DJToolkit Documentation
Release 1.17.0

Norman Dunbar

Oct 26, 2025

CONTENTS

1 INTRODUCTION 3
1.1 COPYRIGHT NOTICE AND DISCLAIMER it it 3
1.2 QUESTIONS ABOUT THE TOOL KIT e e e e e e e 4
1.3 BRIEF DESCRIPTION OF THE NEW COMMANDS it it 4
1.4 QDOS ERROR CODES e e s e e s s e, 5

2 DJToolkit 1.17 7
2.1 ABS_POSITION e e 7
2.2 BYTES_FREE e 7
23 CHECK. e 8
24 DEV_NAME e e 8
2.5 DISPLAY_WIDTH e e 9
2.6 DI_OPEN 10
2.7 DI_OPEN_IN . . . e 10
2.8 DI_OPEN_NEW 10
2.9 DI_OPEN_OVER e e e 10
2.10 DI_OPEN_DIR e e 11
2.11 DITK_VERS e e e 12
2.12 FETCH_BYTES e e e s e e e 13
2.13 FILE_BACKUP e e e e 13
2.14 FILE_DATASPACE e e e 14
2.15 FILE_LENGTH e e e e e e e e e 14
2.16 FILE_POSITION e e e e s e s e 15
2.17 FILE_TYPE e 15
2.18 FILE_UPDATE e e e e e e 16
2.19 FILLMEM_B e 17
220 FILLMEM_W e e 17
221 FILLMEM_L e e e 17
222 FLUSH_CHANNEL e e e s s e e s s e, 18
223 GET_BYTE e 18
224 GET_FLOAT o o e e e e e e e s e 19
225 GET_LONG o e e e e 19
226 GET_STRING o e e e e e e 20
227 GET_WORD e 20
228 KBYTES_FREE e e 21
229 LEVEL2 e 21
230 MAX_CON . . . e 22
231 MAX_DEVS . . e 22
2.32 MOVE_MEM e 23
2.33 MOVE_POSITION e e e e e s 24

3

234 PEEK_FLOAT o e e e e e e 24
235 PEEK_STRING e 25
236 POKE_FLOAT o e e e e e e 26
237 POKE_STRING e e e e 26
238 PUT_BYTE e e e 27
239 PUT_FLOAT o ot e e e e e e e e e 27
240 PUT_LONG e e e e e e e e e 27
241 PUT_STRING o e e e e e e 28
242 PUT_WORD e 28
243 QPTR e 29
244 READ_HEADER 29
245 RELEASE_HEAP 31
246 RESERVE_HEAP 31
247 SCREEN_BASE 32
248 SCREEN_MODE e e 32
249 SEARCH_C e e e 33
250 SEARCH_I e e 33
251 SET_HEADER o 34
252 SET_XINC o e e e e 34
253 SET_YINC o e 34
2.54 SYSTEM_VARIABLES e 35
2.55 USE_FONT e e e e e e 35
256 WHERE_FONTS e e e e 36
DJToolkit Updates 39
3.1 UPDATES TODITOOLKIT VI.10 e e e e e e e e e e e e e e 39
3.2 UPDATES TO DITOOLKIT VI1.11 (18/5/1993) e e e et e 39
3.3 UPDATES TO DITOOLKIT V1.12 (15/6/1993) e e e e e e e e 40
3.4 UPDATES TO DITOOLKIT VI1.13 (19/07/1993) o e et e e e e 40
3.5 UPDATES TO VERSION 1.13 PART 2 (22/10/1993) o i i i e e e 40
3.6 UPDATES TO DITOOLKIT V1.14 (12/06/1994) e i i e et 41
3.7 UPDATES TO DITOOLKIT VI1.15 (16/06/1994) it i i e e e e 41
3.8 UPDATES TO DITOOLKIT V1.16 (27/02/2013) et e e e e e e e e 41
3.9 UPDATES TO DITOOLKIT VI1.17 (26/10/2025) o o oo e e e e e e et 42

DJToolkit Documentation, Release 1.17.0

This document covers only those commands found in DJTOOLKIT versions up to 1.17. These commands have also been
incorporated into the Online SuperBASIC Manual which can be found at ReadTheDocs.

Contents:

CONTENTS 1

http://SuperBASIC-Manual.readthedocs.io

DJToolkit Documentation, Release 1.17.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

WRITTEN BY NORMAN DUNBAR, 1993-94

This toolkit has been produced at the suggestion of Dilwyn Jones in an effort to provide QLiberator users with some
of the file & memory handling utilities, direct file access (in internal format) & positioning commands that are found
in the Turbo Toolkit and Toolkit 2 etc. In addition, there are a few routines not (yet) found in any other toolkit.

All of the procedures and functions in this toolkit can be compiled by QLiberator, but one of the functions, DEV_NAME,
cannot be compiled by Turbo or Supercharge as it modifies its parameter as well as returning a string.

This toolkit may be supplied as part of a commercial or shareware or public domain program which has been
QLiberator compiled. It should be supplied linked to the object program, not loaded by a BOOT program.

To link this toolkit into a QLiberator compiled program, use the following compiler directive somewhere near the
start of the program to be compiled. The drive name is where the compiler can find the toolkit file:

[11@ REMark $$asmb=FLP2_DJToolkit_BIN,®,12

1.1 COPYRIGHT NOTICE AND DISCLAIMER

This software is Copyright © Norman Dunbar 1993-2025 and may be freely copied as QL free ware.

You can make backup copies using whatever method you have and normally use (e.g. WCOPY from Toolkit 2).
DJToolkit is not copy protected (except by copyright law).

While all reasonable care has been taken to ensure that this program and its manual are accurate and do not contain
any errors, neither the author nor publisher will in any way be liable for any direct, indirect or consequential damage or
loss arising from the use of, or inability to use, this software or its documentation. We reserve the right to constantly
develop and improve our products.

Note: Yeah, yeah, yeah! Since that was originally written, sometime in the early 1990’s, the world has moved on and
most of the old QL programs are pretty much in the public domain, free ware or open source. As indeed, this one is!

Norman Dunbar, December 2016

DJToolkit Documentation, Release 1.17.0

1.2 QUESTIONS ABOUT THE TOOL KIT

1.2.1 WHAT IS A TOOL KIT?

A tool kit is a set of BASIC extensions, new commands and functions which add to the number of “words” understood
by the QL’s BASIC language. These new extensions greatly add to the power and versatility of SuperBASIC, by adding
the facility to perform new actions, or by simplifying a task which is difficult to program at the moment

1.2.2 CAN | USE THE TOOLKIT IN MY OWN PROGRAMS?

Yes, you can use these commands both in interpreted BASIC programs and compiled BASIC programs, but see the
note above regarding use with Turbo.

1.2.3 DOES IT WORK WITH OTHER TOOLKITS?

We have tried to ensure that there is no clash, but it is impossible to test it against every other piece of software or
hardware. Please let us know if you discover any incompatibilities so that we can try to sort them out.

1.3 BRIEF DESCRIPTION OF THE NEW COMMANDS

ABS_POSITION
BYTES_FREE
CHECK
DEV_NAME
DISPLAY_WIDTH
DJ_OPEN
DJ_OPEN_IN
DJ_OPEN_NEW
DJ_OPEN_OVER
DJ_OPEN_DIR
DIJTK_VERS$
FETCH_BYTES
FILE_BACKUP
FILE_DATASPACE
FILE LENGTH
FILE_POSITION
FILE_TYPE
FILE_UPDATE
FILLMEM_B
FILLMEM_L
FILLMEM_W
FLUSH_CHANNEL
GET_BYTE
GET_FLOAT
GET_LONG
GET_STRING
GET_WORD
KBYTES_FREE

Set file position absolute

How much free memory is left, in bytes

Test to see if a machine code PROC/EN exists
Scan the Directory Device list, returning the next name
How many bytes are used to hold one screen line
Opens a file, returns error or channel id

Ditto, similar to OPEN_IN

Creates a file, returns channel id or error
Overwrites a file, returns error or channel id
Opens a device directory for access

Return the toolkit version number as a string
Get some bytes from a channel

Get the backup date for a specific file

Get the file’s dataspace

Get the file’s length

Get the current position in the file

Get the file’s type

Get the file’s update date

Fill memory with a byte value

Fill memory with a long value

Fill memory with a word value

Flush the data on a channel to a device

Fetch one byte from a channel

Fetch 6 bytes from a channel

Fetch 4 bytes from a channel

Fetch a QDOS string from a channel

Fetch 2 bytes from a channel

How much free memory is left in Kbytes

continues on next page

Chapter 1. INTRODUCTION

DJToolkit Documentation, Release 1.17.0

Table 1 - continued from previous page

LEVEL2 Test whether level 2 drivers are present on a channel
MAX_CON Returns the absolute limits of a SCR or CON channel
MAX_DEVS Counts the number of directory devices. See DEV_NAME
MOVE_MEM Move memory around

MOVE_POSITION Set a file position relative to its current one
PEEK_FLOAT Read 6 bytes from memory into a float variable
PEEK_STRING Get bytes from memory into a string

POKE_FLOAT pokes a floating point variable into memory
POKE_STRING Store the string in memory at a given address
PUT_BYTE Send 1 byte to a channel

PUT_FLOAT Send 6 bytes to a channel

PUT_LONG Send 4 bytes to a channel

PUT_STRING Send a QDOS string to a channel

PUT_WORD Send 2 bytes to a channel

QPTR Is the Pointer Environment available
READ_HEADER Read the header for a file into a buffer
RELEASE_HEAP Remove some space allocated with RESERVE_HEAP
RESERVE_HEAP Get some Common Heap space for a program to use
SCREEN_BASE Find out where the screen memory starts for a channel
SCREEN_MODE Returns the current screen mode, 4 or 8

SEARCH_C Look in memory for a string, case is considered
SEARCH_I Ditto, but case is ignored

SET_HEADER Set the header for a file

SET_XINC Change horizontal spacing between characters
SET_YINC Change vertical spacing between lines of characters
SYSTEM_VARIABLES Find out where the system variables are

USE_FONT Change the fonts used by a channel

WHERE_FONTS Find the addresses of the two fonts used on a channel

In the following descriptions, all parameters must be supplied as there are no defaults, in addition, when a channel
number is being passed, either as a number or as a variable, it must be preceded by a hash (#).

1.4 QDOS ERROR CODES

Many of the above functions return a valid result, such as an address, or a negative error code. The QDOS error codes
are listed below for reference.

e -1 Not complete

¢ -2 Invalid job

* -3 Out of memory

* -4 Out of range

* -5 Buffer overflow

* -6 Channel not open
-7 Not found

-8 File already exists
* -9Inuse

-10 End of file

1.4. QDOS ERROR CODES 5

DJToolkit Documentation, Release 1.17.0

-11 Drive full

-12 Bad device name

-13 Xmit (transmit) error
¢ -14 Format failed

e -15 Bad parameter

* -16 File error

e -17 Error in expression

* -18 Arithmetic overflow
* -19 Not implemented

* -20 Read only

-21 Bad line

6 Chapter 1. INTRODUCTION

CHAPTER
TWO

DJTOOLKIT 1.17

2.1 ABS_POSITION

Syntax ABS_POSITION #channel, position
Location DJToolkit 1.17

This procedure will set the file pointer to the position given for the file attached to the given channel number. If you
attempt to set the position for a screen or some other non-directory device channel, you will get a bad parameter error,
as you will if position is negative.

If the position given is 0, the file will be positioned to the start, if the position is a large number which is greater than
the current file size, the position will be set to the end of file and no error will occur.

After an ABS_POSITION command, all file accesses will take place at the new position.
EXAMPLE

1500 REMark Set position to very end, for appending data
1510 ABS_POSITION #3, 6e6
1520 ...

CROSS-REFERENCE
MOVE_POSITION.

2.2 BYTES_FREE

Syntax memory = BY TESFREE
Location DJToolkit 1.17

This simple function returns the amount of memory known by the system to be free. The answer is returned in bytes,
see also KBYTES_FREE. For the technically minded, the free memory is considered to be that between the addresses
held in the system variables SV_FREE and SV_BASIC.

EXAMPLE

KeywordsM.clean.html#move-position
KeywordsK.clean.html#kbytes-free

DJToolkit Documentation, Release 1.17.0

2500 freeMemory = BYTES_FREE

2510 IF freeMemory < 32 * 1024 THEN

2520 REMark Do something here if not enough memory left...
2530 END IF

CROSS-REFERENCE
KBYTES_FREE.

2.3 CHECK

Syntax oops = CHECK(‘name’)
Location DJToolkit 1.17

If name is a currently loaded machine code procedure or function, then the variable oops will be set to 1 otherwise it
will be set to 0. This is a handy way to check that an extension command has been loaded before calling it. In a Turbo’d
or Supercharged program, the EXEC will fail and a list of missing extensions will be displayed, a QLiberated program
will only fail if the extension is actually called.

EXAMPLE

1000 DEFine FuNction CheckTK2
1010 REMark Is TK2 present?
1020 RETurn CHECK('WTV')
2030 END DEFine

2.4 DEV_NAME

Syntax device$ = DEV_NAME((address)
Location DJToolkit 1.17

This function must be called with a floating point variable name as its parameter. The first time this function is called,
address must hold the value zero, on all other calls, simply pass address unchanged back. The purpose of the function
is to return a directory device name to the variable device$, an example is worth a thousand explanations.

1000 addr = 0

1010 REPeat loop

1020 PRINT "<" & DEV_NAME(addr) & ">"
1030 IF addr = ® THEN EXIT loop: END IF
1040 END REPeat loop

8 Chapter 2. DJToolkit 1.17

KeywordsK.clean.html#kbytes-free
KeywordsE.clean.html#exec

DJToolkit Documentation, Release 1.17.0

This small example will scan the entire directory device driver list and return one entry from it each time as well as
updating the value in ‘addr’. The value in addr is the start of the next device driver linkage block and must not be
changed except by the function DEV_NAME. If you change addr and then call DEV_NAME again, the results will be
very unpredictable.

The check for addr being zero is done as this is the value returned when the final device name has been extracted, in this
case the function returns an empty string for the device. If the test was made before the call to DEV_NAME, nothing
would be printed as addr is zero on entry to the loop.

Please note, every QL has at least one device in the list, the ‘MDV’ device and some also have a device with no name
as you will see if you run the above example (not the last one as it is always an empty string when addr becomes zero).

The above example will only show directory devices, those that can have DIR used on them, or FORMAT etc, such as
WIN, RAM, FLP, FDK etc, however, it cannot show the non-directory devices such as SER, PAR (or NUL if you have
Lightning), as these are in another list held in the QL.

Note

From version 1.14 of DJToolkit onwards, there is a function that counts the number of directory devices present in the
QL. See MAX_DEVS for details.

CROSS-REFERENCE
MAX_DEVS.

2.5 DISPLAY_WIDTH

Syntax bytes_in_a_line = DISPLAY_WIDTH
Location DJToolkit 1.17

This function can be used to determine how many bytes of the QL’s memory are used to hold the data in one line of
pixels on the screen. Note that the value returned has nothing to do with any window width, it always refers to the total
screen display width.

Why include this function I hear you think? If you run an ordinary QL, then the result will probably always be 128 as
this is how many bytes are used to hold a line of pixels, however, many people use Atari ST/QLs, QXL etc and these
have a number of other screen modes for which 128 bytes is not enough.

This function will return the exact number of bytes required to step from one line of pixels to the next. Never assume
that QDOS programs will only ever be run on a QL. What will happen when new Graphics hardware or emulators
arrive? This function will still work, assuming that the unit uses standard QDOS channel definition blocks etc.

For the technically minded, the word at offset $64 in the SCR_ or CON_ channel’s definition block is returned. This is
called SD_LINEL in ‘Tebby Speak’ and is mentioned in Jochen Merz’s QDOS Reference Manual and the QL Technical
Manual by Tony Tebby et al. Andrew Pennel’s book, the QDOS Companion gets it wrong on page 61, guess which one
I used first!

2.5. DISPLAY_WIDTH 9

KeywordsD.clean.html#dev-name
KeywordsD.clean.html#dev-name
KeywordsD.clean.html#dev-name
KeywordsF.clean.html#format
KeywordsM.clean.html#max-devs
KeywordsM.clean.html#max-devs

DJToolkit Documentation, Release 1.17.0

2.6 DJ_OPEN

Syntax channel = DJ_OPEN(‘filename’)
Location DJToolkit 1.17

Open an existing file for exclusive use. See DJ_OPEN_DIR below for details and examples.
CROSS-REFERENCE
DJ_OPEN_IN, DJ_OPEN_NEW, DJ_OPEN_OVER, and DJ_OPEN_DIR.

2.7 DJ_OPEN_IN

Syntax channel = DJ_OPEN_IN(‘filename’)
Location DIJToolkit 1.17

Open an existing file for shared use. The same file can be opened by other applications running at the same time.
Provided they have a compatible non-exclusive OPEN mode. See DJ_OPEN_DIR below for details and examples.

CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_NEW, DJ_OPEN_OVER, and DJ_OPEN_DIR.

2.8 DJ_OPEN_NEW

Syntax channel = DJ_OPEN_NEW(‘filename”’)
Location DJToolkit 1.17

Create a new file for exclusive use. See DJ_OPEN_DIR below for details and examples.
CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_IN, DJ_OPEN_OVER, and DJ_OPEN_DIR.

2.9 DJ_OPEN_OVER

Syntax channel = DJ_OPEN_OVER(‘filename’)
Location DJToolkit 1.17

Open existing file but overwrite all the contents. See DJ_OPEN_DIR below for details and examples.

10 Chapter 2. DJToolkit 1.17

KeywordsD.clean.html#dj-open-dir
KeywordsD.clean.html#dj-open-in
KeywordsD.clean.html#dj-open-new
KeywordsD.clean.html#dj-open-over
KeywordsD.clean.html#dj-open-dir
KeywordsD.clean.html#dj-open-dir
KeywordsD.clean.html#dj-open
KeywordsD.clean.html#dj-open-new
KeywordsD.clean.html#dj-open-over
KeywordsD.clean.html#dj-open-dir
KeywordsD.clean.html#dj-open-dir
KeywordsD.clean.html#dj-open
KeywordsD.clean.html#dj-open-in
KeywordsD.clean.html#dj-open-over
KeywordsD.clean.html#dj-open-dir
KeywordsD.clean.html#dj-open-dir

DJToolkit Documentation, Release 1.17.0

CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_IN, DJ_OPEN_NEW, and DJ_OPEN_DIR.

2.10 DJ_OPEN_DIR

Syntax channel = DJ_OPEN_DIR(‘filename’)
Location DIJToolkit 1.17

All of these DJ_OPEN functions return the SuperBasic channel number if the channel was opened without any prob-
lems, or, a negative error code otherwise. You can use this to check whether the open was successful or not.

The filename must be supplied as a variable name, file$ for example, or in quotes, ‘flpl_fred_dat’.

They all work in a similar manner to the normmal SuperBasic OPEN procedures, but, DJ_OPEN_DIR offers a new
function not normally found on a standard QL.

DJToolkit Author’s Note

I am grateful to Simon N. Goodwin for his timely article in QL WORLD volume 2, issue 8§ (marked Vol 2, issue 7!!!).
I had been toying with these routines for a while and was aware of the undocumented QDOS routines to extend the
SuperBasic channel table. I was, however, not able to get my routines to work properly. Simon’s article was a great
help and these functions are based on that article. Thanks Simon.

EXAMPLE

The OPEN routines work as follows:

1000 REMark open our file for input

1010 :

1020 chan = DJ_OPEN_IN('filename")

1030 IF chan < 0

1040 PRINT 'OOPS, failed to open "filename", error ' & chan

1050 STOP
1060 END IF
1070 :

1080 REM process data in file here

DJ_OPEN_DIR is a new function to those in the normal QL range, and it works as follows:

1000 REMark read a directory

1010 :

1020 INPUT 'Which device ';dev$

1030 chan = DJ_OPEN_DIR(dev$)

1040 IF chan < 0

1050 PRINT 'Cannot open ' & dev$ & ', error ' & chan
1060 STOP

1070 END IF

1080 :

1090 CLS

1100 REPeat dir_loop

1110 IF EOF(#chan) THEN EXIT dir_loop

(continues on next page)

2.10. DJ_OPEN_DIR 11

KeywordsD.clean.html#dj-open
KeywordsD.clean.html#dj-open-in
KeywordsD.clean.html#dj-open-new
KeywordsD.clean.html#dj-open-dir

DJToolkit Documentation, Release 1.17.0

(continued from previous page)

1120 a$ = FETCH_BYTES (#chan, 64)

1130 size = CODE(a$(16)): REMark Size of file name
1140 PRINT a$(17 TO 16 + size): REMark file name

1150 END REPeat dir_loop

1160 :

1170 CLOSE #chan

1180 STOP

In this example, no checks are done to ensure that the device actually exists, etc. You could use DEV_NAME to check
if it is a legal device. The data being read from a device directory file must always be read in 64 byte chunks as per this
example.

Each chunk is a single directory entry which holds a copy of the file header for the appropriate file. Note, that the first
4 bytes of a file header hold the actual length of the file but when read from the directory as above, the value if 64 bytes
too high as it includes the length of the file header as part of the length of a file.

The above routine will also print blank lines if a file has been deleted from the directory at some point. Deleted files
have a name length of zero.

Note that if you type in a filename instead of a device name, the function will cope. For example, you type in ‘fipl_fred’
instead of ‘flpl_’. You will get a list of the files on “flpl_’ if “fred’ is a file, or even, if ‘fred’ isnoton ‘fip1_’. If, however,
you have the LEVEL 2 drivers (see LEVEL2 below), and ‘fred’ is a sub-directory then you will get a listing of the sub-
directory as requested.

CROSS-REFERENCE
DJ_OPEN, DJ_OPEN_IN, DJ_OPEN_NEW, and DJ_OPEN_OVER.

2.11 DJTK_VERS$

Syntax v$ = DITK_VERS$
Location DJToolkit 1.17

This simply sets v$ to be the 4 character string ‘n.nn” where this gives the version number of the current toolkit. If you
have problems, always quote this number when requesting help.

EXAMPLE

[PRINT DITK_VER$

12 Chapter 2. DJToolkit 1.17

KeywordsD.clean.html#dev-name
KeywordsL.clean.html#level2
KeywordsD.clean.html#dj-open
KeywordsD.clean.html#dj-open-in
KeywordsD.clean.html#dj-open-new
KeywordsD.clean.html#dj-open-over

DJToolkit Documentation, Release 1.17.0

2.12 FETCH_BYTES

Syntax a$ = FETCH_BYTES (#channel, how_many)
Location DJToolkit 1.17

This function returns the requested number of bytes from the given channel which must have been opened for INPUT
or INPUT/OUTPUT. It will work on CON_ channels as well, but no cursor is shown and the characters typed in are not
shown on the screen. If there is an ENTER character, or a CHR$(10), it will not signal the end of input. The function
will not return until the appropriate number of bytes have been read.

WARNING - JM and AH ROMS will cause a ‘Buffer overflow’ error if more than 128 bytes are fetched, this is a fault
with QDOS and not with DJToolkit. See the demos file, supplied with DJToolkit, for a workaround to this problem.

EXAMPLE

[LineOfotess — FETCH_BYTES(#4, 256)

2.13 FILE_BACKUP

Syntax bk = FILE_ BACKUP(#channel)
Syntax bk = FILE_BACKUP(‘filename’)
Location DJToolkit 1.17

This function reads the backup date from the file header and returns it into the variable bk. The parameter can either
be a channel number for an open channel, or it can be the filename (in quotes) of a closed file. If the returned value
is negative, it is a normal QDOS error code. If the value returned is positve, it can be converted to a string be calling
DATES$(bk). In normal use, a files backup date is never set by QDOS, however, users who have WinBack or a similar
backup utility program will see proper backup dates if the file has been backed up.

EXAMPLE

1000 bk = FILE_BACKUP('flpl_boot')

1010 IF bk <> 0 THEN

1020 PRINT "Flpl_boot was last backed up on " & DATES$(bk)

1030 ELSE

1040 PRINT "Flpl_boot doesn't appear to have been backed up yet."
1050 END IF

CROSS-REFERENCE
FILE_DATASPACE, FILE_LENGTH, FILE_TYPE, FILE_UPDATE.

2.12. FETCH_BYTES 13

KeywordsF.clean.html#file-dataspace
KeywordsF.clean.html#file-length
KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-update

DJToolkit Documentation, Release 1.17.0

2.14 FILE_DATASPACE

Syntax ds = FILE_DATASPACE((#channel)
Syntax ds = FILE_DATASPACE(‘filename’)
Location DJToolkit 1.17

This function returns the current dataspace requirements for the file opened as #channel or for the file which has the
name given, in quotes, as filename. If the file is an EXEC’able file (See FILE_TYPE) then the value returned will be
the amount of dataspace that that program requires to run, if the file is not an EXEC’able file, the result is undefined,
meaningless and probably zero. If the result is negative, there has been an error and the QDOS error code has been
returned.

EXAMPLE

1000 ds = FILE_DATASPACE('flpl_WinBack_exe')
1010 IF ds <= 0 THEN

1020 PRINT "WinBack_exe doesn't appear to exist on flpl_, or is not executable."
1030 ELSE

1040 PRINT "WinBack_exe's dataspace is set to " & ds & " bytes."

1050 END IF

CROSS-REFERENCE
FILE_BACKUP, FILE_LENGTH, FILE_TYPE, FILE_UPDATE.

2.15 FILE_LENGTH

Syntax fl = FILE_LENGTH (#channel)
Syntax fl = FILE_LENGTH(‘filename’)
Location DJToolkit 1.17

The file length is returned. The file may be open, in which case simply supply the channel number, or closed, supply
the filename in quotes. If the returned value is negative, then it is a QDOS error code.

EXAMPLE

1000 f1 = FILE_LENGTH('flpl_WinBack_exe')

1010 IF f1 <= O THEN

1020 PRINT "Error checking FILE_LENGTH: " & fl

1030 ELSE

1040 PRINT "WinBack_exe's file size is " & fl1 & " bytes."
1050 END IF

CROSS-REFERENCE
FILE_BACKUP, FILE_DATASPACE, FILE_TYPE, FILE_UPDATE.

14 Chapter 2. DJToolkit 1.17

KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-backup
KeywordsF.clean.html#file-length
KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-update
KeywordsF.clean.html#file-backup
KeywordsF.clean.html#file-dataspace
KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-update

DJToolkit Documentation, Release 1.17.0

2.16 FILE_POSITION

Syntax where = FILE_POSITION (#channel)
Location DIJToolkit 1.17

This function will tell you exactly where you are in the file that has been opened, to a directory device, as #channel, if
the result returned is negative it is a QDOS error code. If the file has just been opened, the result will be zero, if the file
is at the very end, the result will be the same as calling FILE_LENGTH((#channel) - 1, files start at byte zero remember.

EXAMPLE

1500 DEFine FuNction OPEN_APPEND(f$)

1510 LOCal ch, fp

1515 :

1520 REMark Open a file at the end, ready for additional
1530 REMark data to be appended.

1540 REMark Returns the channel number. (Or error)

1545 :

1550 ch = DJ_OPEN(f$)

1560 IF ch < 0 THEN

1570 PRINT "Error: " & ch & " Opening file: " & f$
1580 RETurn ch

1590 END IF

1595 :

1600 MOVE_POSITION #ch, 6e6
1610 fp = FILE_POSITION(#ch)
1620 IF fp < O THEN

1630 PRINT "Error: " & fp & " reading file position on: " & f$
1640 CLOSE #ch

1650 RETurn fp

1660 END IF

1665 :

1670 PRINT "File position set to EOF at: " & fp & " on file: " &f$
1680 RETurn ch
1690 END DEFine

CROSS-REFERENCE
ABS_POSITION, MOVE_POSITION.

2.17 FILE_TYPE

Syntax ft = FILE_TYPE(#channel)
Syntax ft = FILE_TYPE(‘filename’)
Location DJToolkit 1.17

This function returns the files type byte. The various types currently known to me are :

¢ 0 = BASIC, CALL able machine code, an extensions file or a DATA file.

2.16. FILE_POSITION 15

KeywordsA.clean.html#abs-position
KeywordsM.clean.html#move-position

DJToolkit Documentation, Release 1.17.0

1 = EXEC’able file.
2 = SROFF file used by linkers etc, a C68 Library file etc.
3 = THOR hard disc directory file. (I think!)

4 = A font file in The Painter

e 5 = A pattern file in The Painter

* 6 = A compressed MODE 4 screen in The Painter

* 11 = A compressed MODE 8 screen in The Painter

e 255 = Level 2 driver directory or sub-directory file, Miracle hard disc directory file.
There may be others.

EXAMPLE

1000 ft = FILE_TYPE('flpl_boot')

1010 IF ft <= O THEN

1020 PRINT "Error checking FILE_TYPE: " & ft
1030 ELSE

1040 PRINT "Flpl_boot's file type is " & ft & "."
1050 END IF

CROSS-REFERENCE
FILE_BACKUP, FILE_DATASPACE, FILE_LENGTH, FILE_UPDATE.

2.18 FILE_UPDATE

Syntax fu = FILE_UPDATE(#channel)
Syntax fu = FILE_UPDATEC(filename’)
Location DJToolkit 1.17

This function returns the date that the appropriate file was last updated, either by printing to it, saving it or editing it
using an editor etc. This date is set in all known QLs and emulators etc.

EXAMPLE

1000 fu = FILE_UPDATE('flpl_boot')

1010 IF fu <> O THEN

1020 PRINT "Flpl_boot was last written/saved/updated on " & DATES$(fu)

1030 ELSE

1040 PRINT "Cannot read lates UPDATE date from flpl boot. Error: " & fu & "."
1050 END IF

CROSS-REFERENCE
FILE_DATASPACE, FILE_LENGTH, FILE_TYPE, FILE_TYPE.

16 Chapter 2. DJToolkit 1.17

KeywordsF.clean.html#file-backup
KeywordsF.clean.html#file-dataspace
KeywordsF.clean.html#file-length
KeywordsF.clean.html#file-update
KeywordsF.clean.html#file-dataspace
KeywordsF.clean.html#file-length
KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-type

DJToolkit Documentation, Release 1.17.0

2.19 FILLMEM_B

Syntax FILLMEM_B start_address, how_many, value
Location DJToolkit 1.17

Fill memory with a byte value. See FILLMEM_L below.
CROSS-REFERENCE
FILLMEM_L, FILLMEM_W.

2.20 FILLMEM_W

Syntax FILLMEM_W start_address, how_many, value
Location DIJToolkit 1.17

Fill memory with a 16 bit word value . See FILLMEM_L below.
CROSS-REFERENCE
FILLMEM_L, FILLMEM_B.

2.21 FILLMEM_L

Syntax FILLMEM_L start_address, how_many, value
Location DJToolkit 1.17

Fill memory with a long (32 bit) value.
EXAMPLE
The screen memory is 32 kilobytes long. To fill it all black, try this:

[10@0 FILLMEM_B SCREEN_BASE(#0), 32 * 1024, 0

or this:

[101@ FILLMEM_W SCREEN_BASE(#0), 16 * 1024, 0

or this:

[102@ FILLMEM_L SCREEN_BASE(#0), 8 * 1024, 0

2.19. FILLMEM_B

17

KeywordsF.clean.html#fillmem-l
KeywordsF.clean.html#fillmem-l
KeywordsF.clean.html#fillmem-w
KeywordsF.clean.html#fillmem-l
KeywordsF.clean.html#fillmem-l
KeywordsF.clean.html#fillmem-b

DJToolkit Documentation, Release 1.17.0

and the screen will change to all black. Note how the second parameter is halved each time? This is because there are
half as many words as bytes and half as many longs as words.

The fastest is FILLMEM_L and the slowest is FILLMEM_B. When you use FILLMEM_W or FILLMEM_L you must
make sure that the start_address is even or you will get a bad parameter error. FILLMEM_B does not care about its
start_address being even or not.

FILLMEM_B truncates the value to the lowest 8 bits, FILLMEM_W to the lowest 16 bits and FILLMEM_L uses the
lowest 32 bits of the value. Note that some values may be treated as negatives when PEEK ‘d back from memory. This
is due to the QL treating words and long words as signed numbers.

CROSS-REFERENCE
FILLMEM_B, FILLMEM_W.

2.22 FLUSH_CHANNEL

Syntax FLUSH_CHANNEL #channel
Location DJToolkit 1.17

This procedure makes sure that all data written to the given channel number has been ‘flushed’ out to the appropriate
device. This means that if a power cut occurs, then no data will be lost.

EXAMPLE

1000 DEFine PROCedure SaveSettings

1010 OPEN_OVER #3, "flpl_settings.cfg"
1020 FOR x = 1 to 100

1030 PRINT #3, Setting$(x), Value$(x)
1040 END FOR x

1050 FLUSH_CHANNEL #3

1060 CLOSE #3

1070 END DEFine

2.23 GET_BYTE

Syntax byte = GET_BY TE(#channel)
Location DJToolkit 1.17

Reads one character from the file attached to the channel number given and returns it as a value between 0 and 255.
This is equivalent to CODE(INKEY $(#channel)).

BEWARE, PUT_BYTE can put negative values to file, for example -1 is put as 255, GET_BYTE will return 255 instead
of -1. Any negative numbers returned are always error codes.

EXAMPLE

18 Chapter 2. DJToolkit 1.17

KeywordsF.clean.html#fillmem-b
KeywordsF.clean.html#fillmem-w
KeywordsF.clean.html#fillmem-b
KeywordsF.clean.html#fillmem-b
KeywordsF.clean.html#fillmem-w
KeywordsP.clean.html#peek
KeywordsF.clean.html#fillmem-b
KeywordsF.clean.html#fillmem-w
KeywordsP.clean.html#put-byte

DJToolkit Documentation, Release 1.17.0

[c = GET_BYTE(#3)

CROSS-REFERENCE
GET_FLOAT, GET_LONG, GET_STRING, GET_WORD.

2.24 GET_FLOAT

Syntax float = GET_FLOAT (#channel)
Location DJToolkit 1.17

Reads 6 bytes from the file and returns them as a floating point value.

BEWARE, if any errors occur, the value returned will be a negative QDOS error code. As GET_FLOAT does return
negative values, it is difficult to determine whether that returned value is an error code or not. If the returned value is
-10, for example, it could actually mean End Of File, this is about the only error code that can be (relatively) safely
tested for.

EXAMPLE

[fp — GET_FLOAT(#3)

CROSS-REFERENCE
GET_BYTE, GET_LONG, GET_STRING, GET_WORD.

2.25 GET_LONG

Syntax long = GET_LONG¢(#channel)
Location DJToolkit 1.17

Read the next 4 bytes from the file and return them as a number between 0 and 2732 -1 (4,294,967,295 or HEX
FFFFFFFF unsigned).

BEWARE, the same problem with negatives & error codes applies here as well as GET_FLOAT.
EXAMPLE

[1v — GET_LONG(#3)

CROSS-REFERENCE
GET_BYTE, GET_FLOAT, GET_STRING, GET_WORD.

2.24. GET_FLOAT 19

KeywordsG.clean.html#get-float
KeywordsG.clean.html#get-long
KeywordsG.clean.html#get-string
KeywordsG.clean.html#get-word
KeywordsG.clean.html#get-byte
KeywordsG.clean.html#get-long
KeywordsG.clean.html#get-string
KeywordsG.clean.html#get-word
KeywordsG.clean.html#get-float
KeywordsG.clean.html#get-byte
KeywordsG.clean.html#get-float
KeywordsG.clean.html#get-string
KeywordsG.clean.html#get-word

DJToolkit Documentation, Release 1.17.0

2.26 GET_STRING

Syntax a$ = GET_STRING(#channel)
Location DJToolkit 1.17

Read the next 2 bytes from the file and assuming them to be a QDOS string’s length, read that many characters into a$.
The two bytes holding the string’s length are NOT returned in a$, only the data bytes.

The subtle difference between this function and FETCH_BYTES is that this one finds out how many bytes to return
from the channel given, FETCH_BYTES needs to be told how many to return by the user. GET_STRING is the same
as:

[FETCH_BYTES (#channel, GET_WORD (#channel)) J

WARNING - JM and AH ROMS will give a ‘Buffer overflow’ error if the length of the returned string is more than 128
bytes. This is a fault in QDOS, not DJToolkit. The demos file, supplied with DJToolkit, has a ‘fix’ for this problem.

EXAMPLE

[b$ — GET_STRING(#3)]

CROSS-REFERENCE
GET_BYTE, GET_FLOAT, GET_LONG, GET_WORD, FETCH_BYTES.

2.27 GET_WORD

Syntax word = GET_WORD(#channel)
Location DJToolkit 1.17

The next two bytes are read from the appropriate file and returned as an integer value. This is equivalent to
CODE(INKEY $(#channel)) * 256 + CODE(INKEY $(#channel)). See the caution above for GET_BYTE as it applies
here as well. Any negative numbers returned will always be an error code.

EXAMPLE

[w — GET_WORD (#3)]

CROSS-REFERENCE
GET_BYTE, GET_FLOAT, GET_LONG, GET_STRING.

20 Chapter 2. DJToolkit 1.17

KeywordsF.clean.html#fetch-bytes
KeywordsF.clean.html#fetch-bytes
KeywordsG.clean.html#get-byte
KeywordsG.clean.html#get-float
KeywordsG.clean.html#get-long
KeywordsG.clean.html#get-word
KeywordsF.clean.html#fetch-bytes
KeywordsG.clean.html#get-byte
KeywordsG.clean.html#get-byte
KeywordsG.clean.html#get-float
KeywordsG.clean.html#get-long
KeywordsG.clean.html#get-string

DJToolkit Documentation, Release 1.17.0

2.28 KBYTES_FREE

Syntax memory = KBYTES_FREE
Location DJToolkit 1.17

The amount of memory considered by QDOS to be free is returned rounded down to the nearest kilo byte. See also
BYTES_FREE if you need the answer in bytes. The value in KBYTES_FREE may not be equal to BY TES_FREE/1024
as the value returned by KBYTES_FREE has been rounded down.

EXAMPLE

[kb_available — KBYTES_FREE

CROSS-REFERENCE
BYTES_FREE.

2.29 LEVEL2

Syntax present = LEVEL2(#channel)
Location DJToolkit 1.17

If the device that has the given channel opened to it has the level 2 drivers, then present will be set to 1, otherwise it
will be set to 0. The level 2 drivers allow such things as sub_directories to be used, when a DIR is done on one of these
devices, sub-directories show up as a filename with ‘->’ at the end of the name. Gold Cards and later models of Trump
cards have level 2 drivers. Microdrives don’t.

EXAMPLE

2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660

2500 DEFine PROCedure MAKE_DIRECTORY

LOoCal d$, t$, 12_ok, ch

INPUT 'Enter drive names :';d$

IF d$(LEN(d$)) <> '_' THEN d$ = d$ & '_': END IF

PRINT 'Please wait, checking ...’

ch = D]J_OPEN_OVER (d$ & CHR$(0) & CHR$(®))

IF ch < 0: PRINT 'Cannot open file on ' & d$ & ', error: ' & ch: RETurn
12_ok = LEVEL2(#ch)

CLOSE #ch

DELETE d$ & CHR$(0®) & CHR$(O®)

IF 12_ok
INPUT 'Enter directory name please : ';t$
MAKE_DIR d$ & t$

ELSE
PRINT 'Sorry, no level 2 drivers!'

END IF

END DEFine MAKE_DIRECTORY

2.28.

KBYTES_FREE 21

KeywordsB.clean.html#bytes-free
KeywordsB.clean.html#bytes-free
KeywordsB.clean.html#bytes-free
KeywordsD.clean.html#dir

DJToolkit Documentation, Release 1.17.0

2.30 MAX_CON

Syntax error = MAX_CON(#channel%, x%, y%, x0%, yo%o)
Location DIJToolkit 1.17

If the given channel is a ‘CON_’ channel, this function will return a zero in the variable ‘error’. The integer variables,
x%’, ‘y%’, ‘x0%’ and ‘yo%’ will be altered by the function, to return the maximum size that the channel can be
WINDOW d to.

‘X%’ will be set to the maximum width, ‘y%’ to the maximum depth, ‘x0%’ and ‘yo%’ to the minimum x co-ordinate
and y co-ordinate respectively.

For the technically minded reader, this function uses the [OP_FLIM routine in the pointer Environment code, if present.
If it is not present, you should get the -15 error code returned. (BAD PARAMETER).

EXAMPLE

7080 DEFine PROCedure SCREEN_SIZES

7090 LoCal w¥%,h%,x%,y%, fer

7100 REMark how to work out maximum size of windows using iop.flim
7110 REMark using MAX_CON on primary channel returns screen size
7120 REMark secondaries return maximum sizes within outline where
7130 REMark pointer environment is used.

7140 w% = 512 : REMark width of standard QL screen

7150 h% 256 : REMark height of standard QL screen

7160 x% =0

7170 y% =0

7180 :

7190 fer = MAX_CON(#0,w%,h%,x%,y%) : REMark primary for basic
7200 IF fer < O : PRINT #0, Error ';fer : RETurn

7210 PRINT'#0 : ";w%;',";h%;"', " ";x%;"',";y%

7220 :

7230 fer = MAX_CON(#1,w%,h%,x%,y%) : REMark primary for basic
7240 IF fer < O : PRINT #0, 'Error ';fer : RETurn

7250 PRINT'"#1 : ";w%;',";h%;"', " ";x%;"',";y%

7260 :

7270 fer = MAX_CON(#2,w%,h%,x%,y%) : REMark primary for basic
7280 IF fer < O : PRINT #0,'Error ';fer : RETurn

7290 PRINT"#2 : ";wk%;',";h%;", " ";x%;",";y%

7300 END DEFine SCREEN_SIZES

2.31 MAX_DEVS

Syntax how_many = MAX_DEVS
Location DJToolkit 1.17

This function returns the number of installed directory device drivers in your QL. It can be used to DIMension a string
array to hold the device names as follows:

22 Chapter 2. DJToolkit 1.17

KeywordsW.clean.html#window
KeywordsD.clean.html#dim

DJToolkit Documentation, Release 1.17.0

1000 REMark Count directory devices

1010 :

1020 how_many = MAX_DEVS

1030 :

1040 REMark Set up array

1050 :

1060 DIM device$(how_many, 10)
1070 :

1080 REMark Now get device names
1090 addr = 0

1100 FOR devs = 1 to how_many

1110 device$(devs) = DEV_NAME(addr)
1120 IF addr = ® THEN EXIT devs: END IF
1130 END FOR devs

CROSS-REFERENCE
DEV_NAME.

2.32 MOVE_MEM

Syntax MOVE_MEM destination, length
Location DJToolkit 1.17

This procedure will copy the appropriate number of bytes from the given source address to the destination address. If
there is an overlap in the addresses, then the procedure will notice and take the appropriate action to avoid corrupting
the data being moved. Most moves will take place from source to destination, but in the event of an overlap, the move
will be from (source + length -1) to (destination + length -1).

This procedure tries to do the moving as fast as possible and checks the addresses passed as parameters to see how it
will do this as follows :-

* If both addresses are odd, move one byte, increase the source & destination addresses by 1 and drop in to treat
them as if both are even, which they now are!

* If both addresses are even, calculate the number of long word moves (4 bytes at a time) that are to be done and
do them. Now calculate how many single bytes need to be moved (zero to 3 only) and do them.

* If one address is odd and the other is even the move can only be done one byte at a time, this is quite a lot slower
than if long words can be moved.

The calculations to determine which form of move to be done adds a certain overhead to the function and this can be
the slowest part of a memory move that is quite small.

EXAMPLE

[MOVE_MEM SCREEN_BASE(#0), SaveScreen_Addr, 32 * 1024

2.32. MOVE_MEM 23

KeywordsD.clean.html#dev-name

DJToolkit Documentation, Release 1.17.0

2.33 MOVE_POSITION

Syntax MOVE_POSITION #channel, relative_position
Location DJToolkit 1.17

This is a similar procedure to ABS_POSITION, but the file pointer is set to a position relative to the current one. The
direction given can be positive to move forward in the file, or negative to move backwards. The channel must of course
be opened to a file on a directory device. If the position given would take you back to before the start of the file, the
position is left at the start, position 0. If the move would take you past the end of file, the file is left at end of file.

After a MOVE_POSITION command, the next access to the given channel, whether read or write, will take place from
the new position.

EXAMPLE

[MOVE_POSITION #3, 0

moves the current file pointer on channel 3 to the start of the file.

[MOVE_POSITION #3, 6e6

moves the current file pointer on channel 3 to the end of the file.
CROSS-REFERENCE
ABS_POSITION.

2.34 PEEK_FLOAT

Syntax value = PEEK_FLOAT (address)
Location DJToolkit 1.17

This function returns the floating point value represented by the 6 bytes stored at the given address. BEWARE, although
this function cannot detect any errors, if the 6 bytes stored at ‘address’ are not a proper floating point value, the QL can
crash. The crash is caused by QDOS and not by PEEK_FLOAT. This function should be used to retrieve values put
there by POKE_FLOAT mentioned above.

EXAMPLE

1000 addr = RESERVE_HEAP(6)

1010 IF addr < O THEN

1020 PRINT "OUT OF MEMORY"

1030 STOP

1040 END IF

1050 POKE_FLOAT addr, PI

1060 myPI = PEEK_FLOAT (addr)

1070 IF myPI <> PI THEN

1080 PRINT "Something went horribly wrong!"
1090 PRINT "PI = " & PI & ", myPI = " & myPI
1100 END IF

24 Chapter 2. DJToolkit 1.17

KeywordsA.clean.html#abs-position
KeywordsA.clean.html#abs-position
KeywordsP.clean.html#poke-float

DJToolkit Documentation, Release 1.17.0

CROSS-REFERENCE
POKE_STRING, PEEK_STRING, POKE_FLOAT.

2.35 PEEK_STRING

Syntax a$ = PEEK_STRING(address, length)
Location DJToolkit 1.17

The characters in memory at the given address are returned to a$. The address may be odd or even as no word for the
length is used, the length of the returned string is given by the length parameter.

EXAMPLE The following set of functions return the Toolkit 2 default devices:

1000 DEFine FuNction TK2_DATA$

1010 RETurn TK2_DEFAULT$(176)

1020 END DEFine TK2_DATAS$

1030 :

1040 DEFine FuNction TK2_PROG$

1050 RETurn TK2_DEFAULT$(172)

1060 END DEFine TK2_PROG$

1070 :

1080 DEFine FuNction TK2_DEST$

1090 RETurn TK2_DEFAULT$(180)

1100 END DEFine TK2_DESTS$

1110 :

1120 :

1200 DEFine FuNction TK2_DEFAULTS$(offset)

1210 LOCal address

1220 IF offset <> 172 AND offset <> 176 AND offset <> 180 THEN
1230 PRINT "TK2_DEAFULT$: Invalid Offset: " & offset
1240 RETurn ''

1250 END IF

1260 address = PEEK_L (SYSTEM_VARIABLES + offset)
1270 IF address = ® THEN

1280 RETurn ''

1290 ELSE

1300 REMark this is a pointer to the appropriate TK2 default
1310 RETurn PEEK_STRING(address+2, PEEK_W(address))

1320 END IF
1330 END DEFine TK2_DEFAULT$

CROSS-REFERENCE
POKE_STRING, PEEK_FLOAT, POKE_FLOAT.

2.35. PEEK_STRING 25

KeywordsP.clean.html#poke-string
KeywordsP.clean.html#peek-string
KeywordsP.clean.html#poke-float
KeywordsP.clean.html#poke-string
KeywordsP.clean.html#peek-float
KeywordsP.clean.html#poke-float

DJToolkit Documentation, Release 1.17.0

2.36 POKE_FLOAT

Syntax POKE_FLOAT address, value
Location DJToolkit 1.17

This procedure will poke the 6 bytes that the QL uses to represent a floating point variable into memory at the given
address. The address can be odd or even as the procedure can cope either way.

EXAMPLE

1000 Address = RESERVE_HEAP(6)

1010 IF Address < O THEN

1020 PRINT "ERROR " & Address & " Allocating heap space."
1030 STOP

1040 END IF

1050 POKE_FLOAT Address, 666.616

CROSS-REFERENCE
POKE_STRING, PEEK_STRING, PEEK_FLOAT.

2.37 POKE_STRING

Syntax POKE_STRING address, string
Location DIJToolkit 1.17

This procedure simply stores the strings contents at the given address. Only the contents of the string are stored, the 2
bytes defining the length are not stored. The address may be odd or even.

If the second parameter given is a numeric one or simply a number, beware, QDOS will convert it to the format that
would be seen if the number was PRINTed before storing it at the address. For example, 1 million would be ‘1E6’
which is arithmetically the same, but characterwise, very different.

EXAMPLE

1000 Address = RESERVE_HEAP(60)

1010 IF Address < 0 THEN

1020 PRINT "ERROR " & Address & " Allocating heap space."
1030 STOP

1040 END IF

1050 POKE_STRING Address, "DJToolkit " & DJTK_VERS$

CROSS-REFERENCE
PEEK_STRING, PEEK_FLOAT, POKE_FLOAT.

26 Chapter 2. DJToolkit 1.17

KeywordsP.clean.html#poke-string
KeywordsP.clean.html#peek-string
KeywordsP.clean.html#peek-float
KeywordsP.clean.html#print
KeywordsP.clean.html#peek-string
KeywordsP.clean.html#peek-float
KeywordsP.clean.html#poke-float

DJToolkit Documentation, Release 1.17.0

2.38 PUT_BYTE

Syntax PUT_BYTE #channel, byte
Location DJToolkit 1.17

The given byte is sent to the channel. If a byte value larger than 255 is given, only the lowest 8 bits of the value are
sent. The byte value written to the channel will always be between 0 and 255 even if a negative value is supplied.
GET_BYTE returns all values as positive.

EXAMPLE

[PUT_BYTE #3, 10

CROSS-REFERENCE
PUT_FLOAT, PUT_LONG, PUT_STRING, PUT_WORD.

2.39 PUT_FLOAT

Syntax PUT_FLOAT #channel, byte
Location DJToolkit 1.17

The given float value is converted to the internal QDOS format for floating point numbers and those 6 bytes are sent to
the given channel number. The full range of QL numbers can be sent including all the negative values. GET_FLOAT
will return negative values correctly (unless an error occurs).

EXAMPLE

[PUT_FLOAT #3, PI

CROSS-REFERENCE
PUT_BYTE, PUT_LONG, PUT_STRING, PUT_WORD.

2.40 PUT_LONG

Syntax PUT_LONG #channel, byte
Location DJToolkit 1.17

The long value given is sent as a sequence of four bytes to the channel. Negative values can be put and these will be
returned correctly by GET_LONG unless any errors occur.

EXAMPLE

2.38. PUT_BYTE 27

KeywordsG.clean.html#get-byte
KeywordsP.clean.html#put-float
KeywordsP.clean.html#put-long
KeywordsP.clean.html#put-string
KeywordsP.clean.html#put-word
KeywordsG.clean.html#get-float
KeywordsP.clean.html#put-byte
KeywordsP.clean.html#put-long
KeywordsP.clean.html#put-string
KeywordsP.clean.html#put-word
KeywordsG.clean.html#get-long

DJToolkit Documentation, Release 1.17.0

[PUT_LONG #3, 1234567890 J

CROSS-REFERENCE
PUT_BYTE, PUT_FLOAT, PUT_STRING, PUT_WORD.

2.41 PUT_STRING

Syntax PUT_STRING #channel, string
Location DJToolkit 1.17

The string parameter is sent to the appropriate channel as a two byte word giving the length of the data then the characters
of the data. If you send a string of zero length, LET A$ = *” for example, then only two bytes will be written to the file.
See POKE_STRING for a description of what will happen if you supply a number or a numeric variable as the second
parameter. As with all QL strings, the maximum length of a string is 32kbytes.

EXAMPLE

[PUT_STRING #3, "This is a string of data"

CROSS-REFERENCE
PUT_BYTE, PUT_FLOAT, PUT_LONG, PUT_WORD.

2.42 PUT_WORD

Syntax PUT_WORD #channel, word
Location DJToolkit 1.17

The supplied word is written to the appropriate channel as a sequence of two bytes. If the word value supplied is bigger
than 65,535 then only the lower 16 bits of the value will be used. Negative values will be returned by GET_WORD as
positive.

EXAMPLE

[PUT_WORD #3, 65535

CROSS-REFERENCE
PUT_BYTE, PUT_FLOAT, PUT_LONG, PUT_STRING.

28 Chapter 2. DJToolkit 1.17

KeywordsP.clean.html#put-byte
KeywordsP.clean.html#put-float
KeywordsP.clean.html#put-string
KeywordsP.clean.html#put-word
KeywordsP.clean.html#poke-string
KeywordsP.clean.html#put-byte
KeywordsP.clean.html#put-float
KeywordsP.clean.html#put-long
KeywordsP.clean.html#put-word
KeywordsG.clean.html#get-word
KeywordsP.clean.html#put-byte
KeywordsP.clean.html#put-float
KeywordsP.clean.html#put-long
KeywordsP.clean.html#put-string

DJToolkit Documentation, Release 1.17.0

2.43 QPTR

Syntax PE_Found = QPTR (#channel)
Location DJToolkit 1.17

This function returns 1 if the Pointer Environment is loaded or O if not. The channel must be a SCR_ or CON_ channel,
if not, the result will be 0. If a silly value is given then a QDOS error code will be returned instead.

EXAMPLE

[PRINT QPTR(#0)]

will print 1 of the PE is loaded or zero otherwise.

2.44 READ_HEADER

Syntax error = READ_HEADER (#channel, buffer)
Location DJToolkit 1.17

The file that is opened on the given channel has its header data read into memory starting at the given address (buffer).
The buffer address must have been reserved using RESERVE_HEAP, or some similar command.

The buffer must be at least 64 bytes long or unpredictable results will occur. The function will read the header but
any memory beyond the end of the buffer will be overwritten if the buffer is too short. After a successful call to this
function, the contents of the buffer will be as follows :

Address Value Size

Buffer + 0 File length 4 bytes long (see FILE_LENGTH)
Buffer + 4 File access 1 byte long - currently zero

Buffer + 5 File type 1 byte long (see FILE_TYPE)

Buffer + 6 File dataspace 4 bytes long (see FILE_DATASPACE)
Buffer + 10 Unused 4 bytes long

Buffer + 14 Name length 2 bytes long, size of filename

Buffer + 16 Filename 36 bytes long

Directory devices also have the following additional data :

Address Value Size

Buffer + 52 Update date 4 bytes long (see FILE_UPDATE)
Buffer + 56 Reference date 4 bytes long - see below
Buffer + 60 Backup date 4 bytes long (see FILE_ BACKUP)

Miracle Systems hard disc’s users and level 2 users will find the files version number stored as the the 2 bytes starting
at buffer + 56, the remaining 2 bytes of the reference date seem to be hex 094A or decimal 2378 which has no apparent
meaning, this of course may change at some point!

2.43. QPTR 29

KeywordsR.clean.html#reserve-heap
KeywordsF.clean.html#file-length
KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-dataspace
KeywordsF.clean.html#file-update
KeywordsF.clean.html#file-backup

DJToolkit Documentation, Release 1.17.0

This function returns an error code if something went wrong while attempting to read the file header or zero if everything
went ok. It can be used as a more efficient method of finding out the details for a particular file rather than calling all

the various FILE_XXXX functions. Each of these call the READ_HEADER routine.

To extract data, use PEEK for byte values, PEEK_W for the filename length and version number (if level 2 drivers are

present, see LEVEL2), or PEEK_L to extract 4 byte data items.

The filename can be extracted from the buffer by something like:

[f$ = PEEK_STRING(buffer + 16, PEEK_W(buffer + 14)).

]

EXAMPLE The following example allows you to change the current dataspace requirements for an EXECutable file:

6445 DEFine PROCedure ALTER_DATASPACE

6450 LOCal base, loop, f$, ft, nv

6455 base = RESERVE_HEAP (64)

6460 IF base < 0 THEN

6465 PRINT "ERROR: " & base & ", reserving heap space."
6470 RETurn

6475 END IF

6480 REPeat loop

6485 INPUT'Enter filename:';f$

6490 IF £f$ = '' THEN EXIT loop

6495 ft = FILE_TYPE(£$)

6500 IF ft < ® THEN

6465 PRINT "ERROR: " & ft & ", reading file type for " & f$ & "."
6510 END IF

6515 IF ft <> 1 THEN

6520 PRINT f$ & 'is not an executable file!'

6525 NEXT loop

6530 END IF

6535 PRINT 'Current dataspace is:'; FILE_DATASPACE(f$)

6540 INPUT 'Enter new value:'; nv

6545 OPEN #3,f$: fer = READ_HEADER (#3,base)

6550 IF fer < 0 : CLOSE #3 : PRINT "READ_HEADER error: " & fer : NEXT loop
6555 POKE_L base + 6,nv

6560 fer = SET_HEADER(#3,base)

6565 IF fer < ® : PRINT "SET_HEADER error: " & fer

6570 CLOSE #3

6575 END REPeat loop
6580 RELEASE_HEAP base
6585 END DEFine ALTER_DATASPACE

CROSS-REFERENCE
SET_HEADER, FILE_LENGTH, FILE_TYPE, FILE_DATASPACE, FILE_UPDATE, FILE_BACKUP.

30 Chapter 2. DJToolkit 1.17

KeywordsF.clean.html#file-backup
KeywordsP.clean.html#peek
KeywordsP.clean.html#peek-w
KeywordsP.clean.html#peek-l
KeywordsE.clean.html#exec
KeywordsS.clean.html#set-header
KeywordsF.clean.html#file-length
KeywordsF.clean.html#file-type
KeywordsF.clean.html#file-dataspace
KeywordsF.clean.html#file-update
KeywordsF.clean.html#file-backup

DJToolkit Documentation, Release 1.17.0

2.45 RELEASE_HEAP

Syntax RELEASE_HEAP address
Location DJToolkit 1.17

The address given is assumed to be the address of a chunk of common heap as allocated earlier in the program by
RESERVE_HEAP. In order to avoid crashing the QL when an invalid address is given, RELEASE_HEAP checks first
that there is a flag at address-4 and if so, clears the flag and returns the memory back to the system. If the flag is not
there, or if the area has already been released, then a bad parameter error will occur.

It is more efficient to RELEASE_HEAP in the opposite order to that in which it was reserved and will help to avoid
heap fragmentation.

CROSS-REFERENCE
See RESERVE_HEAP, below, for an example of use.

2.46 RESERVE_HEAP

Syntax buffer = RESERVE_HEAP(length)
Location DJToolkit 1.17

This function obtains a chunk of memory for your program to use, the starting address is returned as the result of the
call. Note that the function will ask for 4 bytes more than you require, these are used to store a flag so that calls to
READ_HEADER do not crash the system by attempting to deallocate invalid areas of memory. If you call this function,
the returned address is the first byte that your program can use.

EXAMPLE

The following example shows how this function can be used to reserve a buffer for READ_HEADER, described else-
where.

1000 buffer = RESERVE_HEAP(64)

1010 IF buffer < 0O

1020 PRINT 'ERROR allocating buffer, ' & buffer
1030 STOP

1040 END IF

1050 error = READ_HEADER(#3, buffer)

..... do something with buffer contents here

2040 REMark Finished with buffer
2050 RELEASE_HEAP buffer

CROSS-REFERENCE
RELEASE_HEAP, ALCHP, RECHP, ALLOCATE.

2.45. RELEASE_HEAP 31

KeywordsR.clean.html#reserve-heap
KeywordsR.clean.html#reserve-heap
KeywordsR.clean.html#read-header
KeywordsR.clean.html#read-header
KeywordsR.clean.html#release-heap
KeywordsA.clean.html#alchp
KeywordsR.clean.html#rechp
KeywordsA.clean.html#allocate

DJToolkit Documentation, Release 1.17.0

2.47 SCREEN_BASE

Syntax screen = SCREEN_BASE((#channel)
Location DJToolkit 1.17

This function is handy for Minerva users, who have 2 screens to play with. The function returns the address of the start
of the screen memory for the appropriate channel.

If the returned address is negative, consider it to be a QDOS error code. (-6 means channel not open & -15 means not
a SCR_ or CON_ channel.)

SCREEN_BASE allows you to write programs that need not make guesses about the whereabouts of the screen memory,
or assume that if VERS gives a certain result, that a Minerva ROM is being used, this may not always be the case.
Regardless of the ROM in use, this function will always return the screen address for the given channel.

EXAMPLE

[PRINT HEX$ (SCREEN_BASE (#0), 24) }

2.48 SCREEN_MODE

Syntax current_mode = SCREEN_MODE
Location DIJToolkit 1.17

This function can help in your programs where you need to be in a specific mode. If you call this function you can find
out if a mode change needs to be made or not. As the MODE call changes the mode for every program running in the
QL, use this function before setting the appropriate mode.

The value returned can be 4 or 8 for normal QLs, 2 for Atari ST/QL Extended mode 4 or any other value deemed
appropriate by the hardware being used. Never assume that your programs will only be run on a QL!

EXAMPLE

1000 REMark Requires MODE 4 for best results so ...
1010 IF SCREEN_MODE <> 4

1020 MODE 4

1030 END IF

1040 :

1050 REMark Rest of program

CROSS-REFERENCE
MODE.

32 Chapter 2. DJToolkit 1.17

KeywordsV.clean.html#ver
KeywordsM.clean.html#mode
KeywordsM.clean.html#mode

DJToolkit Documentation, Release 1.17.0

2.49 SEARCH_C

Syntax address = SEARCH_C(start, length, what_for$)
Location DJToolkit 1.17

See SEARCH_I for details.
CROSS-REFERENCE
SEARCH_I.

2.50 SEARCH_|

Syntax address = SEARCH_I(start, length, what_for$)
Location DJToolkit 1.17

This function, and SEARCH_C above, search through memory looking for the given string. SEARCH_C searches for
an EXACT match whereas SEARCH_I ignores the difference between lower & UPPER case letters.

If the address returned is zero, the string was not found, otherwise it is the address where the first character of what_for$
was found, or negative for any errors that may have occurred.

(132

If the string being searched for is empty (*”’) then zero will be returned, if the length of the buffer is negative or O,
you will get a ‘bad parameter’ error (-15). The address is considered to be unsigned, so negative addresses will be
considered to be very large positive addresses, this allows for any future enhancements which will allow the QL to use
a lot more memory than it does now!

EXAMPLE

1000 PRINT SEARCH_C(O, 48 * 1024, 'sinclair')
1010 PRINT SEARCH_I(O, 48 * 1024, 'sinclair')
1020 PRINT

1030 PRINT SEARCH_C(O, 48 * 1024, 'Sinclair')
1040 PRINT SEARCH_I(O, 48 * 1024, 'Sinclair')

The above fragment, on my Gold Card JS QL, prints:

0
47314

47314
47314

Looking into the ROM at that address using

[PEEK_STRING(473 14, 21)

gives:

2.49. SEARCH_C 33

KeywordsS.clean.html#search-i
KeywordsS.clean.html#search-i
KeywordsS.clean.html#search-c
KeywordsS.clean.html#search-c

DJToolkit Documentation, Release 1.17.0

[Sinclair Research Ltd

which is part of the copyright notice that comes up when you switch on your QL. The reason for zero in line 1000 is
because the ‘s’ is lower case, case is significant and the ROM has a capital ‘S’, so the text was not found in the ROM.

CROSS-REFERENCE
SEARCH_C.

2.51 SET_HEADER

Syntax error = SET_HEADER (#channel, buffer)
Location DJToolkit 1.17

This function returns the error code that occurred when trying to set the header of the file on the given channel, to the
contents of the 64 byte buffer stored at the given address. If the result is zero then you can assume that it worked ok,
otherwise the result will be a negative QDOS error code. On normal QLs, the three dates at the end of a file header
cannot be set.

EXAMPLE

See the example for READ_HEADER.
CROSS-REFERENCE
READ_HEADER.

2.52 SET_XINC

Syntax SET_XINC #channel, increment
Location DIJToolkit 1.17

See SET_YINC, below, for details.

2.53 SET_YINC

Syntax SET_YINC #channel, increment
Location DJToolkit 1.17

These two functions change the spacing between characters horozontally, SET_XINC, or vertically, SET_YINC. This
allows slightly more information to be displayed on the screen. SET_XINC allows adjacent characters on a line of the
screen to be positioned closer or further apart as desired. SET_YINC varies the spacing between the current line of
characters and the next.

34 Chapter 2. DJToolkit 1.17

KeywordsS.clean.html#search-c
KeywordsR.clean.html#read-header
KeywordsR.clean.html#read-header
KeywordsS.clean.html#set-yinc
KeywordsS.clean.html#set-xinc
KeywordsS.clean.html#set-xinc

DJToolkit Documentation, Release 1.17.0

By choosing silly values, you can have a real messy screen, but try experimenting with OVER as well to see what
happens. Use of the MODE or CSIZE commands in SuperBasic will overwrite your new values.

EXAMPLE

SET_XINC #2, 22

SET_YINC #2, 16

PRINT #2, "This is a line of text"
PRINT #2, "This is another line of text"
PRINT #2, "This is yet another!"

CROSS-REFERENCE
SET_XINC.

2.54 SYSTEM_VARIABLES

Syntax sys_vars = SYSTEM_VARIABLES
Location DJToolkit 1.17

This function returns the current address of the QL’s system variables. For most purposes, this will be hex 28000,
decimal 163840, but Minerva users will probably get a different value due to the double screen. Do not assume that all
QLs, current or future, will have their system variables at a fixed point in memory, this need not be the case.

EXAMPLE

[PRINT SYSTEM_VARIABLES]

2.55 USE_FONT

Syntax USE_FONT #channel, fontl_address, font2_address
Location DJToolkit 1.17

This is a procedure that will allow your programs to use a character set that is different from the standard QL fonts.
The following example will suffice as a full description.

EXAMPLE

1000 REMark Change the character set for channel #I
1010 :

1020 REMark Reserve space for the font file

1030 size = FILE_LENGTH('flpl_font_file")

1040 IF size < 0

1050 PRINT 'Font file error ' & size

1060 STOP

1070 END IF

(continues on next page)

2.54. SYSTEM_VARIABLES 35

KeywordsO.clean.html#over
KeywordsM.clean.html#mode
KeywordsC.clean.html#csize
KeywordsS.clean.html#set-xinc

DJToolkit Documentation, Release 1.17.0

(continued from previous page)

1080 :

1090 REMark Reserve space to load font into
1200 font_address = RESERVE_HEAP(size)

1210 IF font_address < 0

1220 PRINT 'Heap error ' & font_address

1230 STOP
1240 END IF
1250 :

1260 REMark Load the font

1270 LBYTES flpl_font_file, font_address
1280 :

1290 REMark Now use the new font

1300 USE_FONT #1, font_address, O

....... Rest of program

9000 REMark Reset channel #1 fonts
9010 USE_FONT #1, 0, 0

9020 :

9030 REMark Release the storage space
9040 RELEASE_HEAP font_address

2.56 WHERE_FONTS

Syntax address = WHERE_FONTS (#channel, 1_or_2)
Location DIJToolkit 1.17

This function returns a value that corresponds to the address of the fonts in use on the specified channel. The second
parameter must be 1 for the first font address or 2 for the second, there are two fonts used on each channel. If the result
is negative then it will be a normal QDOS error code. The channel must be a CON_ or a SCR_ channel to avoid errors.

EXAMPLE

The following example will report on the two fonts used in any given channel, and will display the character set defined
in that font:

4480 DEFine PROCedure REPORT_ON_FONTS (channel)
4485 LOCal address, lowest, number, b
4490 REMark show details of channel's fonts

4495 CLS

4500 FOR a = 1,2

4505 address = WHERE_FONTS (#channel, a)

4510 lowest = PEEK(address)

4515 number = PEEK(address + 1)

4520 PRINT '#'; channel; ' font '; a; ' at address '; address
4525 PRINT 'Lowest character code = '; lowest

4530 PRINT 'Number of characters = '; number + 1

4535 REMark print all but default characters

(continues on next page)

36 Chapter 2. DJToolkit 1.17

DJToolkit Documentation, Release 1.17.0

(continued from previous page)

4540 PRINT : REMark blank line
4545 FOR b = lowest + 1 TO lowest + number :PRINT CHR$(b);
4550 PRINT \\\ : REMark 2 blank lines

4555 END FOR a
4560 END DEFine REPORT_ON_FONTS

2.56. WHERE_FONTS 37

DJToolkit Documentation, Release 1.17.0

38

Chapter 2. DJToolkit 1.17

CHAPTER
THREE

DJTOOLKIT UPDATES

3.1 UPDATES TO DJTOOLKIT V1.10

A few new commands have been added, such as QPTR, the font handling commands and DISPLAY_WIDTH to check the
display size. All these are now documented in the manual. Norman has, however, given me an embarrassing list of
typing errors I made when I transferred the manual to prepare it in Text87, these will be corrected in the next issue of
the manual, as they do not affect the accuracy of the manual, only offend those who dislike typos!

Dilwyn Jones

3.2 UPDATES TO DJTOOLKIT V1.11 (18/5/1993)

Despite the fact that the AH and JM ROM presented the DISPLAY_WIDTH command with problems, this has now been
solved in two ways. Firstly, a demo routine (DISPLAY_WIDTH_JM) checks for an offending ROM version and returns a
default value to prevent the problem. Secondly, Norman has patched the DISPLAY_WIDTH function to include a check
for AH and JM ROMs (or rather the versions of QDOS with those versions of BASIC, to be accurate) to prevent the
problem.

I have fixed an embarrassing number of faults in the demo files. Nobody actually complained about these, I just noticed
them myself. I’ve also added a few more demo routines such as a fast copier and dates utility - most of the new routines
are at the end of the file.

Note that the DEMOS_sav version can give a list of missing extensions when loaded with QLOAD if the QLiberator
extensions are not present. For the most part, they will still run OK, since a check is made for their presence (e.g.
the CURSOR_ENABLE routine. I have also updated the DEMOS_doc documentation file to include details of the new
routines.

I made a few changes to the demo routines to take account of the fact that Norman reprogrammed some functions in
V1.10 at the suggestion of Ralf Rekoendt of Germany, to return negative error codes rather than stopping with an error
message.

The first commercial program using this toolkit has been launched - DIC’s CONVERT-PCX graphics conversion utility
for clipart ported from the PC (used in conjunction with Discover, plug, plug). CONVERT-PCX costs just £10.00.

Dilwyn Jones

39

DJToolkit Documentation, Release 1.17.0

3.3 UPDATES TO DJTOOLKIT V1.12 (15/6/1993)

Due to the fact that I tried to make things a bit quicker in the MOVE_MEM command, I ended up using an algorithm
that allowed an easy (!) way to figure out which direction the memory needed to be moved in order to avoid overlap
problems. As it turned out, the algorithm was wrong! This caused a slight problem in that some of the first 6 bytes
were not moved when moving from an even address to an even address with no overlap, the program did it as if there
was an overlap and missed a few bytes out of the move.

MOVE_MENM is now fixed, bigger and for small memory moves, it spends most of its time figuring out how to actually do
it. Large memory moves, say saving and restoring screens, should now work correctly and quickly.

Norman Dunbar

3.4 UPDATES TO DJTOOLKIT V1.13 (19/07/1993)

I use a Gold Card for all my work, it is quick and the vast amount of memory allows me to run lots of utility programs
together with QPAC 2 etc. So what, I hear you think. Well it seems that a small bug has existed in the FILE_POSITION
function which causes a normal 128K QL to crash with a fancy screen display which fills the screen from the bottom
to the top - interesting. A Trump Card (old version, no level 2 drivers) just gives up quietly and gives no indication of

It seems that the system call FS_POSRE (TRAP #3, DO = $43) actually destroys register A1 which is of course the maths
stack pointer. This has now been fixed for All QLs, not just the Gold Card users. Funny, no one has complained about
it up until yesterday when Dilwyn Phoned !

Having tested the new version (1.13) on a Trump Card equipped QL, I fired up the trusty Gold Card and traced the
execution of FILE_POSITION using QMON 2. Lo and behold, the Al register is PRESERVED by the system call
FS_POSRE (and FS_POSAB?) when running with a Gold Card, mystery solved, but why is it preserved ?

Norman Dunbar

3.5 UPDATES TO VERSION 1.13 PART 2 (22/10/1993)

Dilwyn contacted me to say that a customer was having problems with some of Dilwyn’s demo routines. I have had a
look at these (Dilwyn has more than enough problems with Page Designer 3 !!!!) and found that most of them were
caused by not having enough LOCal statements.

Some of Dilwyn’s routines use the same names, but some are ARRAYs and others are not. If FASTCOPY has been
called, LOAD_A_FONT refuses to work due to the variable ‘i’ being a DIM" "‘med array in "~ FASTCOPY (for file
length). I have added a few more LOCals to every routine that needs them. Problem now solved.

You should be aware that on some QLs, JS in particular, there is a bug that occurs when a program routine is executed.
If the routine (PROC or FN) has a total of 10 or more parameters and locals then the SuperBasic listing gets trashed in
a big way. The program will probably fall over with BAD NAME or something.

When testing the amended demo routines, I of course had forgotten about this bug and managed to remove the Super-
Basic job from the QL all together (who said it couldn’t be done ?) Using the JOBS/RJOB utilities in QPAC 2 did not

Luckily I always (?) save changes before running them, just in case. One quick reset later and all was well again.
Enough waffle, hopefully the demos are now ok. I have put a warning in the demos file at the start and REMark™ " ed
out extra " ~LOCal lines but there shouldn’t be any more name clashes - famous last words.

Norman Dunbar

40 Chapter 3. DJToolkit Updates

DJToolkit Documentation, Release 1.17.0

3.6 UPDATES TO DJTOOLKIT V1.14 (12/06/1994)

At Dilwyn’s request, some additional routines have been added to the toolkit. These being some file opening functions
that return an error code or the channel id. I also added a couple of extra handy routines of my own, just for fun. The
new routines are:

POKE_FLOAT address,value (PROC)

PEEK_FLOAT (address) (FN returning float)
MAX_DEVS (FN returning integer)
DJ_OPEN('filename') (FN returning integer)

DJ_OPEN_IN('filename") (ditto)
DJ_OPEN_NEW('filename') (ditto)
DJ_OPEN_OVER('filename') (ditto)
DJ_OPEN_DIR('filename') (ditto)
MAX_CON(#ch, x,y,x0,yo) (FN returning int + altered params)

The file opening procedures are very similar to Simon Goodwin’s recent article in the DIY Toolkit series in QL WORLD
magazine (Vol 2, issue 8 which was marked Vol 2 issue 7 just to be confusing). The article was about his routines called
ANYOPEN%. Simon’s article came in very handy as I had known about the ability to extend the SuperBasic channel table,
but had not quite figured out how to fill it in afterwards. Thanks Simon.

Norman Dunbar

3.7 UPDATES TO DJTOOLKIT V1.15 (16/06/1994)

So, I thought it was complete, but Dilwyn left a message on my machine, which went something like “what happened
to the fill memory commands then ?” - oops, I forgot !

This version, 1.15, now contains the additional procedures

FILLMEM_B start_address, how_many, value
FILLMEM_W start_address, how_many, value
FILLMEM_L start_address, how_many, value

and that is about what they do !

Norman Dunbar

3.8 UPDATES TO DJTOOLKIT V1.16 (27/02/2013)

Change to GET_STRING function so as not to cause End Of File error on SMSQmulator if a null string is the last item
fetched from the end of a file.

3.6. UPDATES TO DJTOOLKIT V1.14 (12/06/1994) 41

DJToolkit Documentation, Release 1.17.0

3.9 UPDATES TO DJTOOLKIT V1.17 (26/10/2025)

A bug in MOVE_MEM failed to copy the final byte, the one at the source address if:

The source address was less than the destination address; AND The destination address was less than
source + size AND The two addresses were both EVEN or both ODD.

This was “fixed” by simply doing a byte by byte move in those circumstances. I will get to fixing it at some point soon!
(For my usual definitions of “soon”!)

Norman Dunbar

42 Chapter 3. DJToolkit Updates

	INTRODUCTION
	COPYRIGHT NOTICE AND DISCLAIMER
	QUESTIONS ABOUT THE TOOL KIT
	WHAT IS A TOOL KIT?
	CAN I USE THE TOOLKIT IN MY OWN PROGRAMS?
	DOES IT WORK WITH OTHER TOOLKITS?

	BRIEF DESCRIPTION OF THE NEW COMMANDS
	QDOS ERROR CODES

	DJToolkit 1.17
	ABS_POSITION
	BYTES_FREE
	CHECK
	DEV_NAME
	DISPLAY_WIDTH
	DJ_OPEN
	DJ_OPEN_IN
	DJ_OPEN_NEW
	DJ_OPEN_OVER
	DJ_OPEN_DIR
	DJTK_VER$
	FETCH_BYTES
	FILE_BACKUP
	FILE_DATASPACE
	FILE_LENGTH
	FILE_POSITION
	FILE_TYPE
	FILE_UPDATE
	FILLMEM_B
	FILLMEM_W
	FILLMEM_L
	FLUSH_CHANNEL
	GET_BYTE
	GET_FLOAT
	GET_LONG
	GET_STRING
	GET_WORD
	KBYTES_FREE
	LEVEL2
	MAX_CON
	MAX_DEVS
	MOVE_MEM
	MOVE_POSITION
	PEEK_FLOAT
	PEEK_STRING
	POKE_FLOAT
	POKE_STRING
	PUT_BYTE
	PUT_FLOAT
	PUT_LONG
	PUT_STRING
	PUT_WORD
	QPTR
	READ_HEADER
	RELEASE_HEAP
	RESERVE_HEAP
	SCREEN_BASE
	SCREEN_MODE
	SEARCH_C
	SEARCH_I
	SET_HEADER
	SET_XINC
	SET_YINC
	SYSTEM_VARIABLES
	USE_FONT
	WHERE_FONTS

	DJToolkit Updates
	UPDATES TO DJTOOLKIT V1.10
	UPDATES TO DJTOOLKIT V1.11 (18/5/1993)
	UPDATES TO DJTOOLKIT V1.12 (15/6/1993)
	UPDATES TO DJTOOLKIT V1.13 (19/07/1993)
	UPDATES TO VERSION 1.13 PART 2 (22/10/1993)
	UPDATES TO DJTOOLKIT V1.14 (12/06/1994)
	UPDATES TO DJTOOLKIT V1.15 (16/06/1994)
	UPDATES TO DJTOOLKIT V1.16 (27/02/2013)
	UPDATES TO DJTOOLKIT V1.17 (26/10/2025)

