements are
read in turn, checked for errors and all being well, the various source files are copied
and linked into the resident file. Each statement is printed on the screen as it is
processed. When complete, the size of a ram resident file is displayed. RPM can be
terminated by entering a blank control file name. The resident file can then be
loaded by an appropriate BOOT program.

For example if RPM has produced a resident file called RESFIL with a size of 3276
bytes then the SuperBASIC line

abase=RESPR(3276): LBYTES MDV1_RESFIL,abase: call abase

would load and initialise the resident routines.

THE RPM DIRECTIVES

The first statement in the control file defines whether a ROM resident file or a RAM
resident file is to be created.

ROMH CREATE A ROM HEADER

Syntax: ROMH target_file, ROM_size [, ROM_name]

target_file is the name of the resident file to be produced.

ROM_size is the size of the target ROM specified in Kb. This figure is used at
the end of compilation to check that the ROM size has not been
exceeded.

ROM_name is the message which is printed on the initial screen. It can be of any

length but should be limited to 36 characters if the message is to fit
on one line. If ROM_name is not specified, no message is printed.

The ROM header which is created has the standard format of a QL ROM driver:

00 $4AFB0001 flag to indicate ROM is present
04 $0000 unused

06 pointer to initialisation routine

08 S0000 unused

Example:

RAMH
Syntax:
target_file

message

ROMH mdvl_myrom,16,SUPER ROM installed

Create a 16k ROM file with the name mdvl_myrom. On
initialisation print “SUPER ROM installed “

CREATE A RAM READER

RAMH target_file [, message]

is the name of the resident file to be produced.

is an optional string which is displayed on channel 0 when the RAM

file is loaded.

Example: RAMH mdv1_tools_res,Tools version 1.0

EXEC
Syntax:
source_file
proc name

no_wait

copy

Example:

Link an EXECutable file

EXEC source_file,proc_name, [no_wait [,jmpure]]

must be an executable file, with a type = 1 in the file header.
is the procedure name which will invoke this program.

is either Y or N. If Yes is selected then when the job is activated by a
program, the activating program continues to run. This corresponds
to the action of EXEC. If No is selected then the activating job is
suspended while the resident job is running, corresponding to
EXEC_W. The default if the parameter is not specified is Y.

is either Y or N. Yes specifies that the code of the program is to be
copied from the resident file into RAM prior to execution. Copy
should only be specified when a program is impure as it is less
efficient In memory Usage. The default if the parameter is not
specified is N.

EXEC flpl_game_obj,GAME

When resident the program game_obj can be activated by typing GAME. It
would multitask alongside the interpreter.

EXEC mdvl_demo_task,Demo,n,y

The program demo_task can be activated by the procedure Demo. A copy is
made in RAM and execution of the interpreter (or other activating job) is
suspended until demo_task ends.

ASME Link a file of assembler extensions.
Syntax: ASME source_file
Source_file is the name of the file containing the extensions This must be a file

which itself can be loaded into the RESPR area. it can also be a
Q_Liberator object file containing external procedures and
functions.

Example: ASME mdv2_extensions

Include all the procedures or functions from Mdv2_extensions in the

resident file.
SBAS Link a SuperBASIC program
Syntax: SBAS source_file,driver_name
Source file is the name of a SuperBASIC source program.
Driver_name is the name of the new device driver which will be created to access

the resident SuperBASIC program. If this is called BOOT then it is
treated specially when used in a ROM resident file as explained
below.

AUTO STARTING PROGRAMS

When the QL is initialised, after any ROMs have been linked in an attempt is made to
load a SuperBASIC program from a device called BOOT. If this fails (as it will if no
additional ROMs are fitted) then the file MDV1_BOOT is sought (FLP1_BOOT on
floppy based systems). By creating a ROM resident SuperBASIC program with the
associated device driver named BOOT, control of the system can be gained by a
program as soon as F1 or F2 is pressed. Such a BOOT program could if required
startup one or more resident EXECutable programs by using the activating procedure

name. Remember however that if a resident program is not free running the BOOT
program will be suspended until the resident program ends.

Completely dedicated systems can be created in this way so that naive users can
enter an application without ever worrying about BOOTing from the correct disk.

ERRORS REPORTED BY RPM

If RPM finds that a statement contains an error then it stops, prints the offending
statement and beneath it an explanatory message from the list below is displayed.
No resident file is created.

Directive not recognised.

File must start with ROMH or RAMH.
Bad parameter.

Too few parameters.

File greater than ROM size.

In addition the familiar QDOS errors such as ‘bad name’ and ‘drive full’ can occur
during I/O operations.

When RPM has successfully produced a resident file it prints some additional
information. For RAM resident files, the size to be used in a RESPR call is displayed.

For ROM files, the total size and the length of the unused part of the ROM is shown,

unless the file is greater than the ROM size in which case the size of the overflow is
shown.

EXAMPLES

To put Quill in a ROM such that it can be invoked by typing QUILL.

ROMH mdv1_quill rom,64,QUILLvV 2.3
EXEC mdv1_quill,QUILL

To put all the Q_Liberator release 3.2 extensions in one file:
RAMH flp1_glib_sys

ASME flp1_glib_run
ASME flp1_glib_ovl

ASME flp1_glib_ext
ASME flp1_glib_bin

To create a ROM containing a toolkit and an auto starting SuperBASIC program. For
those without access to a text editor to create the control file, this example shows
how it can be done with a simple SuperBASIC program.

10 OPEN NEW #3,”mdvl tools rpm"

20 REPeat loop

30 IF EOF THEN EXIT loop

40 READ a$: PRINT #3,a$

50 END REPeat loop

60 CLOSE #3

70 :

80 DATA “ROMH mdv2 tools,16,Tools installed"™
90 DATA “ASME mdv2 tools bin™

95 DATA “SBAS mdvZ2 tools boot,BOOT”

PROBLEM PROGRAMS

If you find that a program which normally gives no problems crashes when used in a
resident file, it is likely that the code is in some way impure. Use of the copy option in
the EXEC directive should solve the problem. SuperBASIC extensions which refuse to
work when resident (particularly when in ROM) will require amendment and should
be avoided. Liberation Software is unable to undertake changes to ‘purify’ code.

EPROM PROGRAMMERS
We can unreservedly recommend the QEP Ill EPROM programmer from QJUMP to

those who wish to create their own EPROMS. The file produced by RPM can be
directly loaded by the software which accompanies this product.

