




IMPORTANT WARNING 

THIS MANUAL IS FOR INFORMATION ONLY. 

ITS CONTENTS ARE PROVISIONAL AND MAY BE 
SUBJECT TO CHANGE PRIOR TO ITS SUPPLY WITH THE 
QL COMPUTER. 

AS A FULL UP TO DATE MANUAL WILL BE SUPPLIED 
WITH EVERY QL COMPUTER WE STRONGLY 
RECOMMEND THAT THIS DOCUMENT BE DESTROYED 
WHEN IT HAS SERVED ITS PURPOSE. 

Sinclair Research Limited 

12th January, 1984 



DISCLAIMER 

In no circumstances will either Sinclair Research Limited or PSION Limited be liable 
for any direct. indirect. incidental or consequential damage or loss including but not 
limited to loss of use, stored data, profit or contracts which may arise from any error, 
defect or failure of the QL hardware or the software supplied with it. 

Sinclair Research has a policy of constant development and improvement of their 
products. Therefore, the right is reserved to change manuals, hardware, software 
and firmware at any time and without notice. 

WARNING 

To minimise the possibility of a loss of data it is strongly recommended that periodic 
copies (or backups) are made of Microdrive cartridges containing data or programs. 

© 1984 Sinclair Research Limited 

© 1 984 PSION Limited 



User Guide 

Introduction 
Beginner's Guide 
Reference Guide 

Keywords 
Concepts 

Applications Software 
QLQuill 
QLAbacus 
QLArchive 
QLEasel 

Information 



Design and rypeseWng by: Image Phowtypeseuing t.tmitett, Stockport, Cheshire. 

Printed bv. Sherp Blade umitea, Stockport, Cheshire 





Introduction 



PROVISIONAL 
When you unpack your OL you will find - 

The QL User Guide 
The QL computer 
A power supply 
An aerial lead this is about two metres long and has different sockets at 

either end 
this is also about two metres long but has the same type 
of connector at each end. 
containing the OL Application Software. 
containing 4 blank Microdrive cartridges. 

A network lead 

A Microdrive Wallet 
A Microdrive Wallet 
Three Plastic Feet 

Unpacking 

On the back and sides of the computer there are a series of connectors. Most of these A Guided Tour 
are not required initially but are used for plugging other peripherals into the OL (a 
peripheral is a piece of equipment which can be plugged into computer to expand its 
capabilities) 

On the front right hand side you will find two slots, these are the two Microdrives. Always 
make sure these two slots do not have any microdrive cartidges in them when the 
computer is switched on. Mic rod rive cartridges are used for storing programs and data 
for the Ol. Below each slot there is a small light. When the light is on the Microdrives are 
in use and the cartridges should not be removed. There is another light on the tront left 
hand side, this indicates if the OL is on 

rmcrodrivo slots 

On the right hand edge is another connection which is covered by a plastic strip. This is 
used for connecting up to six more Microdrives to the computer if you need to expand 
the storage capacity of your OL in the future. ZX Spectrum Microdrives are not suitable 
for use in the QL or with QL Microdrives. 

peripheral -- \ 91 o:r=p ~11111111111111111111111~ 
exri,ms,on port I reset button 

rnicrodrive expansion port 

On the left hand edge of the computer there is a large slot This is used to add expansion 
peripherals to the computer for example more memory, sound generators, hard discs, 
etc. 

1 Net 
5. UHF 
9. CTL2 

2 NRt 
6. SER1 

10 ROM 

4. RGB 
8. CTL 1 

3 Power 
7. SER2 



PROVl~IUNAL 
On the back of the computer at the left hand side there is a large slot with a plastic cover, 
this is for OL. ZX Spectrum ROM Cartidges are not compatible with the QL. 

The back of the computer also contains two sockets for attaching two joysticks, two RS- 
232-C serial ports, power, monitor, TV connections and twoconnectors for the OLAN 
Local area network Teh OLAN is compatible with the Spectrum Network and can be 
used to transfer data between the two machines. 

To make the computer operational various connections have to be made 

The Power Supply You will notice that the power supply has two leads. one is fitted with a flat three pin 
connector and which will later be connected to the OL (we will explain how), The other 
end must have a mains plug titted 

Cut off a piece of the covering plastic, about 2cm long at the end of the lead. You will 
find two plastic covered wires, one blue and the other brown Then cut off a pi(~ce of the 
covering plastic acout 5mm long at the end of each of the wires. Connect tho oxposod 
end of the brown covered wire to the terminal marked L (live) and the exposed r111(J of ll1P 
blue wire to the terminal marked N (neutral) There is no wire to be connected to the 
terminal marked E (earth) 

, Retaining 
'il'rt.'\\ 

I Fuse 

Cover 

The Computer Plug the main plug into a suitable mains socket and switch on. Check that there are no 
cartridges in the microdrive slots and plug the three pin flat connect from the power 
supply into the socket on the back of the computer marked POWER The OL has no 
on/off switch but the computer can effectivly be switched on and off by unplugging this 
connector. After some time the area of the case above the Microdrives may become 
warm, this is perfectly normai. 

The Television The OL is now working but before it can be used you must be able to communicate with 
it. A television is the simplest method of communicating with your OL. The television 
must be UHF. This means that the television must be able to receive BBC2 If the 
television is colour then the OL will produce a colour picture. If the television is in black 
and white then only a black and white picture Nill be reproduced, but the OL will perform 
fully in every other respect 

Find the UHF socket on the television set (if there is no socket marked but Just an aerial 
socket use that one) If there is an internal television aerial plugged into the socket, 
disconnect it. Now take the aerial lead (this is the one with different sockets at either end 
of the lead) Push one end of the aerial lead into the television UHF socket The right end 
can be found by comparing the lead with the original television aerial cable. Plug the 
other end of the lead into the socket marked on the back of the OL. 

Plug in the television and switch on Turn the volume down on the television You now 
need to tune in the television. Choose an unused channel and adjust the tuning control 
until you see 

2 



,ROVISIONAL 

Research Lid 1981. 

M,crod rive Boot? 

II yrn1 !;111 to olit;iin ;1 picture chuck fir-'.it that your tdl:Vl',1or, 1s in vvorkinq <Jrrlr:r ;Jr1d h;v; 
ll(;l;ll 'iWitd11,d on. Try to obtain the normal broadcast c;til110rl'; If vou r,;,ri r<:<,<:IV(; thr, 
'it,1\1<111, 11111 cannot obtain thr: Copvriqht picture. try th(., corr.puter with another t<:lr:l/l',1ori 
'~(: t 

If you lic1vn c1 monitor and wish to use it inslf:arJ uf ;:i t1:l1;\/l'.iion ',~:t you will h;ivr, tu ;Jttdd1 
, 1 •;L11t;ihly wired ';ockr,t to the end of the monitor cablo A carJlf; 1', ;1v;1il;1r;lr: frorr, S1r,c;la1r 
l~r,sc;;m:h but will require wiring up to suit your particular type of monitor /', rr.onochrorru. 
monitor can bf, connected usinq a 3-way or B-way 011\I pluq but an RCiB moruior 
n:111rir·ris ;m B-wi1y DIN plug; both fit into the socket on thr1 back of tho QL. rnarkr.d RGB 
lnlorrnation for wi"rinq up the monitor lead can bu lound rn th,, 01 Concept Rr,fr-:rr~nu; 
Soc.tion under lhr-i headinq "rnonitor": 

The question rnossaqo "rrucrodrivc boot?" which appears on the c,crr,f.::n is ac,k1nq 11 you 
want ii to continue to load more proqrarnrnes from a Microdrive Cartridqe to be included 
m the Superfsasic system~ this can bfJ ignored for now Type "space" and the computer 
will continue to start up and will display its 'cursor' - a flashing coloured square 

Vvhon the cursor is visible, the computer is ready to accept new commands ror data: 
Whm1 the cursor is not visible, the computer is busy running a program 

If th" machine ever fails to respond correctly or vou want to force the program to stop, 
then the keys 

should be pressed together and the sytem will return the cursor to the screen This 
sequence of keys is used to prevent accidental use Should this fail to work, there is a 
reset button on the right-hand side of the computer which should be pressed 

In future when you start up your OL most of this procedure will not be necessary You 
will notice when first switching on or after resetting a coloured pattern appears on the 
screen for a few moments. This is perfectly normal and is only the computer carrying out 
a self-test before going on to display the Copyright message 

The OL. can be tilted to make Typing easier. Three plastic feet are supplied; these can be 
inserted into the holes in the rubber feet on the bottom of the computer and fixed by 
moving from side to side until they are in position 



PIDVISIONAL 
Getting Started If you are new to computing you should now start working through the OL Beginer' s Guide. 

If you are familiar with other computers you should read the chapter From BASIC to 
SuperBASIC which describes the major differences between the BASICS you may be 
familiar with and the BASIC on the OL. You will find this chapter at the end of the Beginer's 
Guide. If you are an expert then reference to the SuperBASIC Reference Guide should be 
sufficient. A note on the organisation of this guide can be found at the front of the section. 

Use of the Keyboard 

- - -- 
Delete 

Please remember that any programs stored in the computer will be lost when the computer 
is switched off. Programs can be saved on Microdrive cartridges. Instructions on how to do 
this can be found on page of the Reference Guide. 

Unlike previous Sinclair computers there is no single keyword entry on the OL. Various keys 
however have special meanings, they are: 

The ENTER key is used to indicate to the computer that you want it to do something. 
Maybe you have typed in a command and want the computer to carry it out, or you may 
have typed in some data and want to tell the computer that you have finished and that it 
can carry on with its program. 

The keyboard has two shift keys: Pressing shift and an alphabetic key will generate the 
upper case character. In the case of the other keys, the character engraverl on the top part 
of the key will be generated, e.g. pressing SHIFT 5 will give %. 

The CAPSLOCK key will force the keyboard to always generate upper case characters on 
alphabetic keys, but will continue to generate lowercase characters on all other keys unless 
the SHIFT key is pressed. CAPSLOCK is switched off by pressing the key again. 

CTRL and ALT are used to control the computer. usually their use is combined with an 
alphabetic key to indicate a specific command. 

Unlike most computer keyboards the OL does not have a DELETE key. The CTRL key 
together with the (back arrow) key are pressed together to delete the previous character . 

• 
The Cursor As you type characters the cursor will move along the line showing where the next 

character will be displayed. When the cursor is visible and flashing the OL is ready to 
accept commands or data, if the computer is busy then the cursor is not visible. 

4 





PROVISIONAL 

Beginner's Guide 

The Beginner's Guide introduces the complete beginner to the concepts and techniques 
required to write complex computer programs. A section is included to illustrate the 
special features of SuperBASIC. The final section in the Beginner's Guide may be used by 
programmers familiar with other dialects of BASIC to convert to SuperBASIC. 

The Beginner's Guide will be available shortly. 





The Kevword Reference Guide lists all SuperBASIC keywords in alphabetical order. A 
brief explanation of the keywords function is given followed by lose definition of the syntax 
,wcl e-arnples of usage. /\n explanation of the syntax definition is given in the Concept 
Fieference Guide under "syntax definition". Each keyword entry indicates to which, 1f 
anv. group of operations it relates, ie DRAW 1s a graphics operation and further information 
can rx~ obtained frorn the graphics section of the Concept Reference Guide. 

Sor,1c·t:nH;S 1t is necessary to deal with rnore than one keyword at a time. 1e IF, ELSE, 
THEN, END, IF, these are all listed under IF. 

An 1ncle-: is provided which attempts to cover all possible ways you rnight describe a 
S1..,perB/-,SIC keyword For example the clear screen command. CLS, is also listed under 
'clear screen" and "screen clear" 



ABS 

PROVISIONAL 
math functions 

Will return the absolute value of the argument. It will return the argument if the argument 
is positive and will return minus the argument if the argument is negative. 

syntax: ABS(nurneric~expression) 

example: i. 
ii. 

ABS(0.5) 
ABS(-value) 



AUTO 
PROVISti1..1 ~' 

AUTO allows line numbers to be generated automatically when entering programs directly 
into the computer. Normally programs will be entered via the screen editor. Pressing 
escape will terminate automatic line numbering. 

syntax: AUTO 

example: AUTO i. 



>ROV?SIONAL 

ATAN and ACOT will compute the arctangent and arccotangent respecitvle v . There 
is not limit to the size of the argument other than the maximum number the machine 
can store 

syntax: AT AN(numeric_expression 
ACOT(numeric_expression 

example: i. 
ii. 

ATAN(1) 
ACOT(36574) 

ATAN 
ACOT 



r> Q fl \P ~ t Q ~I ,~ I 
· • · . . · 1\ !ltL 

RS232 

BAUD sets the baud rate for communication via both serial channels. The speed 
of the channels cannot be set independently. 

syntax: BAUD nurnenc_expression 

The value of the numeric expression must be equal to 0110 of the standard baud rates 
supported by the OL 

example: I. BAUD 9600 
ii. BAUD print__speed 

Supported baud rates aro 

75 
300 
600 
1200 
2400 
4800 
9600 
19200 (transmit only) 

BAUD 

comment 



BEEP 

syntax: 

BEEP 

where 
duration 

pitch 

pitch_2 

grad_x 
grad_)! 

wraps 

fuzv 

PROVISIONAL 
sound 

duration. = numeric_expression range O to 32768 
pitchi= numeric_expression range O to 255 
wrap: = numenc_expression range O tCJ 1 5 
tuzv. = numeric_expression range O to 8 
rand. = numeric_expression range O to 8 
grad_X. = numeric_expression range O to 32768 
grad_ Y = numeric_expression range O to 8 

duration .oncti.: 7 
pitch_2 .aieo.:». grad_y 
wrap 
fuzy 
rand 

specifies the duration of the sound m units of 20 mS. A duration of 
O will run the sound forever or until terminated. 

specifies the pitch of the sound in 

specifies an upper pitch level between which the sound will 'bounce' 

specify the rate at which the sound will bounce betwee the two specified 
pitches 

will force the sound to wrap around the specified number of times. If 
wrap is less than 15, then it will wrap forever 

will add a random number to the pitch on every cycle of the sound 
resulting in a fuzy sound 



PR OVl~IONA ~ 
wm~ow 

Fill a block of the specified size and shape, at the specified position relative to the current 
window in the specified colour. BLOCK has no effect if the specified block falls outside 
the current window. BLOCK uses the pixel coordinate system and will draw the block 
in the window assigned by the last USE channel statement. 

syntax: x_origin: = numeric_expression 
y_origin: = numeric_expression 
x_size: = numeric_expression 
v.s.sizo: = numeric_expression 

example: 

BLOCK channel x__origin, y_origin, x__size, y_size 

i. 
ii. 

BLOCK 10, 10, 5, 5, 6, 2 
10 PRINT "Bar Chart" 
20 LET bottom = 80 
30 LET x = 20 
40 LET width = 16 
50 FOR height = 11, 23, 34, 56, 67, 29, 5, 3 
60 LET colour = 3.6*height : REMark pick a colour 
70 BLOCK x, bottom-height, width, height, 6 
80 BLOCK x + 1, bottom-height + 1, width-2, height-1, colour 
90 LET x = x + width-1 

100 END FOR height 

BLOCK 



BORDER screen 

Adds a border to the window attached to the default channel or the channel assigned 
in the last USE statement. 

syntax: border_spec: = numeric_expression range O to x_size/2 

BORDER / channel I border / , colour I 
Width specifies the thickness of the top and bottom edges of the border. The sides are 
twice this width. 

example: i. 
ii. 

BORDER 10, 255 black and white stipple border 
10 FOR i = 6 TOO STEP -1 : BORDER i+2,i 
20 BORDER 8 

sets consecutive borders and then a 
transparent border protect the result 

comment: For all subsequent operations except BORDER the window size is reduced to allow space 
for the border. If another BORDER command is used then the full size of the window 
is used; thus multiple BORDER commands have the effect of changing the size and colour 
of a single border. Multiple borders are not created unless specific action is taken. 

The colour of the border may be specified in the standard SuperBASIC manner, ie, it 
may be a single solid colour or it may be a stipple (see concept colour). 



PROVISIONA,t 
devices 

CAT will obtain and display the catalogue of cartridge in the specified Mic rod rive. 

CAT expression syntax: 

example: 

The expression must specify a valid Microdrive device 

i. 
ii. 

CAT MDV1 
CAT "MDV2" 

CAT 



P R O V IS I O ,~ . 
CHR$ 

CHR$ is a function which will return the character whose value is specified as a parameter. 
CHR$ is the inverse of CODE. 

· .svntax: CHR$ (numeric_expression) 

example: i. 
ii. 

CHR$(27) ASCII escape character 
PRINT CHR$(65) print A 



PROVISION;~~ 
graphics 

Draws a circle or an ellipse at a specified angle on the screen at a specified position 
and size. CIRCLE uses the graphics coordinates system. The circle will be drawn in the 
default window or the window attached to the channel assigned in the last USE statement 

CIRCLE 

syntax: 
x:= 
y:= 
radius:= 
eccentricity: = 
angle.·= 

numeric_expression 
numeric_expression 
numeric_expression 
numeric_expression range O to 
numeric expression range O to 2 (pi symbol) 

CIRCLE x_position, y_position, radius, I eccentricity, angle I 

y 

horizontal offset from the graphics origin 

vertical offset from the graphics origin 

radius of the circle 

the ratio between the major and minor axis of an ellipse. eccentricity 
of 1 is a circle O; is a straight line. 

the orientation of the major axis of the ellipse relative to the screen 
vertical. The angle must be specified in radians 

x 

radius 

eccentricity 

angle 

If eccentricity and angle are not specified then CIRCLE will default to drawing a circle. comment 



CLEAR 

CLEAR will clear out the variable area. 

syntax: 

example: 

CLEAR 

i. CLEAR 

comment: RUN will do an automatic CLEAR before starting the program 

PROVISIONA t 



PROVISION~' 
CLOSE will flush all buffers related to the specified channel and will then close it. Any 
window associated with the channel will be deactivated 

syntax: channel. = "4= numeric_expression range O to 1 6 

CLOSE channel 

No action will be taken if an attempt is made to elude and unopened rhannel 

example: CLOSE 4 
CLOSE input_channel 

i. 
ii. 

CLOSE 



CLS 
PROVISION~.' 

screen 

Will clear the current window to the current PAPER colour, excluding the border if one 
has been specified. CLS will accept an optional parameter which will specify if only part 
of the current window must be cleared. 

syntax: 

where: 

CLS part 

example: 

part: = numeric_expression 

0 - whole screen (default if no parameter) 
1 - top excluding the cursor line 
2 - bottom excluding the cursor line 
3 - whole of the cursor line 
4 - right end of cursor line including the cursor position 

i. CLS 
ii. CLS 3 



SuperBASIC 

CODE is a function which returns the internal code used to represent the character which 
is supplied as a parameter. CODE is the inverse of CHR$ 

syntax: CODE (string_expression) 

example: i. PRINT CODE(A) prints 65 

CODE 





PROVISION~ I 
SuperBAS!C 

CONTINUE allows a program which has been broken into to be continued. 

CONTINUE 

syntax: 

example: 

CONTINUE 

i. CONTINUE 



COPY 
PROVISIONAL 

devices 

COPY will copy data from a channel or device to another channel or device until and 
end of file marker is detected or a timeout occurs. If the destination specification is 
ommitted (ie TO device) then the console device is assumed. 

syntax: COPY device I TO device / 

It must be possible to input from the source device and it must be possible to output 
to the destination device. 

example: i. 
ii 

COPY MDV1_data_file copy to default window 
COPY NET3 TO MDV1_data copy data from network 

station to MDV_data. 



PROVISIONAL 
maths functions 

COS will compute the cosine of the specified argument. The argument must be in the 
range -60000 to + 60000 and must be specified in radians. 

syntax: COS(numeric_expression) range -60000 to 60000 

example: i. 
ii. COS(3.141592654/2) 

cos 



COT 

PROVISIONAL 
math functions 

COT will compute the cotangent of the specified arqurner.t The argument must be in 
the range -30000 to 30000 ancl must be specified in radians. 

syntax: COT(numeric_expression) range 30000 to 30000 

example: i. COT(3) 

ii. COT{3.1415 92654/2) 



PROVISION A I 
screen 

syntax: 

Sets the character size. The standard size is 0,0 in 512 mode and 2,0 in 256 mode. 

width: = numeric_expression range O to 3 
height. = numeric_expression range O to 1 

CSIZE width, height 

Width defines the horizontal size of the character space. Height defines the vertical size 
of the character space The character size is adjusted to fill the space available. 

width 

0 
1 
2 
3 

example: 

size height 

0 
1 

10 pixels 
20 pixels 

size 

6 pixels 
8 pixels 

12 pixels 
16 pixels 

i. CSIZE 3,0 
ii. CSIZE 3 
iii. 10 FOR height = 0 TO 1 

20 FOR width = 0 TO 3 
30 CSIZE width, height 
40 PRINT "Testing ... " 
50 END FOR width 
60 END FOR height 

CSIZE 



CURSOR 
PRO \llt''"-'~ 11.' 

I hllU 11 n ~, 
window 

CURSOR allows the screen cursor to be positioned anywhere in the current window. 
The positioning uses the pixel coordinate system. The origin is the relative to the current 
window origin. 

syntax: CURSOR channel x_position, )!_position 

example: i . CURSOR 0,0 
ii. CURSOR 20,30 

comment: Specifying a channel for CURSOR will affect the cursor position in window linked to 
the specified channel. 



PROVISION A, 
SuperBASIC 

DAT A allows data to be defined within a program. The data can be read by a subsequent 
READ statement is ignored by SuperBASIC when it is encountered during normal 
processing. 

syntax: DATA * I expression, I * 

example: i. DATA "Monday", "Tuesday", "Wednesday" 
ii. DATA 1, "JAN", 2, "FEB", 3, "MAR" 

DATA 

READ reads data contained in DAT A statements and assignes it to variables. Data is READ 
first read from the first item in the first DAT A statement encountered in the program 
Subsequent READS read from subsequent items in the DAT A statement and then frorn 
subsequent DATA statements. An error is reported if a READ rs attempted for which 
there is no data The RESTORE command may be used to set the line from which data 
will be read to any line in the program 

syntax: READ * I identifier, I * 

example: i. 10 DIMension days$(7,4) 
20 FOR count = 1 TO 10 
30 READ days$(count) 
40 PRINT DAYS$(count) 
50 END FOR count 
60 DATA "MON", "TUE", "WED", "THUR", "FRI" 
70 DATA "SAT", "SUN" 

ii. 10 FOR count = 1 TO 12 : READ month$(count) 
20 DAT A "January", "February", "March" 
30 DATA "April", "May", "June" 
40 DAT A "July", "August", "September" 
50 DATA "October", "November", "December" 



DATE$ 
PROVISIONAL 

clock 

DATE will return the date and time contained in the computers real time clock. The clock 
has battery back-up and normally will not require setting. 

The format of the string returned by DATE$ is 

"dd-mm-yy hh:mm:ss" 

where dd is the day 
mm is the month 
yy is the year 

hh is the hour 
mm are the minutes 
ss are the seconds 

syntax: DATE$ 

example: i. PRINT DATE$ 
ii. PRINT DATE$(10 TO 

1 to 28, 29, 30, 31 
1 to 12 
84, 85, etc 

O to 23 
Oto 59 
O to 59 



PROVISIONAl 
functions and procedures 

Defines a SuperBASIC function. The function must be associated with a standard identifier 
and the formal parameters specified. Both formal parameters as well as those defined 
in LOCAL statement, have no effect on similarly named identifiers outside the function. 

When a function is defined the type of the formal parameters need not be specified. 
SuperBASIC will determine a type when the function is activated. 

An answer is returned from a function by appending an expression to the RETURN 
statement or by assigning a value to the name of the function. 

The type of data returned by the function is indicated by the terminating character of 
the function identifier. 

define: parameters:= (expression * I, expression I*) 
long: This form allows multi-line functions to be defined 

syntax: DEF FUNCTION I FN I identifier I para, neters I 
LOCAL identifier * I , identifier / * 
statements 
RETURN expression I I 
END DEF 

LOCAL and RETURN can be at any position within the procedure body 

example: 10 DEFine FuNction mean(a, b, c) 
20 LOCAL answer 
30 LET answer = (a + b + c)/3 
40 RETURN answer 
50 END DEFine 

60 PRINT mean(1,2,3) 

short: The short form of the DEFine FuNction command is included to allow compatibility 
between SuperBASIC and other forms of BASIC. 

syntax: DEF FN identifier I parameters expression 

The expression is expressed in terms of the supplied parameters 

example: DEFine FuNction round_up number = INT(number + 0.5) 
PRINT round_up 3.45 

DEFine FuNction 
END DEFine 



DEFlne PROCEDURE 
END DEFlne 

D D O \I ' " '0 ~I .~ ~ tu-it,;,•,., • .,. •• ;,,_ 

functions and procedures 

Defines a SuperBASIC procedure The sequence of statements between the DEFine 
PROCedure statement and the END DEFine statement constitutes the procedure. The 
procedure definition must also include a list of formal parameters which the procedure 
is to use. The formal parameters must be enclosed in brackets for the definition, but 
brackets are not nexessary when the procedure is called Variables may be defined to 
be LOCAL to the procedure Formal parameters and locally defined variables have no 
effect on similarly defined variables outside the procedure 

The procedure is called by entering its name as the first item in a SuperBASIC statement. 
It is possible to regard a procedure definition as a command definition in SuperBASIC; 
many of the system commands are themselves defined as procedures 

syntax: peremeters: = expression * i , expression I * 

DEFine PROCedure identifier(parameters) 
LOCAL identifier * I , identifier I * 
statements 
RETURN 

END DEFine 

LOCAL and RETURN can appear at any position within the procedure body 

example: i. 10 DEFine PROCedure start_screen 
20 WINDOW 0,0, 100, 100 
30 BORDER 4,255 
40 PRINT "Hello Everybody" 
50 END DEFine 

ii. 10 DEFine PROCedure slow_scroll(scroll_limit) 
20 LOCAL count 
30 FOR count = 1 TO scroll_limit 
40 SCROLL 1 
50 END FOR count 
60 END DEFine 

comment: The parameters for a procedure must be enclosed in brackets for the definition. If the 
procedure has no parameters then it is not necessary to specify an empty set of brackets. 



PROVISIONAL 
devices 

DELETE will remove a file from the catalogue of the cartridges in the specified 
Microdrive. 

syntax: DELETE device 

The device specification must be a Microdrive device 

example: i. DELETE MDV1_old_data 
ii. DELETE MDV1_1etter_file 

DELETE 



DIMension 

PROVISIONAi. 
arrays . .. -:, ~ . . ' 

Defines an array in to Sup(11BASIC String, integer and floating point arrays can be defined 
String arrays handle fixed longth strinqs and the final dimension is taken to be the string 
length. 

Array indices run from O up to the maximum mdex specified in the DIMension statetment; 
thus DIMension will qenerate an array with one more element in each dimension than 
is actually specified When an array is specified rt rs initialised to zero for a numeric array 
and zero length strings for a string array 

syntax: dunensior: ~ numeric __ ex:press,on 
ertev.s.soec. - indentifier(dimension * ! , dirnensior: i *) 

DIMension array __ * I , array __ I * 

example: i. DIMension string __ array$(10, 10,50) 
ii. DIMension matrix( 100, 100) 



PROVIS!~:~:·. 
graphics 

DRAW will draw a line from the current graphics position to the specified position turning 
it through an optional angle. The point specifictation may be repeated to allow multiple 
lines to be drawn with a single call to DRAW. 

DRAW uses the graphics coordinate system. 

syntax: point.= x_position, y_position , angle 

DRAW point * TO point * 

example: i. DRAW 10,50 
ii. PLOT 0,0 : DRAW 0,0.5 TO 0.5,0.5 

DRAW 



EDIT 
PROVISIONAL 

editing 

The EDIT command enters the OL screen editor and allows screen editing and line syntax 
checking to be performed. 

The editor is entered by typing: 

EDIT line_number 

the optional line number will specify an intial line for the edit line, if it is omitted then 
the initial edit line will be the first line 

When a change is made to a line the line will be highlighted to indicate that it is not 
necessarily correct. When an attempt is made to move oft the line, the complete line 
is checked for syntax errors. If no errors are detected then the edit cursor is moved. 
If syntax errors are detected then the edit cursor is not allowed to move off the line. 

The edit cursor is moved to the line which requires editing. The screen will be scrolled 
'JP or down to keep the edit line visible. Changes can be made to a line either by inserting 
text or by changing text. In insert mode space is made for any new characters by scrolling 
the line sideways. The line will wrap around if necessary In change mode characters 
in the edit line are replaced by characters typed in from the keyboard and the edit cursor 
is moved one character position to the right. Change mode and insert mode are switched 
between by typing ALT 

The edit cursor can be repositioned within the edit line with th," cursor keys Characters 
to the left and right of the edit cursor can be deleted by pressing the left and right cursor 
key in conjunction with the CTRL key 

Pressing ENTER will 'enter' a blank line into the edit window and allows new lines to 
be added. 

Pressing ESCAPE during a !ine edit at any time will restore the original unedited line. 
Pressing ESCAPE at any other line will exit the editor 



PROVISION t.: ·. 
multitasking 

EXEC will load a sequence of programs and execute them in parallel Communication 
'pipes' will be automatically set up between each program so allowing each program 
to communicate with the others. For each program a series of devices can be specified 
which will opened for the program before execution starts. The command interpreter 
will be restarted after the programs have started execution 

syntax: io_device = device use to specify 110 mapping for the program 

program. = device used to specify a Microdrive file containing the 
program 

seperetor: = I ! 
I , 

process. = program * I t io_dev,ce J * 

EXEC process * I seperator process I* 

The ! is used to separate individual processes in the command line and indicates that 
a communication pipe is to be set up between the processes. 

example: i. EXEC MDV1_communications ! MDV1_current_job 

multitasking 

EXEC_N is the same as EXEC except that the system will wait for the last program 
to terminate before the command interpreter is restarted 

example: i. EXEC MDV1_accounts, data ! MDV1_printer_process 

EXEC 

EXEC_N 



EXIT 
'lDn11,~rnu4: 
. ,i u i 111 ,. U 11, L 

repetition 
,,., . - - \..___.., 

syntax: 

EXIT will continue processing at the END of the named repeat structure 

EXIT identifier 

example: 10 REMark start looping 
20 LET count = 0 
30 REPeat loop 
40 LET count = count + 1 
50 PRINT count 
60 IF count = 20 THEN EXIT loop 
70 END REPeat loop 

ii. 10 REPeat outer_loop 
20 FOR n = 1 TO 1000 
30 REM program statements 
40 REM program statements 
50 IF RND = .5 THEN EXIT outer_loop 
60 END FOR n 

I. 

70 END REPeat outer_Joop 



PROVISIONAL 
uuul: functions 

EXP 1Nili roturn the value of e raised to the power of the argument Ihe argument must 
IJe 1n the range -500 to 500 otherwise overflow will occur. 

syntax: EXP(numenc_express,on) range !JOO to !JOO 

example: i. EXP(3) 
ii. EXP(3.141592654) 

EXP 



FLASH 

This turns the flash state on and off. 

PROVISIONAL 
screen"--" 

syntax: FLASH nurnenc~_express1on range O to 

where: O will turn the flash off 
1 will turn the flash on 

comment: FLASH operates i11 2S6 mode onlv (low resolution) 

example: i. 10 PRINT "A"; 
20 FLASH 1 
30 PRINT "flashing"; 
40 FLASH O 
50 PRINT "word" 



PROVISION A' 
repetition 

The FOR statement allows a group of SuperBASIC statements to be repeated a controlled 
number of times. The FOR statement can be used in both a long and a short form 

NEXT and END FOR can be used together within the same FOR loop to provide a loop 
epilogue. A loop epilogue is a group of SuperBASIC statements which will NOT be 
executed if a loop is exited via an EXIT statement. EXIT statement. 

define: for_item. = I numeric_exp 
I numeric_exp TO numeric_exp 
I numeric_exp TO numeric_exp STEP numeric_exp 

for_item *I, for_item I* tor.clis: = 

short: The FOR statement is followed on the same logical line by a sequence of SuperBASIC 
statements. The sequence of statements is then repeatedly executed under the control 
of the FOR statement. When the FOR statement is exhausted, processing continues 
on the next line The FOR statement does not require its terminating NEXT or END FOR. 

syntax: FOR identiiet = for_list : statement * I : statement * 

example: i. FOR i = 1, 2, 3, 4, 2 TO 7 STEP 2 : PRINT i 
ii. FOR element = first TO last : LET buffer(element) = 0 

long: The FOR statement is the last statement on the line. Subsequent lines then contain a 
series of SuperBASIC statements terminated by an END FOR statement. The statements 
enclosed between the FOR statement and the END FOR are process under the control 
of the FOR statement. 

syntax: FOR identifer = for_list 
statements 

END FOR identifer 

example: 1 0 FOR value = data TO 1 STEP - 1 
20 LET factorial = factorial * value 
30 PRINT value, factorial 
40 END FOR value 

ii. 10 FOR element = 1 TO length 
20 IF data (element) 0 THEN EXIT element 
30 LET data (element) = root(data(element)) 
40 NEXT element 
50 PRINT "Operation completed" 
60 END FOR element 

i. 

comment: For a simple FOR statement the END FOR and NEXT may be used interchangably. 

warning: Currently the for loop identifer must define a floating point control variable this restriction 
will lifted. 

FOR END FOR 



FORMAT PR OVISIO NAt Microdrives 

FORMAT will format and make ready for use the cartridge contained m the specified '--- 
Microdrive. 

syntax: FORMAT _devicu 

Device specifies the Microdrive to bu used lor 101 mattir 19 and the identifier part of tho 
specification is used as the median or volume, name for that cartridge 

example: i. FORMAT MDV1_data_cartridge 
ii. FORMAT MDV2_wp_letters 

warning: FORMAT can be used to reinitialise a used cartridge, however. all data contained on 
that cartridge will be lost. 



PROVISIONAL 
compatibility GOTO 

For compatibility with other BASICs, SuperBASIC supports the GOTO statement. GOTO 
will unconditionally transfer processing to the statement number specified. The statement 
number specification can be an expression. 

syntax: GOTO expression 

example: i. GOTO program_start 
ii. GOTO 9999 

The control structures available in SuperBASIC make the GOTO statement redundant. comment 



PROVISIONA' 
GOSUB compatibility 

For compatibility with other BASICs, SuperBASIC supports the GOSUB statement. 
GOSUB transfers processing to the specified line number; a RETURN statement will 
transfer processing back to the statement following GOSUB. 

The line number specification can be an expression 

syntax: GOSUB expression 

example i. GOSUB 100 
ii. GOSUB 4 *select_variable 

comment: The control structures available in SuperBASIC make the GOSUB statement redundant. 



PROVISIONAL 

The IF statement allows conditions to be tested and the outcome of that test to control 
subsequent program flow 

IF 
THEN 
ELSE 
END IF 

The IF statement can be used in three forms. 

The THEN keyword is followed on the same logical line by a sequence ot SuperBASIC short 
statements. These statements are executed if the expression contained in the IF statement 
evaluates to be non zero. 

syntax: IF expression THEN statement * I : statement I* 

example: i. IF a = 32 THEN PRINT "Limit reached" 
ii. IF test_data maximum THEN LET maximum 
iii. IF a THEN PRINT "a is not zero" 

test.Ldata 

The THEN keyword is the last item on the logical line. A sequence uf Super-BASIC long 1 
statements is written following the IF statements. The sequence is terminated by the 
END IF statement. The sequence of SuperBASIC statements is executed it the expression 
contained in the IF statement evaluates to 1 . 

syntax: IF expression THEN 
statements 

END IF 

10 IF number limit THEN 
20 LET error _count = error _count + 1 
30 PRINT "Number out of range" 
40 END IF 

The THEN keyword is the last entry on the logical line. A sequence of SuperBASIC long 2 
statements follows on subsequent lines, terminated by the ELSE keyword If the expression 
contained in the IF statement evaluates to be non zero then this first sequence of 
SuperBASIC statements is processed. After the ELSE keyword a second sequence of 
SuperBASIC statements is entered, terminated by the END IF keyword If the expression 
evaluated by the IF statement is not equal to 1 then this second sequence of SuperBASIC 
statements is processed 
syntax: IF expression THEN 

example: i. 

statements 
ELSE 
statements 

END IF 

example: 10 IF number limit THEN 
20 PRINT "Range error" 
30 ELSE 
40 PRINT "Inside limit" 
50 ENDIF 

In all three forms of the IF statement the THEN is optional. In the short form it may comment 
be replaced by a colon to distinguish the end of the IF and the start of the next statement. 
In the two long forms it can be removed completely 

i. 

IF statements may be nested as deep as the user requires (subject to available memory). nesting 
However, confusion may arise as to which ELSE, END IF etc matches which IF. 
SuperBASIC will match nested ELSE statements etc to the closest IF statement, for 
example: 

10 IF a = b THEN 
20 IF c = d THEN 
30 PRINT "error" 
40 ELSE 
50 PRINT "no error" 
60 END IF 
70 END IF 

The ELSE is matched to the second IF 



INK PROVISION:it 
screen 

This sets the current ink colour, ie. the colour which output is written in 

syntax: INK colour 

example: i. INK 5 
ii. INK 6,2 

comment: The INK colour can be a stipple (see colour) 



PROVl:SION At 
RE Peat 
END REPeat 

repetition 

REPEAT allows general repeat loops to be constructed. REPEAT must be used with 
EXIT for maximum effect. REPEAT can be used in both long and short forms. 

The REPEAT keyword and loop identifer are followed on same logical line by a colon short 
and a sequence of SuperBASIC statements EXIT will resume normal processing at the 
next logical line. 

syntax: REPeat identifier . statements 

example: REPeat wait : IF inkey$ "" THEN EXIT wait 

The REPEAT keyword and the loop identifier are the onlv statements on the logical line. long 
Subsequent lines contain a series of SuperBASIC statements terminated by an END 
REPEAT statement. 

The statements between the REPEAT and the END REPEAT are repeatedly processed 
by SuperBASIC 

syntax: REPeat identifier 
statements 

END REPeat identifier 

example: i. 50 REPeat guess 
60 INPUT "What is your guess?", guess 
70 IF guess = number THEN 
80 PRINT "You have guessed correctly" 
90 EXIT guess 

100 ELSE 
120 PRINT "You have guessed incorrectly" 
130 END IF 
140 END REPeat guess 

Normally at least one statement in REPeat loop will be an EXIT statement comment 



RND SuperBASIC 

RND generates a random number Up to two parameters may be specified for RND. 
It no parameters are specified then AND returns a pseudo random floating point number 
in the range O to 1 If a single parameter is specified then AND returns an inteqer in 
the range O to the specified parameter. If two parameters aro specified then RND returns 
an integer in the range specified by the two parameters. 

syntax: AND I numeric_expression \ I r numei«: uxprf:}ssion I 

example: i. PRINT AND 
ii. PRINT RND 10,20 
iii. PRINT RND 1 ,6 
iv. PRINT RND 10 



documentation 

PROVISIONAL 
REMark 

Allows explanatory text to be inserted into a program. The remainder of the line is ignored 
by SuperBASIC 

syntax: 

example: 

REMark text 

i. REM This is a comment in a program 



PROVISIONAL 
RESTORE SuperBASIC 

RESTORES allows the data pointer, ie the position from which subsequent READS will 
read their data. If RESTORE is followed by a parameter then the data pointer is set to 
that value If no parameter is specified then the data pointer is reset to the start of the 
program. 

syntax: line.·= integer_expression range 1 to 32 768 

RESTORE line 

example: i. RESTORE 
ii. RESTORE 999 

functions and procedures 
RETURN 

RETURN is used to force a funcion or a procedure to terminate and 
resume processing at the statement after the procedure or function 
call. When used in a function the RETURN statement can also be 
used to return the functions value 

syntax: RETURN expression 

example: i. 10 DEFine FuNction sinh x 
20 IF ABS x § accuracy __ limit THEN 
30 RETURN EXP(x-LN 2) 
40 ELSE 
50 RETURN (exp(x) - exp(x))/2 
60 END IF 
70 END DEFine 

ii. 10 DEFine PROCedure warning n 
20 REM print a warning message 
30 IF warning_flag THEN 
40 PRINT "WARNING:"; 
50 SELect ON n 
60 ON n = 1 
76 PRINT "Microdrive almost full" 
86 ON n = 2 
98 PRINT "Data space almost full" 

100 ON n = REMAINDER 
110 PRINT "Program error" 
1 20 END SELect 
130 ELSE 
140 RETURN 
150 END IF 
160 END DEFine 

comment: It is not compulsory to have a RETURN in a procedure. If processing reaches the END 
DEFine of a procedure then the procedure will return automatically. 

It is not compulsory to have a RETURN in a function A function can be terminated by 
assigning a value to the name of the function, see FuNction 



PROVISION Al 
Allows output to be sent to a channel. The normal use of PRINT is to send data to the 
OL screen. 

syntax: print_sep. 

channel.= 

prinLitem. 

numeric_exp1ess1on range O to 16 

I expression 
I channel 
I prinLseparator 
I pnnLsepfprinL1tem I print __ sep I print_list = 

PRINT * I print_item I * 

Multiple print separators are allowed. At least one separatur must separate channel 
specifications and expression 

example: i. PRINT "Hello World" will output Hello World on the 
default output device (screen) 

ii. PRINT 5, "data", 1,2,3.4 will output the supplied data to 
channel 5 (which must have been 
previously opened) 

Best viewed as an intelligent space Its normal action is to insert a space 
between items output on the screen If the item will not fit on the current 
line a line feed will be generated If the current print position is at the 
start of a line then a space will not be output 

Normal seperator, SuperBASIC will rnake attempt to separate the two 
items printed in a sensible way (comma) 

Will force a new line (apostrophe) 

Will cancel all SuperBASIC attempts to layout the two items. 

If no channel specification rs given iside the PRINT statement the print output will be 
sent to the default channel or the channel assigned by the last USE statement. If a channel 
is specified in the PRINT statement then subsequent print output be sent to that channel 
until the end of the PRINT statement or another channel specification is found 

PRINT 

separator 

comment 



RANDOM ~t(IJ V f SiONlLrBAS/C 
RANDOM allows the random number generator to be reseeded. If a parameter is specified 
the parameter is taken to be the new seed. If no parameter is specified then the generator 
is reseeded from internal information 

syntax: RANDOM numeric_expression 

example: i. RANDOM 
ii. RANDOM 3.2235 



graphics 

PROVISIONAL 

PLOT a point at the specified position relative to the graphics origin for the current window. 
Points are positioned by PLOT relative to the graphics origin. 

syntax: 

example: 

x_coordinate "-" numeric_expression 
y_coordinate.-= numeric_expression 

PLOT x_coordinato, y_coordinate 

i. PLOT 256, 128 
ii. PLOT x, x*x 

PLOT 



POKE 
PRnv,~,oM ~, ...... ·-'······- SuperBASIC 

POKE allows a memory location to be changed. An optional parameter can be 
specified to indicate if a byte or a word access is required. No optional parameter 
indicates that a byte access is required. 

address: = numeric_expression 
data. = numeric_expression 
word:= numeric_expression range O to 

O indicates that POKE is to pertorrn a byte access (8 bit) 

1 indicates that POKE is to perform a word access ( 16 bit) 

POKE address, data , word 

syntax: 

where: 

example: i. POKE 12235, 0 
ii. POKE 12345, 32768, 1 



PROVISIONAL 
111ult1tc1sk1nu PAUSE 

PAUSE will cause d proqram to wait a specified oeriod of tirne Delays are specified 
i11 units of 20111s 

syntax: PAUSE 11w uet«. extxcssion 

example: i. PAUSE 20 
ii. PAUSE 100 

, 



PEEK 
!Ml I nu•t' n~ . . PRu •.•ll;a. 1~rBASIC 

PEEK is a function which returns the contents of the specified memory location. AN 
optional parameter can be specified to indicate if a byte or a word access is required. 

syntax: address: == numetic Lexptession 
word: == numetic.s.expresson range O to 1 

O indicates that PEEK is to perform a byte access (8 bit) where: 

1 indicates that PEEK is to perform a word access ( 16 bit) 

PEEK (address r , word 1 l 

example: i. PEEK 12245 
ii. PEEK 12, 1 



PROVISIONAL 
PAPER set a new paper colour ( the paper colour will be used by CLS, PAN, SCROLL, 
etc) The selected paper colour remains in effect until the next use of PAPER. 

syntax: PAPER colour 

example: i. PAPER 7 
ii. PAPER 7, 2 
iii. 10 REMark Show all colours and stipples 

20 FOR i = 0 TO 7 
30 FOR j = 0 TO 7 
40 FOR k = 0 TO 3 
50 PAPER i.j.k 
60 SCROLL 6 
70 END FOR k 
80 END FOR j 
90 END FOR i 

PAPER will also set the STRIP colour 

PAPER 
screen 

warning 



PAN 
PROVISIONAL 

screen 

PAN the entire current window the specified number ol pixels to the left or the right 
Paper is scrolled in to fill the clear area An optional second parameter can be specified 
which will allow a part of the screen to be panned 

syntax: 

where: 

part - numeric exp1es::;l()n 

O whole screen (default in no para111tclt:r I 
3 - whole of the cursor line 
4 - right end ot cursor line including the cursor position 

PAN numeric_expression , part 

If the expression evaluates to a POSITIVE value then the sci een will be panned to tho 
LEFT, otherwise it will be panned to the right. (((link positive and LEFT with highlight) 

example: PAN 50 
PAN -100 
PAN 50,3 

pan left 50 pixels 
pan right 100 pixels 
pan the whole of the current cursor line 
50 pixels to the left 

i. 
ii. 
Ill. 



PROVISIONAL 
files OPEN (provisional) 

Allows the user to open a channel for 110. 

syntax: channel: = * numeric_expression range O to 16 

device. = see concept device 

OPEN channel, device 

example: i. #- OPEN 
ii.# OPEN 
iii.#- OPEN 
iv.# OPEN 

5, f_name$ 
15, "file name" 
7, MDVL_data __ Jile 
6, CON_ 1 OX20A20X20_32 

Open channel 6 to the CONsole device creating a window size 10 x 
20 pixels at position 20,20 with a 32 byte keyboard type ahead buffer. 

Although the SuperBASIC syntax requires that a file name be supplied as a parameter comment 
to the OPEN statement SuperBASIC will automatically convert any unsuitable data to 
the correct form for the OPEN statement. This implies that if required the file name can 
be entered without quotes: 

OPEN# 5, "data_file" 

OPEN# 5, data_file are equivalent 



OVER 

PDQ\H~,~~, ~., 
I II I IV IV•• 1 • • 

screen 

OVER selects the type of over printing required The selected type remains in effect until 
the next use of OVER. 

syntax: 

where 

example: 

OVER numeric_expression range - 1 to 1 

O implies print INK on STRIP 
1 implies print in INK on transparent STRIP 
- 1 implies print in INK over previous contents of screen 

i. OVER 1 
ii. 10 REMark Shadow Writing 

20 PAPER 7 : INK O : OVER 1 
30 FOR i = 0 TO 1 0 
40 CURSOR i,i 
50 IF i= 10 THEN INK 2 
60 PRINT "Shadow" 
70 END FOR i 



repetition 
PROVISIONAL 

NEXT 

NEXT is used to control REPEAT and FOR constructions. 

syntax: NEXT identifier 

The identifier must match that of the loop which the NEXT is to control 

example: 10 REMark this loop must repeat forever 
10 REPeat infinite_loop 
30 PRINT "still looping" 
40 NEXT infinite_loop 

ii. 10 FOR index= 1 TO limit 
20 INPUT "data? ': array(index) 
30 NEXT index 

i. 

iii. 10 REPeat odd 
20 LET number = RND(1, 100) 
30 IF number/2 = INT(number DIV 2) THEN NEXT odd 
40 PRINT number; t r is odd" 
50 END REPeat odd 

If NEXT is used inside a REPeat-END REPeat construct it will force processing to continue in REPeat 
at the statement following the matching REPeat statement. 

The NEXT statement can be used to repeat the FOR loop with the control variable set in FOR 
at its next value. If the list of values is used or if the range of the control variable has 
been exceeded then processing will continue at the statement following the NEXT; 
otherwise processing will continue at the statement after the FOR. 



ON GOTO 
ON GOSUB 

PRu ~;~:JNAL 
compatibilitv 

For compatibility with other BASICs, SuperBASIC supports the ON GOTO and ON 
GOSUB statements. These statements allow a variable to select from a list of possible 
line numbers a line to process in a GOTO or GOSUB statement 

syntax: ON variable GOTO expression * / , expression I * 
ON variable GOSUB expression * I, expression I* 

example: i. ON x GOTO 10, 20, 30, 40 
ii. ON selecLvariable 1000, 2000, 3000, 4000 

comment: SELect can be used to replace these two BASIC commands 



PROVISIONAL 
MODE semen 

MODE sets resolution of the screen definition and also the ru rrnber of solid colours 
available. MODE will clear the entire screen and will reset all all windows and will close 
any channels which are using those windows for t,1, ff JI It 

syntax: MODE numeric expression 

whore 
0, 286, 8 will select low resolution (8 colour morlo: 
1, 512, 4 will select high resolution (4 colour rnork.: 

256 and 512 ar tho number of fJIXOls across the screen in mode 

example: i. MODE 256 
MODE 4 

iii. MODE O 

If the OL is being used on a television set then it will nut bl, possibl« to s1:1u ihl! full 812 warning 
pixels available in high resolution mode. 



NEW 

PP~H1SION ~ · ••• ..;,i n1. 

SupurBAS!C 

NEW will clear out the old program and old variables 

syntax: NEW 

example: NEW 



PROVISIONAL 
SuperBAS!C 

LAUN will load a specified Microdrive file which must contain a SuperBASIC program. 
When loaded the program will start execution. 

syntax: LAUN device 

device must be a Microdrive device 

example: i. LAUN MDV1_QUILL 
ii. LAUN MDV1_game 

LRUN 



MERGE 
?ROVISIOH 

Will load a file from the specified device. If the new file contains a line number which 
doesn't appear in the program then the line will be added. If the new file contains a 
replacement line for one that already exists then the line will be replaced. All other old 
program lines are left undisturbed. 

syntax: MERGE device 

device must be a Microdnve device 

example: i. MERGE MDV __ 1_overlay_program 
ii. MERGE MDV_ 1 _new __ data 



PROVISIUNAL 
functions and procedures 

Allows a series of variables to be defined to be LOCAL to a procedure or a function 
LOCAL data is lost when the procedure or function terminates. 

syntax: 

example: 

LOCAL identifier * I, idu1111!1t·1 I* 

i. LOCAL a, b, c 
ii. LOCAL temp data 

LOCAL 



LN 
LOG 

math functions 

LN will return the natural logarithm of the specified argument. LOG will compute the 
logarithm to base 10 There is no upper limit other than the maximum number the 
computer can store 

syntax: LOG(numeric_expression) range greater than zero 
LNG(numenc_expression) range greater than zero 

example: i. LOG(20) 
ii. LN(3.141592654) 



PROVISIO Mt 
LIST 

LIST allows SuperBASIC line or group of lines to be listed on a specific channel or default 
channel. 

syntax: line: = I numeric_expression TO numeric_expression 
numeric_expression TO 
TO numeric_expression 
m 1meric_expression 

1 
2 
3 
3 

LIST channel fine 

where: 
1 will list from the specified line to the specified line 
2 will list from the specified line to the end 
3 will list from the start to the specified line 
4 will list the specified line 

If LIST output is directed to a channel opened as a printer channel then this will provide comment 
hard copy output. The default will be modified by the USE command 



LOAD 

LOAD will load a SuperBASIC program from any OL device. The default device for LOAD 
is 

MDV1 

syntax: LOAD identifier 

example: i. LOAD "MDV1_EASEL" 
ii. LOAD ARCHIVE 
iii. LOAD NET3 
iv. LOAD SER1_E 

comment The standard rules for SuperBASIC identifiers and SuperBASIC coercion still apply. It rs 
not necessary to use the quote symbol in the LOAD statement. Since MDV1_ is the 
default device it is not necessary to specify it If the specified Microdrive file is not found 
on the specified Microdrive no attempt is made to search other dirves on the system 
To load from any other device the complete device specification must be given 



strings 
PROVISIONAL 

LEN 

syntax: 

LEN will return the length of a string specified as a parameter. 

LEN (string_expression) 

example: i. LEN( "LEN will find the length of this string" ) 
ii. LEN( "output.Lstrinqs ) 



LET 
PROVISIONA~ 

Starts a SuperBASIC assignment statement. The use of tho LET kevword is opt:,111<.il 
The assignment may be used for both string and numeric assignments SuperBASIC ,,.,,,: 
automatically convert unsuitable data types to a suitable for wherever possible. 

syntax: LET veriebie = expression 

example: i. LET a = 1 + 2 
ii. LET a$ zz: "12345" 
iii. LET a$ = 6789 
iv. b$ = testi.data 



PROVISIONAL 
math functions 

INT will return the integer part of the argument. The argument must bne in the range 
-32767 to 32767. 

syntax: INT(numeric_expression) range -32767 to -+ 32767 

example: i. INT(34.657938) 

INT 



INVERSE 
PROVISIONAL 

screen 

INVERSE will cause all subsequent characters to be output m inverse, ie. PAPER on 
INK rather than INK on PAPER. INVERSE will remain in effect until the next use of 
INVERSE. 

syntax: 

where: 

INVERSE numeric_expression range O to 

0 - turn inverse off 
1 - turn inverse on 

example: i. INVERSE O 
ii. INVERSE 1 

\ 



PROVISIONAL 
conaition» INKEY$ 

INKEY$ is a function which returns a single character input from a channel If no channel 
is specified then the default channel or the channel specified in the last USE command 
rs used 

syntax: INKEY$ (channel) 

example: i. PRINT INKEY$ 
ii. PRINT INKEY$(#'4) 



INPUT //0 

INPUT allows data to be entered into a SuperBASIC program directly from the OL keyboard 
by the user. SuperBASIC will wait until the specified amount of data has been input before 
continuing with the program. Each item of data must be terminated by the enter key 

INPUT will assume the default channel tor input and output if no channel specification 
is specifically given. If a new default channel (channels) has be assigned with the USE 
command then this (these) channels will be used instead. 

If input is required into a particular channel the cursor for the window conected to that 
channel will appear and start to flash. 

syntax: separator. -'- I I 

I 
I 
I 

channel. - numenc; expression 

prompt. = I channel I exprcssion_separator 
INPUT I prompt JI channel I I vanable I* I, val/able i 

example: i. INPUT "Last guess" ! guess+ 0, "New guess? ! guess 
ii. INPUT "What is your guess?"; guess 
iii. 10 INPUT "array size?"; length 

20 DIMension array(length) 
10 FOR element = 0 to limit-1 
20 INPUT "data? ";array(element) 
30 END FOR element 
40 FOR element = 0 TO limit-1 
50 PRINT array(element) 
60 END FOR element 

comment: INPUT will output any expression as part of the pron ipt a: rd will assume that any variable 
that doesn't form part of an expression requires data top be input, see example i 



PROVISIONAi 
RUN allows a SuperBASIC program to be started. If a line number is specified in the 
RUN command then the program will be started at that point, otherwise the program 
will start at tlk lowest line number. RUN will reset the values of any defined variables 
GOTO I r 11, 11 t» used to start a proqrarn without clearing any variables. 

syntax: RUN rnuiienc __ ( \fitussion 

Bx ample: i. 
ii. 
iii. 

RUN 
RUN 10 
RUN 2*20 

RUN 

Although RUN can be used within a program its normal use rs to start prograrn execution comment 
by typing rt in as a direct command. 

k--· 



SAVE 
PROV!S!DNAL 

devices 

SAVE will save a SuperBASIC program onto any OL device. The default device for SAVE 
is 

MDV1 

syntax: SA VE device 

example: i. SAVE MDVL __ program 1 
ii. SA VE test_program 
111. SAVE NET3 
iv. SAVE SER1 

comment: The standard rules for SuperBASIC identifiers and SuperBASIC coercion still apply. It rs 
not necessary to use the quote symbol in the SAVE statement. Also since MDV 1 _ 
is the default device it is not necessary to specify it, To SAVE on any other device the 
complete device specification must be given. 



PROVISIONAL 
devices SBYTES 

SBYTES allows areas of the OL memory to be saved on a QL device. The default device 
for SBYTES is 

MDV1_ 

syntax: SBYTES devices 

example: 1. SAVE MDV1_screen __ data 
ii. SAVE tesLprogram 
iii. SAVE NET3 
iv. SAVE SER1 

The standard rules for SuperBASIC identifiers and SuµerBASIC coercion still apply It is comment 
not necessary to use the quote symbol in the SAVE statement. Also since MDV L~ 
is the default device it is not necessary to specify u. To SAVE on any other device the 
complete device specification must be given. 



SIN 
DDO\.lf~l!1M ~' . . ~ -::vl-W :' _,. •• .,, •..•.• , - 

math functions 

SIN will compute the sin of the specified argument. The argument must be in the range 
-60000 to 60000 and must be specified in radians 

syntax: SIN(numeric_expression) range -60000 to + 60000 

example: SIN(3) 
SIN(3.141592654/2) 

i. 
ii. 



graphics 
PROVISIONAL 

SCALE allows the scale factor used by the GRAPHICS procedures to be altered. A SCALE 
of 'x' implies that a vertical line of length 'x' will fill the vertical axis of the window in 
which the line is drawn A scale of 100 is the default. 

syntax: 

example: 

SCALE numeric_exprcssion 

i. SCALE 0.5 
ii. SCALE 10 
iii. SCALE 100 

SCALE 



SCROLL 

PROVISIONAL 
SCI Ut:11 

Scrolls the current window up or down Paper is scrolled in at the top or the bottom 
to fill the clear space. 

An optional second parameter can be specified to obtain a p:~r t scruur I scroll 

syntax: 

where: 

part. -=- numeric_expression 

0 - whole screen (default in no parameter) 
1 - top excluding the cursor line 
2 bottom exrlucJing the cursor line 

SCROLL nume11c_t1xpression , part 

If the expression evaluates to a positive, vah Je then the screen will be scrolled upwards 

example: i. SCROLL 10 
ii. SCROLL - 70 
iii. SCROLL 10, 2 

scroll up 1 0 pixels 
scroll down 70 pixels 
scroll the bottom of the 10 pixels 



PROVISIONAL 
SELect allows various courses of action to be taken depending on the value of an variable. 

SE Leet 
END SELect 

conditions 

select_vanable. '-" numeric_vanable 
select_item = I expression 

I expression TO expression 
select_list = I select_item *I, select_item I* 

define 

Allows multiple actions to be selected depending on the value of a select..; variable 
The select variable is the last item on the logical line. A series of SuperBASIC statements 
follows, which is terminated by the next ON statement or by the END SELect statement. 
The ON REMAINDER statement allows a catch all which will respond if no other select 
conditions are satisfied. 

long 

syntax: SELect ON select_ variable 
* ! \ ON seteci.: variable I = select_list 
statements I * 

i ON select_variable I= REMAINDER 
statements 

END SELect 

example: i. 10 SELect ON error_number 
20 ON error_number = 1 
30 PRINT "Divide by zero" 
40 LET error_number = 0 
40 ON error_number = 2 
50 PRINT "File not found" 
60 LET error_number = 0 
70 ON error_number = 3 TO 5 
70 PRINT "Microdrive file not found" 
80 LET error_number = 0 
90 ON error_number = REMAINDER 
90 PRINT "Unkown error" 

110 error_recovery 
120 END SELect 

If the select variable is used in the body of the SELect statement then 
it must match the select variable given in the select header. 

The short form of the SELect statement allows simple single line selections to be made short 
A sequence of SuperBASIC statements follows on the same logical line as the SELect 
statement. If the condition defined in the select statement is satisfied then the sequence 
of SuperBASIC statements is processed. 

syntax: SELect select_ variable 
* I : statement I* 

setect.i.list statement 

example: i. SELect test_data = 1 TO 10 : PRINT "Answer within range" 
ii. SELect answer = 0.00001 TO 0.00005 : PRINT "Accuracy OK" 
iii. SELect a = 1 TO 10: PRINT a!"in": = REMAINDER: PRINT at'out" 

The short form of the SELect statement allows ranges to be tested more easily than comment 
with an IF statement. Compare example ii. above with the corresponding IF statement. 



SQRT 
PROVfSI0!-!1~~ 

. . math functions 

SQRT will computer the square root of the specified argument. The argument must be 
greater than zero. 

syntax: SORT(numeric __ expression) range greater than zero 

example: i. 
ii. 

SORT(3) 
SQRT(a + 2 + b + 2) 



PROVISIONAL 
STOP will terminate execution of a program and will return SuperBASIC to the command 
interpreter. 

syntax: STOP 

example: i. STOP 

STOP 



STRIP 
PROVISIO M ,~' 

screen 

This will set the current strip colour. The strip colour is the background colour which 
is used when OVER 1 is selected Setting PAPER will automatically set the strip colour 
to the new PAPER colour 

syntax: STRIP colour 

example: STRIP 7 
STRIP 0,4,2 

i. 
ii. 



PROVISIONAL 
t, It 

110 ·TAB 
TAB is a function which will return sufficient spaces to move the print position to the 
required column. If the print position is greater than the specified column then no action 
is taken. TAB must be used from within a PRINT statement. TAB takes account of the 
current character size. 

syntax: position: = numeric_expression 

TAB position 

example: i. 
ii. 

PRINT TAB(30); "This starts at column 30" 
PRINT "column O "; TAB(20); "column 20" 

TAB is normally followed by the ; print separator, any other separator would attempt comment 
to space out the output and would nullify the effect of the TAB. 



TAN math functions 

TAN will compute the tangent of the specified argument. The arqument must be in the 
range -30000 to 30000 and must be specified in radians. 

syntax: T AN(numeric_express1on) range 30000 to 30000 

example: TAN(3) 
T AN(3.141592654/2) 

i. 
ii. 



PROVISIONAi. 
debugging 

The TRACE command turns on and off the SuperBASIC trace option. When trace is 
active a list of the line numbers and an indication of the statement within the line is output 
on the default screen 

Trace will accept an extra parameter which will output to the trace information to a channel 
(which must have been previously opened) this feature allows program tracing to continue 
without intefering with the standard program window. 

syntax: TRACE I channel i numeric_express,on rarige O to 

example: i. TRACE O 
ii. TRACE 1 
iii. TRACE 
iv. TRACE-# 4 1 

trace off 
trace on 
trace_switch 
trace on and output trace information 
to channel 4 

TRACE 



UNDER PR O V ! S ! 0 ~ ! .~u 
screen 

syntax: UNDER oumetic.Lexpression ranqe 0 to 

Turns underline either on or off for subsequent output lines. Uses the current INK colour 

example: I. 

ii. 
UNDER 1 
UNDER switch_value 



PROVISIONAL 
default channels 

USE allows the default channels tor PRINT, to be defined to the system Various groupings 
of function are assumed by the USE command 

group 1: PRINT output 
graphics output 
window functions (BORDER, WINDOW, CLS, PAN, SCROLL, etc) 

group 2: INPUT prompt 

group 3: INPUT input 
LIST output 

syntax: channel.= ti= numeric_expression range O to 16 

USE channel / ,channel 11 ,channel I 

It one parameter is specified then groups 1, 2 and 3 are set to the specified channel 
If two paramters are specified then group 1 is set to the first parameter and groups 2 
and 3 are set to the second. If three parameters are specified then each group is set 
to the respective channel 

example: USE 0, 5 
USE prinLchannel, prompt, Microdrive 

I. 
ii. 

USE 



USR 

syntax: 

USR allows a machine code program to be accessed 

example: 

address: = rvumenc Lexpression 

USR address 

i. USR O 



e-ccctio. is PROVISIONAL 
WHEN 

l11lorrnilt1cn .ivailablo shortly 



WINDOW OK 

Allows the user to create a window on the QL display screen Ihe window is created 
without any border. 

syntax: x __ origin. ··"· numeric_expression 
y_ongin.· = numeric_expression 
x_s,ze:"'" numeric __ expression 
y_size.· = numeric_expression 

WINDOW x __ origin, y __ origin, x __ size, v.s.see 
x_origin and y_origin are the X and Y coordinates ot the top left hand corner ot the 
window x_s1ze and y_s,ze are the width and depth of the window respectivly 

Coordinates are specified using the pixel coor dinate sys tern 

example: WINDOW 30, 40, 10, 10 





PROVISIONAL 

The Concept Reference Guide attempts to describe concepts relating to SuperBASIC and 
the OL hardware. Concepts are listed in alphabetical order of the most common term for 
that concept. An index is provided which attempts to anticipate any other terms which 
may be used. 

The concept section of the Reference Guide places each concept in alphabetical order 
for the most common wording for that concept, i.e. string comparisons will be found 
under S At the end of the section there is an index that tries to anticipate any other 
names that il particular concept may have, e.q. comparisons (string). 



Array Literals 

Array literals provide a short hand form of initialising an array The contents of an array 
can be specified simply and the array initialised with a single assignment. 

Array literals are enclosed in curly brackets the level of nesting indicates the number of 
dimension of the final array Array literals can be used to define string arrays 

example: lo, 1,2,31 
uo. 1112,311 
!llO, 1II2,3)1114,5116, 7111 

a one dimensional array 
a 2 x 2 array 
a 2 x 2 x 2 array 

{"one", "two"] a 2 x n array 

i. 10 DIMension data (2,2), answer$(1,3) 
20 LET data = /11, 1 Oll4,2ll 
30 let answer$ = l"ves", "no"] 



PROVISIONAL 
Anays must ho DIMensioned before they are used when an array is dimensioned the 
value of each of its elements rs set to zero (a zero length string for a a strim} arrav) An 
,,miy dimension runs from zero up to the specified value. There is no limit on thP number 
of dimensions which may be defined other than the total mommy capacitv of the 
computer Data in An array is stored such that the Inst index defined cvoles round most 
rnpidlv 

example: consider array(4, 2) 

stored as 

array(O, 0) 
array(O, 1) 
array(O, 2) 
array(1, 0) 
array( 1 , 1) 
array(1, 2) 
array(2, 0) 
array(2, 1) 
etc. 

The dement relerrnd to by arravta, b, c) i:, t,q11ivrill:nl lu !ht, olcmont 
referred to by nrrAy(a)(bl(c\ 

Array 



character set and keys 
PROVISIONAL 

To be announced. 



Coercion in SuperBASIC is the act of forcing a value to a type which will allow the 
requested operation to be performed, i.s. if SuperBASIC is requested to perform a 
numeric addition then for the operation to succeed the two operands must themselves 
be numerical. SuperBASIC will attempt to convert non numerical operands to floating 
point operands and then will continue. 

Coercion between data types will be performed when necessary and when SuperBASIC 
can deduce the necessary types and can perform the conversion 

example i. LET answer = "1" + "2" + "3" is valid SuperBASIC 
ii. LET answer = 3 + "2" is valid SuperBASIC 
iii. LET answer = "3.141592654" is valid SuperBASIC 
iv. LET answer = "Pl" is NOT VALID 
v. LET answer$ = 32 + "1 56" is valid 

a b + c no conversion is necessary before performing the addition, conversion 
is not necessary before assigning the result to a. 

ao/o - b + c no conversion is necessary before performing the addition but the 
result is rounded to an integer value before assigning. 

a$ = b$ + c$ b$ and c$ are converted to floating point, if possible, before being 
added together. The result is converted to string before assigning. 

Coercion 



Colour PROVISIONAL 
In general on the OL colours may be specified at three levels. In its most general form a 
"colour specification" consists of a background or main colour (which will normally be 
referred to as 'colour'), a 'contrast' colour and a 'stipple' pattern A colour specification 
can therefore have up to THREE arguments although the procedure call mechanism 
allows various parameters to be assumed 

Single colour: - composite colour 

The single argument specifies the three parts of the colour specification The background 
colour is contained in the bottom three bits of the colour byte. The next three bits contain 
the exclusive or (XOR) of the main colour and the contrast colour The top two b11s 
indicate the stipple pattern 

This will be the general case, by specifying only the bottom three bits, (i e tho required 
colour) no stipple will be requested and a single solid colour will be 11sed for disptav 

Double colour: = background, contras! 

The "colour" is a stipple of the two specified colours. The delault checkerboard c;tipplt i·, 
assumed (stipple 4) 

Triple colour - background, contrast, stipple 

Background and contrast colours and stipple are each defined separately 

Colours The codes for colour selection depend on the screen mode in use 

Code 256 pixel mode 51 2 pixel mode 
() black black 

1 blue black 
2 red red 
3 magenta red 
4 green green 
5 cyan green 
6 yellow white 
7 white white 

Stipples "ti 11" implies that a four pixel square is filled with contrast colour. 

example i. PAPER 255 : CLS 
ii. PAPER 2,4 : CLS 

Warning Stipples should not be used on a television set fed by a UHF signal. 

HORIZONTAL LINE 

2 rn VERTICALLINE 

2LJI Cr==J CHECKERBOARD (default) 



PROVISIONAL 
The OL has two serial ports (labelled SER 1 and SER 2) tor connecting it to equipment 
which uses serial communications obeying EIA standard RS-232-C or a compatible 
standard. 

Unfortunately the RS-23 2-C "standard" shows itself in a large number of different forms 
on different equipment. and it can be a tedious job, even for an expert. to connect 
together for the first time two pieces of supposedly standard RS-232-C equipment. This 
section attempts to cover most of the basic problems you will encounter 

The RS-232-C standard refers to two types of equipment: 

Data Terminal Equipment (DTE) 
Data Communication Equipment (DCE) 

The main difference between these two types is that the Transmit data (TxD) and 
Receive Data (RxD) are switched round between them, i.e. 

The TxD line is output for Data Terminal Equipment 
The RxD line is input for DTE and output for DCE 

Serial port 1 (SER 1 ) on the OL is configured as DCE while serial port 2 (SEF12) is 
configured as DTE. This means that it should be possible to connect at least one of the 
serial ports to a given device simply by using whichever port is wired the correct way 
The pin-out for the serial ports is given below. A cable for connecLing the OL to a 
standard 2 5-way "D" type connector is available from Sinclair (see the OL software and 
peripherals catalogue). 

SER1 SER2 

pin function pin function 

1 GNO signal ground 1 GND signal ground 
2 TxD input 2 TxD output 
3 RxD output 3 RxD input 
4 DTR ready input 4 DTR ready output 
5 CTS ready output 5 CTS ready input 
6 + 12V 6 -I 12V 

TxD Transmit Data 
RxD Receive Data 
DTR Data Terminal Ready 
CTS Clear to send 

Once the equipment has been connected to the correct port the Baud Rate (transmission 
speed) must be set so that they are the same for both the OL and the connected 
equipment. The OL can be set to operate at 

75 
300 
600 

1200 
2400 
4800 
9600 

19200 (transmit only) baud 

The OL baud rate is set by the BAUD command (see reference guide - BAUD) 

The parity must be set to match the parity expected by the connected equipment. This 
can be set up when the serial channel is opened (see reference guide - OPEN). 

It is not necessary to set the number of stop bits. The OL will always receive data with 
any number of stop bits and will always transmit at least two stop bits. 

Communications on the OL is "full duplex", that is both transmit and receive can operate 
concurrently. 

Communications - 
RS-232-C 



PROVISIONAL 
It may be necessary to connect correctly the "handshake" signals. These signals allow 
the two OL and the connected equipment to monitor and control each others 
rnmmunication. The full RS-23 2 standard allows for nineteen signals, most of which are 
ionornd bv most equipment The OL uses two control signals 

CTS - Clear To Send 
DTR - Data Terminal Ready 

CTS is a signal from DCE to DTE which indicates if data can be output on the TxD line 
DTR is a signal from DTE to DCE which indicates if data may be output on the RxD line 

Some pieces of equipment will function correctly without any use of handshake siqnals 
The OL can ignore handshaking on transmission or not, depending on the parameters 1r1 
the "OPEN" command (see reference guide ·· OPEN) Hower, the OL will not receivo 
correctly without the use of CTS Ion port 1 ) and DTR Ion port 2) 

If additional control signals are required by the equipment being connected to the OL. 
they must be wired up, etc. 



Data Types 

These are whole numbers in the range -3 2 7 6 7 to + 3 2 7 6 7. Variables are assumed to Integer 
be integer if the variable name is suffixed with a percent ( % ) . 

Floating point numbers in the range ~ 1 0 615 to 1 0615. The number of significant Floating Point 
decimal digits is ±1 0 °1 '' to 1 om This is the default type in SuperBASIC. 
A sequence of characters up to 3 2 7 68 characters long (see character set) String Literals 



PROVISIONAL 
Devices 

All 1/0 on the OL is to or from a logical file 

When a channel is opened certain basic information must be communicated to the 
system. This extra information is appended to the logical device name (cf with 
appending the name of a disc file to the disc drive device name I 

A file name has the same form as a standard identifier, however, certain characters have 
special reserved meanings when used in this context. 

The general form of a file (device) name is 

device name *I_ information I* 

The underscore is interpreted as a separator between the logical device and anv 
additional definitions which may have been made and between individual extra 
definitions. 

Each logical device on the system requires its own special "extra information" althouqh 
default parameters will be assumed in each case 

define device "· identifier 

where the form of the identifier is outlined below. 

example for CONsole device 

CON __ wXhaxXy k Console 1/0 
w window width 
h window height 
x window X co-ordinate 
y window Y co-ordinate 
k keyboard type ahead buffer length (bytes) 

example CON __ 20x50a0,0_32e 

SCR_wXhaxXy 
Screen Output 

w window width 
h window height 
x window X co-ordinate 
y window Y co-ordinate 
k keyboard type ahead buffer length (bytes) 

example SCR_10x10a20x50 

SERnp Serial IRS-232-Cl 
n port number 
p indicates parity 

e - even 
o - odd 
m - mark 
s - space 

h indicates handshaking 
i - ignore 
h - handshake 

default 8 bit no parity with handshake 

example SER1_E 

NETnn 
Serial Network 1/0 

nn node (station) number 

example NET32 



PROVISIONAL 

Microdrive File Access 
n Microdrive number 
name Microdrive file name 

MDVn __ name 

example MDV 1 _.data _ .file 

Eventually Microdrive file access will be possible by simply using the name of the file (or Comment 
cartridge) and letting the system search for the required data. However, specifying the 
Microdrive number will speed up the operation. 



PROVISIONAL 
Direct Command 

SuperBASIC makes a distinction between a statement typed-in preceded by a line 
number and a statement typed-in without a line number Without a line number the 
statement is a DIRECT COMMAND and is processed immediately by the command 
interpreter For example : RUN is typed-in on the command line and is processed, the 
effect being that the program starts to run. If a statement is typed-in with a line number 
then the syntax of the line is checked and any detectable syntax errors marked A correct 
line is entered into the SuperBASIC program and stored. These statements constitute a 
SuperBASIC PROGRAM and will only be executed when the program is started with the 
RUN or GOTO command 



PROVISIONAL 
error handling 

To be announced. 



PROVISIONAL 
Expressions 

SuperB/\SIC: expressions can be string, numeric, logical or a mixture, unsuitable data 
types arr:, automatically converted to a suitable form by the system wherever this is 
possible 

Define smng_expression any expression that will return and 
answer its type string 

numeric_expression: any expression which will return an 
answer which is numeric (floating 
point or integer) 

integer _expression: any expression which will return an 
answer which is integer 

expression I expression operator expression 
I (expression) 
I atom 

atom I identifier 
I constant 
I function __ call 



PROVIS l O ft~ l 
SuperBASIC functions and procedures are defined with the DEFine FUNction and 
DEFine PROCedure statements. Functions and procedures are activated by typing the 
name of the function or procedure at the appropriate point in the program. 

It is not necessary to always specify the complete set of parameters when a procedure or 
function is called For example the SuperBASIC PRINT statement is implemented as a 
SuperBASIC procedure. This can accept a variable number of parameters of varying 
types. 

Formal parameters (those specified in the function or procedure definition) are 
considered by SuperBASIC to be typeless, no assumptions about the usage of the data is 
made by SuperBASIC when the function or procedure is defined. The type of the formal 
parameters is defined when the procedure or function is activated. Various facilities have 
been built in to SuperBASIC to allow a procedure or function to determine the type and 
number of parameters it must process. 

Functions and 
Procedures 



Graphics 
PROVISIONAL 

The graphics procedures ensure that whatever screen mode is in use, consistent figures 
are produced It is therefore not possible to use a simple pixel count to indicate sizes of 
figures. Instead the graphics procedures use an arbitarv scale to specify sizes, this scale 
incorporates a user selectable scale factor which will enable the relative size of graphics 
output to be varied. 

The scale factor is such that the full distance in the vertical direc:tion has length 1 00 by 
default. The scale in the x direction is maintained so that x and y distances specifications 
draw a line with the same physical length. If the scale factor is increased then this will 
increase the maximum length of line that can be specified before the window size rs 
exceeded. 

The graphics procedures draw relative to the graphics origin which is in the bottom ett 
hand corner of the current window. This is NOT the same as the pixel origin used to 
define the position of windows and blocks, etc. The qraphics origin allows a standard 
cartesian co-ordinate system to be used. 

The graphics procedures draw in the current ink colour where the term colour has its 
usual OL meaning. 

It is important to realise that the OL screen will rn both screen modes will have non square 
pixels and changing mode will have changed the shape of the pixels. Thus if the qraph« ', 
procedures were simply pixel based they would draw different shapes in the two modes 
For example, in one mode we would have a circle while the same figure in the other 
mode would be an ellipse 



PROVISIONAL 
Identifier 

A SuperBASIC identifier is a sequence of characters, numbers and underscores. 

letter:= I a .. z 
I A .. z 
111213141516171219101 

Define 

number:= 

type:= I $ (string) 
I % (integer) 
I letter, number (floating point) 

example i. a 
ii. limit_1 
iii. current_guess 
iv. counter 
v. 1 3_November is not valid 

An identifier must begin with a letter or an ampersand, followed by a sequence of letters, 
numbers and underscores. The final character indicates the type of the indentifier. If an 
identifier starts with an & then it is assumed to be a system identifier and has a special 
case. 

An identifier can be up to 2 5 5 characters long. 

Identifiers are used in the SuperBASIC system to identify variables, procedures, 
functions, loops, etc. 

The concept of an identifier is fundamental to SuperBASIC. It is used to identify variables, Comment 
functions, procedures, loops, etc. The concept of a type being indicated by the form of 
the identifier is not always appropriate and should not be used. For example, 
PROCedures devices, etc. 

NO meaning can be attributed to an identifier other than its ability to "identify" constructs Warning 
to SuperBASIC. SuperBASIC cannot infer the intended use of an identifier from the 
identifier's name! 



Joystick 

The Joystick marked CTL_ 1 and CTL2 ports allow two joysticks with D-type connectors to 
: ,c attached to tho OL It is necessary to use a special adapter to enable the Joysticks to 
he msorted The joysticks are arranged to generate specific key depressions when moved 
in n Sp(icitic way 

joystick 1 (CTL 1 ) joystick 2 (CTL2) 

mode key key 

up cursor up F4 
down cursor down F2 
left cursor left F1 
right cursor right F3 
fire space F5 

Note Any program running on the OL which 11ses Joysticks must be able lo adopt ti, 
conventions listed below. 



SuperBASIC keywords are the keywords which are defined in the Keyword Reference 
Guide. Keywords conform to the rules for standard identifiers. The case of the keyboard 
is insignificant. Keywords may be echoed in a mixture of upper and lower case, the 
upper case characters indicate the rninimum which must be typed in for the computer to 
rocoqnise the keyword The keyword is always reproduced in full when the program is 
listed. 

Keyword 



Machine Code 
Programming 

PROVISIONAL 
Full details ot machine code programming facilities will be made available in the near 
future. 

Memory Map The OL contains a Motorola 68008 microprocessor, which can address 1 Megabyte, 
i.e from 00000 to hex FFFFF. The use of addresses within this range are defined by 
Sinclair Research to be as follows 

Warning Use of reserved areas in the memory map may cause incompatibility with future 
Sinclair products. Spurious output to addresses defined to be Peripheral 1/0 can cause 
unpredictable behaviour. It is recommended that these areas are NOT written to 

All 1/0 can be performed using either the relevant SuperBASIC commands or the 
ODOS operating system tapes. 

The semen RAM is organised as a series of sixteen bit words starting at address Hex 
20000 and progressing in the order of the raster scan, i.e. from right to left with each 
display line and then from the top to bottom of the picture. The bits are within each 
word are organised so that a pixel to the left is always more significant than a pixel to 
the right, (i e the pixel pattern on the screen looks the same as thP binary pattern) 
However, the organisation of the colour information in the two screen modes r', 
different: 

where: 
G - green 
B - blue 
R - red 
F - flash 

Setting the Flash bit toggles the flash state and freezes the backqround colour for the 
flash to the value given by R, G and B for that pixel Flashing is always reset at the 
beginning of each display line. 



Microdrives PROVISIONAL 
Microdrives provide the main source of non volatile storage on the OL. Each Microdrive 
cartridge has a capacity of at least 1 00 Kb. Each cartridge can be write protected by 
removing the small plastic lug on the right hand side. Each cartridge must be formatted 
before use and can hold up to 255 sectors of 51 2 bytes per sector. ODOS keeps a 
catalogue of files stored on the cartridge. The number of files is limited to 50. ODOS also 
utilises spare RAM to provide buffers for as many sectors as possible to reduce wear on 
the tape and to improve performance. 

Physically each Microdrive cartridge contains a 200" loop of high quality video tape 
moving at 30 inches per second. The tape completes one circuit every 71/, seconds. It is 
important that the exposed parts of the tape are protected by placinq the cartridge in its 
protective cover whenever it is not in use. Also never switch the OL on or off with a 
Microdrive cartridge in place. 

Up to six extra Microdrives can be added lo the OL system 



PROVISIONAL 
Full details of the multitasking facilities on the OL will be made available in the near future. 

Multitasking 



PROVISIONAL 
A monochrome or colour monitor can be connected to the OL via the RGB socket on the 
back of the computer. Connection is via an 8 way DIN plug connected to the OL and a 
suitable plug at the other end 

pin function 

1 RED 
2 GREEN 
3 BLUE 
4 VSYNC 
5 CSYNC 
6 VIDEO 

7 
8 GND 

0-5V- (TTL compatible) active high 
01 5V- (TTL compatible) active high 
0-5V- (TTL compatible) active high 
0-5 V - (TTL compatible) active high -- vertical sync 
0-5 V - (TTL compatible) active low -- composite sync 
0-5 V - 1 V pk-pk into 7 5 ohms - composite 
monochrome video 

0-5 V - ground 

A monochrome monitor can be connected by using a screened lead with 3-pin or 8-pin 
DIN plug at the OL end The connection at the monitor end will vary according to the 
monitor but is usually a phono plug. The monitor must have a 7 5Q 1 V pk-pk composite 
video non-inverting input (which is the industry standard, so most do) Both 3-pin DIN 
plugs and phono plugs are commonly available from audio shops 

An RGB (colour) monitor can be connected using a lead with an 8-pin DIN pluq at the OL 
end. The plug at the monitor end will vary according to the rnonitor, as there is no 
industry standard, and will often be supplied with the monitor. A suitable cable with an 
8-way DIN plug at one end is available from Sinclair Research 

monitor 



PROVISIONAL 
operators 

equal numerical -- logical equal 
string - type 2 comparison 

equivalence numerical - "almost equal" 
Slril1(1 type 3 comparison 

+ numerical addition 

numerical - subtraction 

numerical division 

numerical - multiplication 

< less than numerical less than 
string - type 2 comparison 

> greater than numerical - greater· than 
strrng -- type 2 comparison 

<= less than or numerical - less than or equal to 
equal string type 2 comparison 

>= greater than or numerical greater than or equal 
equal string type 2 comparison 

<> not equal numerical - r rot equal to "---' 
string - not equal type 3 comparison 

& ampersand string concatenation 

&& bitwise AND 

II bitwise OR 

bitwise XOR 

bitwise - NOT 

OR logical OR 

AND logical - AND 

XOR logical - XOR 

NOT logical l\IOT 

MOD numerical modulus 

DIV integer divide 

floating - raise to the power 

n integer raise to the power 

unary minus 

+ unary plus (NOP) 

If the specified logical operation is tru then a value of 1 will be returned, if the operation is 
false a value not equal to one will be returned. 

precedence: highest unary plus and minus 
string concatenation 
exponentiation 
multiply and divide (modulus and integer divide) 
add and subtract 
logical comparison 
NOT 
AND 

lowest OR and XOR 



PROVISIONAL 
The expansion conner 11 i1 illows extra peripherals to be pluggerl into the OL. Further 
details to be an noun, .1 r I ,i rortlv 

peripheral expansion 



pixel coordinates PROVISIONA' 
The pixel coordinates system is used to define the positions and sizes of windows, blocks 
and cursor po-utions on the OL screen The coordinate system has its origin in the top left 
hand comm of the detat lit window (or semen I and always assumes that positions are 
specified c+S though the sr:rurm where in 51 2 mode (high resolution model The system 
will use the nearest pixel dViiilnl>le for the particular mode set, this is so that positions are 
independent of the screen n.ode in use. Some commands are always relative to the 
default window origin, eg WINDOW, while some are always relative to the current 
window origin, eg BLOCK. 

Characters are norrnallv output to a window i11 a series of rows and colu, nns the size of 
which is dependent on the character size i11 use. The CURSOR command allows tho 
window cursor to be positioned down to the maximum resolution of the screen and 
therefore it becomes possible to specify a cursor position and hence H print position 
anywhere on the screen, this position need not be the same as the row-column qrirl 
initially assumed by the system. 

y 



program 
PROVISIONAL 

A SuperBASIC program consists of a sequence of SuperBASIC statements, where cJdch 
statement is preceded by a line, number. Limi numbers am m the range of I to 3 2 7 6 7. 

syntax: 

example: 

line number statement * I :st,7rementl * 

i. 1 0 PRINT "This is a valid line number" : STOP 
ii. 10 REM a small program 

20 FOR foreground = 0 TO 7 
32 FOR contrast = 0 TO 7 
43 FOR stipple = 0 TO 3 
54 PAPER foreground, contrast, stipple 
65 CURSOR 0, 70 
76 PRINT foreground I contrast I stipple 
8 7 FOR step = 0 TO 2 
98 SCROLL 2, 1 

100 SCROLL - 2, 1 
11 0 END FOR step 
1 20 END FOR stipple 
1 30 END FOR contrast 
1 40 END FOR foreground 



qdos PROVJSIONAL 
QDOS is the QL_ Operating System. ODOS handles all process scheduling, all screen 
output tir1cl11ci1ng the windowing capability) all Microdrive input and output, all kevboard 
input and ,ill I iotwork and serial channel communication 

A full specification of ODOS will be available shortly. 



PROVISIONAL 
I ooping in SuperBASIC is controlled by two basic program constructs. Each construct 
rru 1s1 be identified to SuperBASIC 

REPEAT identttier 
statements 

END REPEAT identifier 

FOR identifier = range 
statements 

END FOR identifier 

These two constructs are used in conjunction vv,111 two other Super·BASIC statements: 

NEXT ideutitier EXIT identitier 

NEXT and EXIT can be used in both constructs, in fact EXIT must be used in the 
REPEAT construct otherwise an infinite loop will result 

Processing a NEXT statement will either pass control to the statement following the 
appropriate FOR or REPeat statement, or if a FOR rango has been exhausted to the 
statement following the NEXT. 

Processifng an EXIT will pass control to the statement after the END FOR or END 
REPeat selected by the identifier after the EXIT keyword. It an EXIT is used in a loop the 
loop must be terminated by END FOR or END REPeat. EXIT can be used to exit through 
rnany levels of nested repeat structures. 

Although a REPeat loop can be terminated by a NEXT statement if it is the loop, the loop 
will be infinite since EXIT requires there to be an END REPeat present. 

repetition 

warning 



ROM cartridge slot 

Allows a software to be loaded into the OL system via a Sinclair OL ROM cartridge. It is 
not possible to use ZX Spectrum ROM Cartridges on the QL. 

warning: Never plug or unplug a ROM cartridge while the OL is powered up. 



PROVISIONAL 
screen 

2 mode: The screen has 51 2 pixels across and is 256 pixels deep Only the colours 

black 
red 
green 
white can be displayed 

256 mode: The sc:rRen is 256 pixels across and 256 pixels deep. The full set of colours is available 
in tlu-. mode 

black/blue/red/magenta/green/cyan/yellow/white 

comment: Surprisingly reducing the number· of available colours while increasing the resolution of 
the screen allows more colours to be generated using the stipple patterns to mix various 
colours. Stipples should not be used with a domestic television fed by the UHF socket. 



slicing 

Under certain circumstances it is possible to reference more than one element in an array 
ie. SLICE THE ARRAY. The array slice can be thought of as defining a subarray or a series 
of subarrays to SuperBASIC. Each slice can define a contiguious sequence of elements 
belonging to a particular dimension of the original array. The term array in this context 
can include a numerical array a string array or a simple string. 

consider: DIMension y(3,3,3) 
DIMension x(2,2,2) 

then: LET x = y(o TO 2, 0 TO 2, 0 TO 2) 

will set all corresponding elements in x equal to those in y. 

In general for numeric array assignments the two arrays must be, if necessary atte: 
slicing) the same "shape" 

It is not necessary to specify an index tor thu full number ot dimensions of an array. If a 
dimension is omitted then slices are added which will select the full range of elements for 
that particular dimension, the slice (0 TO ) . SuperBASIC can only add slices to the end 
of the list of array indices 

syntax: index. == I numenc : exp 
I numeric exp TO numeric __ exp 
I numeric __ exp TO 
I TO numeric __ expression 

array· = identifier !index •I, 1r1dexl • I 

An array slice can be used to specify a source or a destination sub array for an 
assignment statement. 

example: i. PRINT data __ array 
ii. PRINT letters$(1 TO 15) 

warning: Assigning data to a sliced string array or string variable may not have the desired effect 
Assignments made in this way will not update the length of the string and so it is possible 
that the system will not see the assignment. The length of a string array or a string 
variable is only updated when an assignment is made to the whole string 



sound 

Sound on the OL is qenerated by the system IPC (8049) second processor. Sound is 
swrn,u1t1Jcl accordinq to a series of pre:,nt sound types specified hy parameters to the 
wste111 1 he soi inri capabilities of the OL can be expanded by adding expansion 
h: 1rtlw;1re to I h(' expansion interfc1r:n 



· Ii ffVtS ION Al 
string arrays String arrays and numeric arrays are essentially the same. However there are slight 

differences in treatment by SuperBASIC The last dimension of the stri'ng defines the 
maximum length of the string. String lengths on either side of a string assignment need 
not be equal If the sizes are not the same then either the right hand string is truncated to 
fit or the length of the left hand string is reduced to match. If an assignment is made to a 
sliced string then if necessary the 'hole' defined by the slice will be padded with spaces, 
(this is subject to the warning below) 

It is not necessary to specify the fir1ill dimension of a string array Not specifying the 
dimension selects the whole string while specifvinq a single element will pick out a single 
character and specifying a slice will define a sub string 

comment: Unlike most BASICS SuperBASIC does not treat string arrays as fixed length strings. If the 
data stored in a string array is less than the maximum size of the string array then the 
length of the string is reduced 

warning: Assigning data to a sliced string arrav or string variable rnay nut have the desired effect. 
Assignments made in this way will not update 1hE:! length of the string and so it is possible 
that the system will not recognise the assignment The length of a string array or a string 
variable is only updated when an assignment is made to the whole string 



PROVISIONAL 
............_ The OL starts up after switch on in a default state 

reset: At reset proqrarn execution is the first code to be executed by the OL after switch on after 
pressing the re0;et <witch. It will perform a RAM test which will give a spurious pattern on 
thH screen, whrch will later clear. The default window will then be drawn and the initial 
s1q11 on messaqo written. 

If a suitable ROM cartridge is in the machine booting will continue under the control of the 
code in the ROM cartridge if no suitable ROM cartridge is found then the process 
continues 

The system asks if further booting from the Microdrive is required. If the answer NO (nor 
N) is typed then the system will enter SuperBASIC and display a flashing cursor. 

If any other key is typed then each Microdrive in turn will be searched for a file. 

PRO CS 

if this file is found then the procedures contained in it will be loaded and link into the 
Sur,erBASIC system The system then searches for a file 

RUN 

Which if found will be loaded and entered If the file is not found then the extended 
SuperBASIC system entered. RUN must be an executable file. 

screen: The default screen is in low resolution mode with a window. 

keyboard: The default kevboard type Ahead buffer is 32 bytes long. No caps lock. 

warning: It is important NOT to power up the OL with a Microdrive cartridge in position. If booting 
off the Microdrive is required then the Microdrive must be inserted between switching on 
and ansvvennq the boot question. When a Microdrive cartridge is inserterl into a drive the 
exposed tape should be on the left and side and at the far end. 

(c) Sinclair Research Ltd 1984 

start up 



statement 

A SuperBASIC statement is an instruction to the OL. to perform a specific operation, for 
example 

LET a = 2 
will assign the value 2 to the variable identified by a 

Mo1r1 than one statement can be written on a single line by seperating the individual 
staterr« ·11ts from each other by a colon ( ), for example: 

LET a = a + 2: PRINT a 
will add 2 to the value «Ienttlied by avariable a and will stu, i:; ti 1t1 result m back iri a 
f he answer will then be printed out 

If J line 1s not pwc1;ducJ by a line 1111mbe1 then the li11e 1s a direct command and 
'.3uperBASIC processes tho statement irnrnediatelv If the statement is preceded bv a lii1u 
nurnbe: then the statement becomes part uf a SupmBASIC proqrarn 

warning: Ce, tam Supr;rB/.\'.:ilC stalcmicr its urn have dil ullect u11 1t·1,; other statements over th« 
rrist of til,; loqical !1rw ir-1 ,JVh1cl1 th,:',' appr:;ar 1i,, If, FOFl, FiEPb'\T, REM, etc It 1s 
r r 11,,.m,r t\llt:',S tu use , r ,11. 111"1 ';up1;1 B/\SIC stdlur111J11h ds rl1r1:ct commands 



PROVIS\OMJ\l 
A string is a sequence of characters which may be up to 32000 bytes long. String data 
is identified to the system by enclosing the required string in quotes. String data may 
be stored in a string variable which is identified by suffixing a standard variable identifer 
with s 
SuperBASIC will unsure that correct data types are used in each operation, if necessary 
SuperBASIC will coerce data to the correct form. This feature allows SuperBASIC to accept 
string data as input to numeric operators 

In general type coercion will be performed by SuperBASIC as long as the required type 
can be inferred and the conversion is possible (see concept coercion) 

example: i. "this is an example of string data" 
ii. LET alphabet$ = "abcdefghijklmnopqrstuvwxyz" 
iii. LET answer = "1" + "2" + "3" 
iv. LET a$ = "1 " + 12345 

strings 

C_ 



string comparison 

n n ",, • r, ros A • 
~ i\ U I I .)~ U 1111 L 

order: (UK machines) 

space 
!"3457'()* + ,-./ ;§ = ?@ _ tilde 
digits or numbers in numerical order 
AaBbCcDdEeFfGgHhliJjKkLIMmNnOoPpQqRrSsTtUuVvWwXxYyZz 

The relationship of one string to another rnay be 

equal: 

lesser: 

greater 

All characters or numbers are the same or equivalent 

The first part of the string, which is different from the correspondinq 
character in the second string, is before it in the defined order 

The first part of the first string which is different from the corresponding 
character in the second string, is after it in the defined order 

types of comparison type O case dependent - character by character comparison 

type 1 case independent - character· by character 

type 2 case independent - numbers are sorted in numerical order 

type 3 case independent - numbers are sorted in numerical order 

use: type O 
type 1 
type 2 
type 3 

not normally used by the SuperBASIC system 
File and variable comparison use 
SuperBASIC - , - ~. and use 
SuperBASIC = = (equivalence) uses 



PROVISIONAt 
System variables are used by SuperBASIC to "communicate" with a user program. 

define: system_varia/Jit3 = &identifier 

System variables cannot be type string. 

A list of system variables will be released shortly. 

system variables 

list 

c 



PROVISIONAL 
syntax definitions SuperBASIC syntax is defined using a non rigorous "meta language" type notation. Three 

types of symbols are used 

II OR 
Enclosed item(s) are optional 

* • Enclosed items are repeated 

18. 

I A I BI 
A 

* A * 

A or B 
A is optional 
A is repeated 

Consider a superBASIC identifier 

A sequence of numbers, digits, underscores, starting with a letter and finishing with and 
optional % or $ 

letter:= I A to Z 
I a to z 

a letter is 
one of: 

ABCDEFGHIJKLMNOPORSTUVWXYZ 
or abcdefghijklmnopqrstuvwxyz 

d,git. = I o I 1 I 2 I 3 I 4 I 5 I 6 I 1 I a I 9 11 
a digit is O or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 

underscore: = 

an underscore is ~ 

identifier = letter * letter I digit I underscore * I $ I % 

must start with a letter 

a sequence of letters 
digits and underscores 
ie repeat something 
which is optional 

An optional $ or an optional 
% but not both 



PROVISIDNAJ 
windows 

Windows are areas of the screen which behave, in most respects, as though each 
individual window was a screen in it's own right, ie. the window will scroll when it has 
become filled by text, it can be cleared with the CLS command. 

Windows can be specified and linked to channel when the channel is opened (see OPEN) 
The current window shape can be changed with the WINDOW command and a border 
can be added to a window with the BORDER command. Output can be directed to a 
window by printing to the relevant channel. Input can be directed to have come from 
a particular window by inputing from the relevant channel. 

Certain commands (CLS, PAN etc) will accept an optional paramter to define part of parts 
the current window for their operation. This parameter can be defined as: 

2 





0 r- 
0 
~ 



QLQuill 





PROVISIONAL 
QUILL is an extremely sophisticated word processor. It has been designed to give you 
the maximum in power and flexibility, yet is still easy to learn and to use. As you will 
see later, you will always be kept informed as to what you can do next and how to do it. 

You can use a word processor in any circumstance where you would otherwise consider 
making use of a typewriter The two machines are very similar in function, although the 
word processor has many advantages that are not matched by a conventional typewriter. 
Perhaps the most obvious difference is the ease with which mistakes can be corrected. 
Since the text is not printed immediately as you type it in, you can make as many 
corrections as you wish. You need only ask for the text to be printed when you are 
sure that it is exactly what you want and can therefore be assured of perfect results 
every time. 

As you will see, by working through this manual, there are a number of other differences, 
all of which add to the convenience of use. For example, when using a typewriter, it 
is necessary· to press the carriage return key at the end of every line. In QUILL, this function 
is performed automatically. Whenever the printed text reaches the end of a line, a new 
line is started; the only time that you need to press ENTER is when you want to start 
a new paragraph Whenever a new line is started you will notice that the spacing of 
the text in the last line will be aciosted so that the left and right margins are aligned 
throughout the text. This process, which is known as Justification, gives a highly 
professional appearance to the final result, without any effort on your part Like most 
of the features of QUILL, this facility may be modified, depending on your requirements. 

CHAPTER 1 
ABOUT QUILL 



PROVl~IONAL 
CHAPTER 2 
GETTING 
STARTED 

2.1 LOADING QUILL When you switch on the computer it will only respond to commands in SuperBASIC 
You will have to load QUILL from its Microdrive cartridge. You will normally do so by 
inserting the QUILL cartridge in drive 1 (the left hand drivel and then typing 

LGO MDV1_QUILL ENTER 

After a few seconds the screen will show the message: 

QUILL - Copyright Psion Ltd 1 983 
Press any key to start 

You should then press any key on the keyboard to start QUILL. 

2.2 GENERAL 
APPEARANCE When you have loaded QUILL, you will see that the screen appears as shown in Figure 

2.1. This is known as the main display. The screen is divided into three main sections, 
known as the display area, the status area and the control area. 

HELP CURSOR TEXT Type to insert at STYLE COMMANDS 
press F 1 move 1' Press ENTER for new para Press F4 press F3 
PROMPTS with •..• DELETE SHIFT KEY &<-1'~.., GLOSSARY ESCAPE 
press F2 keys ~ REPLACE SHIFT KEY & F4 press FS press ESC 

•••• , .•. -~· ••• , •••• 2 •••• , •••• l •••• , ••.• 4 •••• , •••• 5 .••. ' •••• 6 ••.. , •••• 7 •••• ' ••• ·1 

MOOE: INSERT 
.STYLE: 
Figure 2.1 The Main Display. 

2.2.1 The Display Area The largest area, across the centre of the screen, is reserved for the text of your document 
Almost everything that you type at the keyboard will appear in this area. Across the top 
of the display area is the ruler. 

This is a row of dots, marking each character space across the display. Every fifth space 
is marked with a colon (:) and every tenth space is numbered. You will find this useful 
for finding exactly how far across the page you are at any time. The ruler marking directly 
above the cursor (see Section 2 5) is highlighted to make its position even clearer. 

2.2.2 The Status Area The status area, which uses the bottom three lines of the display, shows information 
about your current document It normally shows the name of the current document. When 
you have just loaded QUILL you will not have given a name to a document and QUILL 
shows the name "default.Ldoc". QUILL will use this document name for any text that 
you type, until you give the document another name. 

The status area also shows that QUILL is currently in insert mode and that there is no 
special style, ie that you are using a normal typeface In addition, the status area shows 
the number of words in the current document, and the line and page number of the 

2 



PROVISIONAL 

BDCJDB 

Figure 2.2: The Display Area. 

BDCJDB 
I 

_._ •¥• ---- -· ------- 

I I 
Figure 2.3 The Ruler 

position of the cursor. It initially shows that you are at line 1 of page 1 of a document 
which contains no words. 

The status area is also used for showing any special text that is typed in during the use 
of commands This is, for example, where the section of text being searched for will 
appear when you use the Search command (see Chapter 6) 

GDI IDEJ 
- 

[ ~ I 
Figure 2.4 The Status Area. Figure 2.5 The Control Area. 

The control ared, at the top of the screen, is used to display the options available to 2.2.3 The Control Area 
you The contents of this area will change each time that you select a different option, 
so that it is always relevant to what you are doing. 

As we shall see later, you can choose not to display the control area so that you have 
more room for displaying the text. You will probably find this facility useful when you 
are more familiar with QUILL and know what options you have. 

Immediately after loading QUILL the control area shows that you have eight main options 
which are, from left to right, to: 

obtain Help 
turn the prompts on or off 
move the cursor 
add or remove text 
change the style of text 
use or define a glossary entry 
use a command 
press ESC 

3 



PROVISIONAL 
2.3 HELP The first option, displayed at the extreme left of the control area, shows that you may 

ask for Help by pressing function key 1 (Fl). Regardless of any other changes in the 
control area display, the Help option will always be. shown (unless you have turned 
off the prompts - see Section 2.4) This indicates that the Help facility is always available, 
no matter what you are doing. 

Try pressing the Help key now. You will see that the display changes to show more 
information about the options mentioned above. 

In addition, you will see that there is a list of topics about which more Help is available, 
shown across the bottom of the display. You may ask for further information about 
any one of these topics by typing in its name and pressing ENTER. You do not need 
to type in the whole of a name; you only need to type in the first few letters - enough 
to distinguish it from any of the other topics in the list. 

When you press ENTER after typing in your choice of topic you will find that further, 
more detailed, information is shown about the topic you have selected and another 
list of sub-topics may then be shown. You can then select one of these sub-topics 
by typing in the first few letters of its name and pressing ENTER, as described before 
You may continue this process until you are told that no further information is available. 

At any stage you can go back to the previous screen by just pressing ENTER without 
typing any preceding text. Repeatedly pressing ENTER will therefore eventually take 
you back to the main display of your document, with the control and status areas. 
At this point you will have left the Help facility and will have been returned to exactly 
the same situation as before you pressed the Help key. A faster way to return from 
Help is to press ESC. This will return you from any point within Help, back to the state 
from which it was first called. 

Try using the Help facility to examine some of the many pathways through the 
information. Don't worry if you do not understand some of the information that is shown 
- it will make sense when you actually need to use it. All you need to do at the moment 
is become familiar with the way in which the Help facility is used. 

It must be emphasised that Help is always available, at any time. Whenever you are 
not sure what you should be doing, just press the Help key, even if you are, for example, 
in the middle of typing in numbers or text as part of a command. You will not always 
start at the same point in Help, but will be presented with the information most relevant 
to what you were doing when you pressed the Help key. When you have found the 
information you need and leave Help (by use of ESC or ENTER) you will always be 
returned to the exact point from which you started, as though there had been no 
interruption. 

Use the Help key as often as you like - it is there to assist you and will usually be the 
quickest and simplest way of solving your problems. 

BDI JDEJ 

,-. I 
Figure 2.6: Help. 

4. 



PROVISIONAL 
In addition to showing your options.the control area highlights your choice and, when 2.4 THE PROMPTS 
necessary, suggests what you should do. These aids to using QUILL are known as prompt 
messages or just prompts. 

You can switch off the display of the control area and the prompts it contains by pressing 
function key 2 (f2). When you do this the display will be redrawn without the control 
area, leaving more room for your document. The appearance of the screen is then as 
shown in Figure 2.8. 

BO[ JOB 

Figure 2. 7 Prompts 

•••• 1 •••• 2., •• 3 •• , .4 •••• s .... 6 ••• ,7 •••• 8 

Figure 2.8 The Main Display Without Prompts. 

You can bring back the control area and the prompts it includes by pressing F2 again. 
QUILL works in exactly the same way, whether the prompts in the control area are 
displayed or not - you are free to choose either option. 

You will probably find it most useful to type your document with the prompts in the 
control area visible, and then turn them off to give you more room for looking at the 
finished result. 

Figure 2.9: Moving The Cursor. 

2. 5 THE CURSOR EJIT:][ __ lDEJ 
>----------------~-~ ------- 

At the top left hand corner of the central text area you will see a small flashing rectangle. 
This is known as the cursor and marks the position where your typed input will be placed. 

The second option in the control area shows that the cursor can be moved around the 
text area by use of the four cursor keys on the keyboard. When you are displaying text, 
each time that you press one of these keys, the cursor will move by one space in the 
direction indicated by the cursor. The cursor will not pass the end of the text so, with 
no text in your document, you will not be able to move the cursor from its original position. 

5 



PROVISIONAL 
2.6 TEXT So far we have managed to avoid putting anything into the text area of the screen. Since 

this is the main function of QUILL, we cannot delay it any longer. 

The next option, shown at the centre of the control area, indicates the various ways 
in which you can change the text of the document. Simply typing at the keyboard will 
insert the text at the cursor position Try typing at few words to see how this works. 

The second line of this option shows that pressing ENTER is used to mark the start of 
a new paragraph. As mentioned in the introduction, you do not need to press ENTER 
when you reach the end of a line of text. If you have not already done so, continue 
typing in words until you reach the end of the first line. As you continue to type, the 
new words will automatically appear on the second line and the spacing of the words 
on the first line will be automatically adjusted so that the text exactly fills the whole line. 
This is an example of justification, which controls the way the text is aligned with respect 
to the left and right margins. You may, if you like, change the type of justification used; 
the method is described in Chapter 5 

Try pressing ENTER and then typing in more text to see the effect of starting a new 
paragraph. Do not worry if the indentation of the new paragraph is not how you like, 
the way of changing it is described in Chapter 7. 

While you were typing in text you may have noticed some changes taking place in the 
status area at the bottom of the screen. The word and line counts will always agree 
with the contents of the document. The remainder of the status area will not have 
changed. In particular, the document will still be called "defaulLdoc" since you have 
not yet given it any other name. A document will be named when it is saved on a 
Microdrive cartridge, as described in Chapter 4. 

Now that you have some text in your document, you can try moving the cursor around 
the text area by use of all four cursor keys. When you have finished, move the cursor 
to the end of the text. See Chapter 3 for a description of how to use the other parts 
of this option 

EJD[ JOB 

Figure 2.10 The Text Options 

2.7 STYLE 

JBB BDI 

Figure 2. 11 : Style 

A further option in the command area is headed STYLE and is used to modify the 
appearance of the text in your document. You should press F4 to use this option. 

When you do so you are given four choices: to use bold (or heavy) type; to display 
high script (superscript); to display low script (subscript) or to produce underlined text. 
Any one of these is brought into effect by pressing F4 and then a single key from the 
list shown in the control area. As an example let us use this option to produce underlined 
text. Press F4, then the U key, followed by ENTER. 

After you have pressed ENTER the display returns to normal and nothing seems to have 
changed, except that the style is marked as "UNDERLINE" in the status area. If you 
now type in some more text you will see that it is underlined as it is displayed in the 
text area. 

6 



PROVISIONAL 
In QUILL you always see exactly what will appear in the final printed version. This removes 
all the frustration that is normally associated with the production of a properly laid out 
document. 

How do you turn off the underlining? Fortunately this is as simple as turning it on in 
the first place. All you have to do is press F4, the U key and ENTER again. If you now 
type in a few more words you will see that they are not underlined - the underlining 
option works like a simple on-off switch, or toggle. 

You will find a fuller description of using underlining, and the other three style options, 
in Chapter 7. 

A glossary is a useful way of storing a frequently-used sequence of keypresses for later 2.8 GLOSSARIES 
recall. The sequence is stored under a single key. You can define a glossary entry by 
pressing SHIFT and F5 together, followed by the key under which you want the sequence 
to be stored. You then type the sequence of keypresses that you want to store, ending 
by pressing F5 again. The sequence of actions is carried out as it is stored. 

You can recall the sequence at a later time by pressing F5 and then the key under which 
you stored the sequence. 

Glossaries are described in more detail in Chapter 8. 

EDCJDB 

I 

I r~--- - . -- 
Figure 2.12: Glossaries. 

BDI !BB 

I 
I 

Figure 2.13: The Commands. 

Another option available from the main display is to use a command. 2.9 COMMANDS 

You gain access to the commands by pressing F3, as indicated at the right hand side 
of the control area. When you press F3 the control area will again change, this time 
to show a list of the commands that are available. The screen will change to look like 
that shown in Figure 2.14. 

You can select any of the commands shown in the menu (list) at the centre of the control 
area by pressing the key corresponding to its first letter. 

QUILL has more commands than can be displayed in the command menu. You are 
therefore given two alternative lists and can switch between them with the Other 
command, which is shown in both lists. 

If, when the command menu is shown (after you have pressed F3), you press the O 
key, the control area will change to show the second command menu, illustrated in Figure 
2.15. 

If you press the O key again the original list of commands will reappear. You can use 
the Other command to switch between the two lists at any time that the command menu 
is displayed. 

Since some commands start with the same letter it is important to check that the 
command you want is displayed in the control area before you select it. 

7 



PROVISIONAL 
HELP COMMANDS Erase Header Margins Save COMMANDS 
press F1 Copy Footer Justify Print Tabs press F3 
PROMPTS Design Goto Load Quit ESCAPE 
press F2 Other Press First letter press ESC 

•••• : •••• 1 •••• : •••• 2 •••• : •••• 3 ••.. : ••.. 4 •..• : .... 5 .... : .•.• 6 •••• : •••• 7 ...• : .•.• 
In the beginning O 

command,O 

MODE INSERT WORDS:3 LINE1 PAGE1 
STYLE DOCUMENT:" default doc" 

Figure 2. 14: The First Command Menu. 

HELP COMMANDS Merge Search COMMANDS 
press F1 Files Page Zap press F3 
PROMPTS Hyphenate Replace ESCAPE 
press F2 Other Press First letter press ESC 

•••• : •.•• 1 •.•• : •••• 2 •••. : •••• 3 •••• : •••• 4 •••• : •••• 5 .•.• : •••• 6 •••. : •••• 7 •.•• : •••. l 
I n the beg inn I ng O 

command, O 
MOOE:, INSERT WORDSJ3 UN£,1t PAGE,t 
STYLE: .. DOCUMENT: "default.doc" 

Figure 2.15: The Second Command Menu. 

8 



PROVISIONAL 
While you have the list of commands displayed, press the Help key and you will find 
that the information given is concerned with how to select a command. When you leave 
Help (by using ENTER or ESC) you will, of course, be returned to the display of the 
list of commands, ready for making a selection. 

Choose any one of the commands and press the key corresponding to its first letter. 
The control area will again change to confirm your selection and to inform you what 
options are available for that particular command. If you like, you may press the Help 
key again at this stage when you will find that the information given will be how to make 
use of the command that you have selected. When you return from Help you will be 
left with the selection of options available for your chosen command. 

Since the actions of the commands have not yet been explained, you should cancel 
the command by pressing ESC, when you will be returned to the main display. 

We have seen how the Other command works. The descriptions of the various commands 
will take up much of the rest of this manual and we shall, for the moment, describe 
the use of just two more commands, Quit and Zap 

You use Quit to leave QUILL and will therefore need it every time you use the program 
Press F3 and then the Q key. You wili then be asked whether you want to save your 
current document on a Microdrive cartridge (just press ENTER) or to abandon it (press 
A). Choosing to save the document leads you into a sequence similar to that of the Save 
command, described in Chapter 4. Provided you do not have anything you want to save 
you can press the A key You will then be returned to SuperBASIC and will have to reload 
QUILL if you want to continue using it. 

A third alternative is to press ESC. This will cancel the command and you will go back 
to your document. 

The Zap command is in the second command menu and so you will have to use the 
Other command before selecting Zap.(lf you just press F3 and then Z, you will not select 
the command.) You must press F3, 0 and then Z. Zap clears from memory the text 
of the current document, but does not return to SuperBASIC. 

If you clear the text before you have saved it on a Microdrive cartridge you will not 
be able to recover it without typing it in again. When you select this command, QUILL 
will therefore ask you to confirm your choice by pressing ENTER. You have the 
alternative choice of pressing ESC which cancels the command and returns you to your 
document. 

If you press ENTER the text of your document is cleared and QUILL is left in the state 
it had when you first loaded it. 

You can generally use the ESC key to cancel the current action, or to go back to the 
main display. We have already seen how it is used to leave Help and to cancel the selection 
of the Quit and Zap commands. 

In almost all cases pressing ESC during a partially-completed command will cancel the 
rest of the command, without undoing any of the completed sections (see, for example, 
the descriptions of the Copy and Replace commands in Chapter 6). There is only one 
exception to this rule - pressing ESC during the use of the Design command will cancel 
any Design options (eg the number of lines per page) that you have just set. 

BDI IDB 

I J Figure 2. 16: Escape 

2.10 ESCAPE 



2.11 THE 
MICRODRIVES 

10 

PROVISIONAL 
You would be wise to make a copy of QUILL on another cartridge, just in case of 
accidents. You can do this with the Backup option of the Files command in the following 
way: 

F3 F B MDV1_QUILL ENTER MDV2_QUILL ENTER 
These two commands will Save and Load applications on the cartridge in the current 
drive. This is the drive that was last used and, when you have Just loaded QUILL as 
described in Section 2.1, this will be drive 1. 

You can put a Microdrive cartridge in the second drive and load from or save to it, provided 
that you include the drive specifier in the name of the first file you access on that drive. 
(See Section 9.3 for a full description of Microdrive file names ) 

You could, for example, load a file called "LETTER_DOC" from drive 2 by using the 
Load command as: 

F3 L MDV2_LETTER_DOC ENTER 

You do not need to include the extension. QUILL will assume that it is _DOC unless 
you type in something different. You could therefore just use: 

F3 L MDV2_LETTER ENTER 

Remember that this will make drive 2 the current drive so that you could now load another 
file, called "REPORT _DOC" from drive 2 by: 

F3 L REPORT ENTER 

Drive 2 will remain the current drive until you specify a different drive specifier in a file 
name. 



PROVISIONAL 
CHAPTER 3 
CURSOR 
EDITING 

In this chapter you will learn how to use the simple editing facilities of QUILL. The changes 3. 1 INTRODUCTION 
to the text will always take place at the position of the cursor, which should therefore 
first be moved to the place where you want to make alterations. This form of editing 
is known, for fairly obvious reasons, as cursor editing. You may practise using these 
techniques on a piece of text that you type in yourself, or you may use the text provided 
with QUILL. If you type in your own text, as was described in Chapter 2, do not worry 
about any mistakes you make. In fact it may be a good idea to add deliberate mistakes 
- each mistake will give you extra practice in using the editing facilities. 

To insert letters or words into the middle of the text, you should follow the following steps. 3.2 INSERTING TEXT 

1) Move the cursor, by using the four cursor keys, to the point where you want to make 
the insertion. 

2) Type at the keyboard the letters or words that you want to be inserted. 

That's all there is to it! As you will see, the text is rejustified automatically as you make 
the insertion. 

If you insert several words it would be painful to have to wait while the text adjusted 
each time you press a key. QUILL detects this situation and reacts by splitting the line 
at the point where you are inserting text. You can then type in as much text as you 
like. Figure 3. 1 shows a split line during insertion of text. 

PROMPTS 
press F2 

ESCAPE 
press ESC 

HELP 
press F1 

CURSOR, 
mover 
with •. -. 
keys J. 

TEXT Type to insert at 
Press ENTER for new para 
DELETE SHIFT KEY & <-T!-> 
REPLACE SHIFT & F4 

STYLE 
Press F4 
GLOSSARY 
Press F5 

COMMANDS 
press F3 

.... = .... 1 •••• : •••• 2 •••• : •••• 3 •••• : •••• 4 •••• : •••• s .... : .... 6 •••• : •••• 1 •••• : •••• a 
In the beginning God created the heaven and the earth. And the earth 

was w1 thout form, and void ; and darkness was upon face of the deep And 
the spirit of God moved upon the face of the waters. 

And God said, Let there be I ightlO 

and there was I ight. 
And God S<M the light. that it was good • and God divided the I ight 

from the darkness And God called the light Day, and the darkness he called 
NI ght. And the evening and morning were the first day 

And God said 

MOOE INSERT 
STYLE' 

LtNf:4 PAG[:t 
OOCUMENT:t''defautt. m• 

Figure 3.1: Inserting Text - A Split Line. 

QUILL will restore the text when you finish inserting text at that point (ie when you press 
a cursor key, a function key or ENTER). 

The deletion of text at the cursor position is also very simple. You use the SHIFT key 
together with either the left or the right cursor key. 
To see the action of the left cursor key, position the cursor immediately after the text 
that you want to delete. Now press SHIFT and, keeping it pressed, also press the left 
cursor key briefly. This will cause the letter immediately to the left of the cursor position 
to be deleted and the cursor will move one space to the left. Each time you press the 

3.3 DELETING TEXT 

11_ 



PROVISIONAL 
left cursor key, with the shift key held down, one more letter will be deleted as the cursor 
moves to the left. If you wish to delete several letters you can also hold the left cursor 
key down, using the auto repeat facility. Always release the cursor key before releasing 
the shift key. 

If you use SHIFT together with the right cursor key, text will be deleted, character by 
character, from beneath the cursor position, and the text to the right will close up to 
fill the gap. You are deleting text to the right of the cursor. 

You can delete whole words at a time, to the left or to the right of the cursor, by pressing 
SHIFT and CTRL together and, while holding them down, pressing either the left or the 
right cursor key. 

If you press the CTRL key and, while holding it down, press either the up or the down 
cursor key you will delete the whole of the line to the left or to the right of the cursor 

In all cases the text will be rejustified automatically. 

3.4 REPLACING TEXT In the context of cursor editing, replacement is understood to mean the overwriting of 
existing text by the new text typed at the keyboard. In order to replace text, QUILL must 
be changed from insert to overwrite mode. 

As indicated in the text option shown in the control area, you can do this by pressing 
SHIFT together with F4. When you do this, two things will happen. The mode indicator 
at the left hand side of the status area will change from "INSERT" to "OVERWRITE". 
It now shows that text typed at the keyboard will replace existing text. Pressing SHIFT 
and F4 again will change back to insert mode. 

With QUILL set to overwrite mode, position the cursor at the start of the text to be replaced 
and type in the replacement over the old text. Once you have finished making 
replacements, it is a good idea always to return to insert mode. 

Figure 3.2 shows a typical situation where you would want to use the overwrite mode. 
With the display as shown, with the cursor on the "n" of "sentence", you can overwrite 
with "e" and "n" to correct the word. (You can also practice deleting a character by 
removing one of the "m"s from "ammended"!) 

HELP 
press F1 
PROMPTS 
press F2 

Cursor 
move ,. 
wrth <- •• 

keys .• 

TEXT Type to insert at 
Press ENTER for new para 
DELETE SHIFT KEY& •. ,. .•.• 
REPLACE SH I FT KEY & F4 

STYLE COMMANDS 
Press F 4 press F 3 
GLOSSARY ESCAPE 
Press F5 press ESC 

•••• : •••• 1 •••• : •••• 2 •••• : •••• 3 •••• : .... 4 .•.. : •.•• s .... : .... 6 •••• : •••• 7 •••• : •••• 
thrs rs a sentnece to be ammended 

MODE: OVERWfffTE 
STYLE: 

Figure 3.2: Overwriting. 

12 



PROVf('IONAL 

When you have produced a document you will probably want to save a copy of it on 
a Microdrive cartridge. At some later date you may want to make some changes and 
keep a copy of the new version. If you have a printer you will certainly want to produce 
printed copies. 

This chapter describes the commands provided to perform these operations, and also 
other functions relating to documents stored on the Microdrives. Remember that all 
commands are called in the way described in Chapter 2, that is, by pressing F3 and 
then pressing the appropriate letter. 

You use this command to save a copy of the text of a QUILL document on the current 
drive When you call the command you are asked to type in a name for the document. 
The simplest way to use the command is, therefore to type in something like the following 
sequence. 

F3 S MYLETTER ENTER 
You will usually want to save the document with a name that is different from that of 
any other document saved on that cartridge. (If you use the same name you will normally 
want to replace the old version with a new one.) This assumes that you can remember 
the names of all the documents that you have saved on that cartridge - what if you 
have forgotten some of the names? 

If you are not sure about the names you have used before you can ask for a list of the 
names of all documents saved on the cartridge, before choosing a name for your new 
document. Instead of typing in the name immediately, you can type in a question mark, eg 

F3 S? 

You will then be shown a list of the names of all the existing documents on the current 
Microdrive cartridge and are again asked to type in a new name for the document to 
be saved. You should then choose a name and type it in, ending with ENTER If this 
name is the same as that of a document which is already saved on the current drive, 
you will asked if you want the new document to replace the old one In response you 
should either type in Y (yes) or press ESC. If you type a Y the old version of the document 
will be replaced with the new one, otherwise you will be asked to type in another, different, 
name. When the document has been saved QUILL returns to the main display 

When you name a document to save it, or if you load a previously saved document, 
you will see that QUILL displays the document name in the status area. If you want to 
resave such a named document QUILL offers you a further option - to replace the old 
version on the cartridge, without having to type in the document name. In such a case 
you can just type in: 

F3 S ENTER 
when the new version will be saved on the Microdrive cartridge, replacing the old one. 

Before you have named a document nu1LL supplies the name "DEFAULT _DOC" This 
is the name that will be used to save the document if you do not type in a name of 
your own. 

You should use the Load command when you want to copy a document from the current 
Microdrive cartridge into the computer's memory so that it may, for example, be re-edited. 

You are first asked to type in the name of the document you want to load. You can 
either enter the name or type in a question mark, when QUILL will display a list of all 
the documents on the current Microdrive cartridge and again ask you to type in the name. 

If the name you type in does not correspond to the name of an existing document an 
appropriate error message will be given. 

CHAPTER 4 
FILE 
OPERATIONS 
4.1 INTRODUCTION 

4.2 SAVE 

4.3 LOAD 



PROVISIONAL 
4.4 PRINT This command is used to produce a printed copy of all or part of a QUILL document. 

It is, of course, necessary that you have a printer and that it is correctly connected to 
the computer, otherwise nothing much will happen! 

When you use this command you must first specify the document you wish to be printed. 
This may be either a named document, which has previously been saved on the current 
Microdrive or the current document in memory (which may or may not have a name). 

As with the Save and Load commands you may, before entering the name, type in a 
question mark for a list of all the available files. 

When you have entered the name of an existing document you will be asked if you want 
the whole document to be printed and should type either Y (yes) or N (no) If you type 
Y, the printing will start immediately, otherwise you will be asked for the number of the 
page of the document at which you want printing to start and also the page number 
of the last page to be printed. 

Please note that QUILL will work with most makes of printer, although you may have 
to make some modifications in the case of a printer which requires unusual control codes 
for such operations as turning on and off the underlining. Details of these modifications 
are given in the general section of the manual, where the printer driver program is 
described. 

You may also wish to change things such as the line spacing, the number of characters 
per line and the number of lines per page of the printed document. These are all included 
in the Design command, which is described in Chapter 7. 

4.5 FILES The Files command is used to make modifications to entire documents, which have been 
saved on the current Microdrive. 

Your options under this command are 

Rename - to change the name of an existing document. You will first be asked to type 
in the old name of the existing document and then to type in the new name that you 
wish it to have. For example, to change the name of a document called "MYLETTER" 
to "NEWLETTER", you would type: 

F3 F R MYLETTER ENTER NEWLETTER ENTER 

Delete - to erase an existing file. You are asked to type in the name of the file which 
you want to delete. For example, to delete a document called "MYLETTER" you would 
type: 

F3 F D MYLETTER ENTER 

Please note that this command is NOT REVERSIBLE and should therefore be used 
with care. 

Import - to insert another file, exported from one of the other Psion 4D packages, into 
your document. It assumes a file name extension of _EXP. The document from the 
Microdrive cartridge is inserted into the current document at the cursor position. 

To insert a document called "T ABLE_DOC" into the current document you should first 
move the cursor to the point where you want it to be inserted and then type: 

F3 F I TABLE ENTER 

You must not use this option to insert another QUILL document - the Merge command 
is provided for this purpose. 

Backup - This will make a copy of the file whose name you type in. It is sensible to 
make copies (on a different Microdrive cartridge) of all important documents, in case 
the original is lost or damaged. There is an example of its use, to make a copy of the 
QUILL cartridge, in Chapter 2. 

1 Lt 



This chapter is concerned with the format of the text; that is, the layout and appearance, 
as opposed to the actual content. You will learn how to move the position of the left, 
right and indent margins, and how to change the justification which, as you may remember 
from Chapter 2, affects the way the text is aligned with respect to the margins. 

The positions of the margins are changed with the Margin command. The change in 
the margin positions takes effect from the current paragraph and continues until the end 
of the document, or until the next change of margin positions. 

Press the command key (F3) and then the M key to start this command. In addition 
to other changes in the control area you will see that three choices LEFT, INDENT and 
RIGHT will appear and that the LEFT option is highlighted. These options represent the 
three margins, and the one that is highlighted is the one that you can move. You can 
step from margin to margin by pressing the space bar. When a margin is highlighted 
you can move that margin by means of the left or right cursor keys 

Suppose you wish to move the left margin to the right by three characters, starting with 
the second paragraph of your document. 

You should first move the cursor to any point in the second paragraph and then type 

F3 M 

As indicated by the highlighting, the left margin is the one you can move, so you JUSt 
have to press the right cursor key three times. The change in the margins takes place 
immediately, so that you can see the effect before you leave the command. 

You can leave the command straight away by pressing ESC, or you can continue to 
make further margin changes. Press the space bar until the correct margin is selected 
and move it with the left and right cursor keys You can use the up and down cursor 
keys to move the cursor to another paragraph and make further changes to the margins. 
After you have made all the changes you want you can leave the command and go 
back to the command menu by pressing ESC. 

The indent margin marks the character position which is used for the start of a new 
paragraph. It is initially set at the tenth character position. 

There is no restriction on the relative positions of the indent and left margins. If you do 
not want to use indented paragraphs you may move them so that they are both in the 
same place You may even place the indent line to the left of the left margin. This is 
useful for producing numbered paragraphs as shown in the following example. 

Indent Margin 

Left Margin 

1) This is the first of a series of paragraphs to show how you can use 
indent margins. 

2) The indent margin is three characters to the left of the left margin. 

In this case, starting a new paragraph (by pressing ENTER) will allow text to be typed 
at the 'indent' position Provided the text you type there does not pass the position of 
the left margin, the first time you press the space-bar will cause the cursor to move to 
the left margin All following text will be displayed between the left and right margin 
positions until you press ENTER again. 

I 
CHAPTER 5 
BASIC 
FORMATTING 
5.1 INTRODUCTION 

5.2 CHANGING THE 
MARGINS 



PRDVISIONAL 
5.3 JUSTIFICATION The Justify command allows you to alter the type of justification used in your document. 

As for the Margins command, all changes take effect from the current paragraph (that 
containing the cursor) and remain in force until the end of the document, or to the next 
change of justification. When you select this command you will see that you are offered 
the choice of left, right (and left), or centred Justification. 

When QUILL is first loaded it assumes right Justification. The text is 
aligned on both the left and right margins, producing text with an appearance 
like that of this paragraph. If there are not sufficient characters on a line to make 
the margins match, extra spaces will be added between the words until 
they do. The final effect is very professional, but if you use an unusually large quantity of 
extra-long or hyphenated words in a document, unpleasantly excessive 
inter-word spaces can be produced. 

Choosing left justification, by pressing the L key after calling the Justify command, will 
produce text which looks like the text in this manual. The left hand margin is aligned, but 
the spacing of the text within a line is not adjusted, so that the right hand margin is left 
uneven. 

Centre justification, selected by pressing the C key, 
causes the 

text of each line to be centred between 
the left and right margins. 

The text could then appear as 
shown in this paragraph. 

Centre Justification is useful, for example, in 
centering headings and titles, or for 

adding labels to diagrams. 

16 



PROVIS\ONAl 

This chapter will extend your knowledge of the editing facilities to include block copies, 
moves and erasures. In addition, the extremely powerful technique of search and replace 
editing will be introduced. · 

In addition to copying a block of text from one place in the document to another, the 
Copy command also allows you to move blocks of text. 

The only difference between copying and moving text is that, in the case of a copy, 
the original text is left in position so that you end up with two 'copies'. If you move 
some text the new copy is inserted and the old copy is deleted, so that you are left 
with only one version. The Copy command gives you the option of leaving or of deleting 
the old copy and therefore gives you both facilities in a single command. 

When you invoke the Copy command (by pressing F3 and then the C key) you are first 
asked to move the cursor to the beginning of the text you want to copy. You should 
move the cursor with the cursor keys and then press ENTER. You are next asked to 
move the cursor to the end of the text to be copied. When you move the cursor the 
text that will be affected by the command is highlighted so that it is easy to see how 
much text will be copied. After you have selected the text you should again press ENTER. 

In response to the next prompt you should move the cursor to the point where you 
want the selected text to be inserted and press ENTER once more. The copy will be 
made and inserted immediately. 

You are then asked if you want to delete the old copy You should press the D key 
to delete the old version (to produce the effect of a move) or the K key to keep it 

You can then terminate the command by pressing ESC, when you will go back to the 
command menu. If you press ESC before this point you will abort the command without 
any copies being made. 

However, you also have an option of making further copies of the text at other places 
in your document. All you have to do is to move the cursor to the point where you want 
another copy and press ENTER. You can repeat this as many times as you want. When 
you have finished making copies you should press ESC to leave the command. 

CHAPTER 6 
FURTHER 
EDITING 
6.1 INTRODUCTION 

6.2 COPY 

As is normal in QUILL, pressing ESC will cancel any partially-completed action, but will 
not undo anything that has been completed. All copies that you have made will be left 
in the text when you press ESC. 

You should use this command if you want to remove any large blocks of text from your 6.3 ERASE 
document. 

As with the Copy command, you are asked to move the cursor to the start of the text 
to be erased and then to press ENTER You then have to move the cursor to the end 
of the text - again the text which will be affected is highlighted so that you can see exactly 
how much text will be removed. When you are satisfied that you have marked the correct 
amount of text you should press ENTER and the marked text will be erased immediately. 

Remember that you can delete small pieces of text with the delete character, delete word 
and delete line operations described in Chapter 3. 



PRov,\tUNAL 
6.4 SEARCH The Search command allows you to search for a particular sequence of characters, 

through all or part of your document. The first search will start at the beginning of the 
text, but can be continued from the last found position. 

When you use the command you are asked to type in the text which you want to find, 
finishing with ENTER. Quill will immediately start searching your document from the top 
until it finds the first occurrence of the text. The cursor is left positioned at the start of 
the found text. If this is the occurrence you want you can leave the command by pressing 
ESC. 

However, once you have given the command some text you can use it again to find 
the next occurrence of that text Instead of pressing ESC, just press ENTER. If you do 
this QUILL continues the search from the current cursor position until it finds the next 
occurrence of the given text. You can repeat this as many times as you like, finding 
successive occurrences. Press ESC to leave the command when you have found the 
occurrence you want 

Suppose that you want to search your document for occurrences of the word 'river' 
You will therefore press F3 and then the O (the command is in the second command 
menu) and the S key Then type in the word 'river' (do not type the quotation marks 
unless they are part of the text you are looking for) followed by ENTER. The search 
will start immediately and stop with the cursor positioned on the first character of the 
first occurrence of 'river'. 

If you want to find the next occurrence you should then just press ENTER. This reactivates 
the command and finds the next occurrence of 'river'. These steps may be repeated 
as many times as you want, so that all occurrences of 'river' can be located. Press ESC 
when you want to leave the command. 

6.5 REPLACE The Replace command is similar to the Search command, but also gives you the ability 
to replace some or all of the occurrences that are found. 

You are asked to type in the text to be found, and are then asked to type in the 
replacement text (each piece of text should be ended by pressing ENTER) 

Quill searches from the top of your document until the first occurrence is found, as for 
Search, and then asks if you want to replace the found text If you press the Y key the 
text is replaced; if you press any other key (except ESC) the old text will be left In either 
case Quill then continues the search for the next occurrence and offers you the same 
choice of leaving or replacing the found text This continues until no further occurrences 
are found, or until you press ESC. 

You can use the command to make multiple insertions by making the replacement text 
include the old text. Multiple deletions are also simple; all you have to do is to press 
ENTER immediately when you are asked to type in the replacement text 

Replacing, inserting and deleting are illustrated in the following three examples: 

1 - to replace occurrences of 'river' by 'stream', give 'river' as the text to be found and 
'stream' as the replacement text 

2 - to insert 'or stream', give 'river' as the text to be found and 'river or stream' as 
the replacement text. 

3 - to delete 'river', give 'river' as the text to be found and give no replacement text 
(just press ENTER) 

18 



PROVt310NAl CHAPTER 7 

FURTHER. 
FORMATTING 

In this chapter we shall cover the remaining options for modifing the appearance of the 7 .1 INTRODUCTION 
text It includes the setting of tab stops and page breaks, and using bold characters, 
underlining, subscripts or superscripts. In addition there is a· section on the Design 
command, which you can use to change the default options used to control the overall 
appearance of your documents. 

A very common way of controlling the layout of a document is by use of tab stops. 7.2 TABS 
These are marked positions, at particular columns of the text of your document. When . 
you press the TABULATE key, the cursor will move to the right, from its present position, 7.2.1 Using Tab Stops 
to the next tab stop in the line. If you have passed the last tab stop, then pressing the 
TA BULA TE key will move you to the start of the following line. 

QUILL allows you to use tab stops of several different types, and to position them in 7.2.2 Tab Stop Types 
any column You can have up to sixteen tab stops in a line of your document 

Each tab stop may be set, independently of each other, to be any one of four types. 

The most common type is known as a Left tab stop and this works in exactly the same 
way as the tab positions on a normal typewriter. When you press the TABULATE key 
the cursor will move to the next tab position and any text you type in will start at the 
tab column. It is called a Left tab since the text at such a tab stop on successive lines 
is aligned at its left hand edge. 

A second type is a Right tab stop. When you move to such a tab stop and start typing, 
the cursor will remain at the tab position and the text will appear to the left, so that 
it ends at the tab position. This will continue until the text to the left of the tab position 
has filled the space available, or until you press the TA BULA TE key again to move to 
the next tab position. The text at such a tab stop on successive lines is aligned at its 
right hand edge. 

There is also a Centred tab stop. Text typed at such a tab position will be adjusted so 
that its central character is positioned on the tab stop. Again the aligning of the text 
will continue until the available space is filled, or you press the TABULATE key again 

The fourth type of tab stop is a Decimal tab, and is used for typing in numerical values. 
When a number is typed at such a tab stop it is positioned so that its decimal point 
is at the tab column. If you do not type a decimal point in the text, it will behave like 
a Right tab. 

Figure 7 .1 shows the appearance of text typed at each of the four different types of 
tab stops. 

Left Centre Right Decimal 

I I a a a a 
piece of piece of piece of piece of 
text text text text 

I 
12'.345 12 345 12.345 12.345 

123.4 123.4 123.4 123.4 
1234.56 1234 56 1234.56 1234.56 

I I I 
Figure 7.1 · The Four Types of Tab Stop 



PROVISIONAL 
7.2.3 The Tabs 

Command When you have just loaded QUILL the tab stops are set at every tenth character position 
and are all Left tabs. You can change the number, position and type of tab stops with 
the Tabs command. 

When you call the command the tab positions are drawn in the display, immediately 
beneath the ruler, as shown in Figure 7.2. 

Each tab stop is marked by a letter (LC R or D) to indicate its type. The cursor is positioned 
at the beginning of the line. You can move the cursor to the left or right by using the 
left and right cursor keys. 

You can place tab stops at any point in the line and mix the different types in any way 
you like The only limit is that you may not have more than sixteen tab stops in the line. 
The new tab stops take effect from the current paragraph (that containing the cursor 
when you called the Tabs command) to the end of the document, or to the next change 
of tab positions. 

When you have made all the changes that you want you can leave the command by 
pressing the ESC key, when you go back to the command menu. 

Deleting a Tab Stop You can remove a tab stop by moving the cursor until it is over the tab marker and 
pressing the X key. 

Inserting a Tab Stop The type of tab stop that will be inserted is that shown in the control area. You will 
see that the control area contains the words (L)eft, (R)ight, (C)entre and (D)ecimal and 
that the word (Ueft is highlighted. This shows that the next tab stop to be inserted will 
be a Left tab. You can change its type either by pressing the space bar (each time you 
press it the highlight moves from one type to the next) or by pressing the key 
corresponding to the first letter. If you want to change to a Right tab, for example, you 
can either press the R key, or keep pressing the space bar until the word (R)ight is 
highlighted. 

All you have to do to insert a tab stop is to select the type you want, move the cursor 
to where you want the tab to appear, and press ENTER. 

7. 3 STYLE The underlining facility has already been used as an example of the use of the style option 
(in Chapter 2) In this section we shall examine its use more fully, together with the options 
to use bold characters, high script (superscript) and low script (subscript). 

In general you can select any of these options by pressing F4 and then the appropriate 
letter - Bold, Underline, High script or Low script. If one of these options is currently 
switched on, you can turn it off again by the same method as you used to turn it on; 
that is by pressing F4 and then the appropriate letter. 

Note that any text that you type will always appear in the style shown in the status area. 
If you move the cursor into a region which is in bold type, for example, the status area 
will show BOLD style, and any further text that you type within this region will also be 
in bold type. The style changes automatically as soon as you move to a region containing 
a different text style. 

You must remember that you can only use one of underlining, high and low script at 
any one time. If you select one of these, the others are automatically switched off. You 
can, however, use bold characters with any one of the other three. 

There are three main ways in which you may want to use the style option: 

1 - Insert new text in a particular style, 
2 - Alter existing text to a new style, 
3 - Change or remove style from the text. 

If you want to type in some text iri a particular style you should press F4, select the 
style you want and then press ESC. Any text that you then type in. whether in insert 
or overwrite mode, will appear in the style you have selected. When you want to return 
to normal text you should switch off the style by pressing r4, deselect the style and 
press ESC again. Figure 7.4 shows underlined text being typed in. 

20 



~.,QVl~IONAL 
HELP 
press F1 
,PROMPTS 
press F2 

TABS Position cursor with ,_ .• keys 
Press ENTER key to set a tab 
Press X key to remove tab 
(Lleft (()enter (R)ight (Decimal) 

COMMANDS 
press F3 
ESCAPE 
press ESC 

.... : .... 1 .... : .••. 2 •••• : •••• 3 .•.. : .•.. 4 •••• : •••• 5 .••• : •••• 6 •••• : •••• 7 ••.• : •••• 8 
••••••••• L ••••••••• L ••••••••• R •••••••• ~, •••••••• L ••••••••• L ••••••••• L ••••••••• 

[
MOOE: lNSERT 
STYLE:. 
Figure 7. 2 The Tabs Command 

HELP 
press F1 

CURSOR 
mover 
with1--+ 
keys .i. 

STYLE-Turn style on/off 
Press key B. H or U 
To paint style use •. n .• 
Press ENTER to end 

STYLE 
Press F4 
GLOSSARY 
Press FS 

COMMANDS 
press F3 

PROMPTS 
press F2 

ESCAPE 
press ESC 

•••• : •••• 1 •••• : •••• 2 •••• : •••• 3 •••• : •••• 4 •••• : •••• 5 •••• : •••• 6 •••• : •••• 7 •••• : •••• 8 
In the beginning God created the heaven and the earth And the earth 

was without form. and vo Id , and darkness was [ upon face of the deep And 
the spirit of God moved upon the face of the waters. 

And God said, [get there be light and there was light 
And God saw the light. that it was good. and God diviced the l1ghtl 

from the darkness. And God cal led the l 1ght Day. and the darkness he cal led 
N I gh t And the even i ng and morn i ng were the f I rs t day 

And God said 

MOOE 
[ STYLE: UNDERLINE WORDS: 95 l1Nf;4 PK£:f, l 

OOCUMENl"aefautt.dot• . 

STYLE-Key B=Bold H=High L =Low U=Under 

Figure 7.3 Selecting A Style 



PROVISIONAL 
It is easy to add a particular style to existing text. The method is known as painting since 
you use the cursor like a paint brush, changing the style of any text over which it moves. 

First you must move the cursor to the start of the text to be changed, press F4 and 
select the style you want. Do not press ESC, but use the cursor keys to move the cursor 
through the text to be changed When you reach the end of the text you want to alter, 
leave the option by pressing ESC. You do not need to switch off the style selection; 
it will revert to the correct style as soon as you move away from the area painted in 
the new style Figure 7. 5 shows the appearance of the screen while painting text with 
underlining. 

HELP 
press F1 

CUR$0R 
mover 
with •..• 
keys i 

TEXT Type to insert at 
Press ENTER for new para 
DELETE SHIFT KEY &+-U-+ 
REPLACE SHIFT & F4 

STYLE 
Press F4 
GLOSSARY 
Press F5 

COMMANDS 
press F3 

PROMPTS 
press F2 

ESCAPE 
press ESC 

•••• : •••• 1 •••• : •••• 2 •••• : •••• 3 ••.•• : •••• 4 •••• : •••• 5 •••• : •••• 6 •••• : •••• 7 •••• : •••• 8 
In the beg1nn1ng God created the heaven and the earth And the earth 

was w1 thout form, and vo 1d , and darkness was I upon face of the deep And 
the sp1r1t of God moved upon the face of the waters 

And God said, Let there be l 1ght and there was l 1ght 
And God saw the l I qht . that It was good and God d Iv I ded the l I ght 

from the darkness And God called the l 1ght Day, and the darkness he called 
Night And the evening and morning were the first day 

And God said, Let there beO 

I MOD[ 
STYLE UNDERLINE 

WORQS:.98 LINE: B PAGE:1 
OOCUMENT:rdefault doc" I 

Figure 74 Inserting Underlined Text 

You can change, or remove, an existing style in the same way as you use to add a 
new style to existing text. Again you should move the cursor to the start of the text 
before pressing F4 and selecting (or deselecting) the style you want. Move the cursor 
to the end of the text and press ESC 

When you change text from an existing style to a new one, QUILL does not remember 
the original style. Suppose, for example, you change text which was originally underlined 
to being in bold characters. If you later remove the bold style, the final text will be in 
plain characters, and will not revert to being underlined. 

7.4 PAGE BREAKS A page break marks the point in your document where a new page will start, irrespective 
of the length of the page that you have set in the Design command. It is very useful 
for making sure that a section of text, such as a list or a table, is started at the top of 
a new page and is not, therefore, shown in two parts on different pages. 

You can set a page break at any time by using the Page command - press F3 and then 
the P key. You should then position the cursor in the line at which you want the page 
to end and press ENTER. This will cause a new page to be started at the end of the 
line in which the page break was set 

You can clear a page break by moving the cursor until it lies on the page break and 
then pressing SHIFT and, while holding it down, pressing the right cursor key. 

22 



PROVISIONAL 
You should use the Design command to change features that affect the entire document, 7 .5 DESIGN 
both in the main display and on the printer. It controls such things as the number of 
characters on each line of the document, the spacing between the lines and the number 
of lines per page of the document The appearance of the screen for this command 
is shown in Figure 7.6. 

When you call the Design command the display of your document is replaced by a list 
of the properties you can affect These include whether you display 40, 64 or 80 
characters on a line of the display, the number of lines per page of your document, and 
so on. A full description of each option appears in Chapter 9. 

Suppose you want to change the number of characters per line to 40, so that the display 
is suitable for a domestic television. All you have to do is to call the Design command 
and, when the list of topics is displayed, press the D key to select the 'Display width' 
option This option is automatically highlighted and QUILL waits for you to press 4, 6 
or 8 to select 40, 64 or 80 characters per line. It will not accept any other key presses. 
In this case you would press 4 for a 40 character display. 

PROMPTS 
press F2 

CURSOR 
mover 
with-» 
keys .1. 

STYLE - Turn style on/off 
Press key B,H or U 
To paint style use+- il-+ 
Press ENTER to end 

STYLE 
Press F4 
GLOSSARY 
Press FS 

COMMANDS 
press F3 
ESCAPE 
press ESC 

HELP 
press F1 

•••• : •••• 1 •••• : •••• 2 •••• : •••• 3 •••• : •••• 4 •••• : •••• 5 •••• : •••• 6 •••• : •••• 7 •••• : •••• 8 

MODE I· STYL£:.UNOERLINE WOAOS:95 LINE:4 PAGE:1 j 
OOCUMENT"default. doc" · 

In the beg1nn1ng God created the heaven and the earth And the earth 
was without form. and void , and darkness was upon face of the deep And 
the sp1r1t of God moved upon the face of the waters 

And God said. Let there be l1gb_!:[J and there was l 1ght 
And God saw the l I ght , that it was good and God d Iv I ded the l I ght 

from the darkness And God called the light Day, and the darkness he called 
NI gh t And the evening and morning were the f i rs t day 

And God said 

STYLE -Key B=Bold H=H1gh L =Low U=Under 

Figure 7 .5 Painting Underline Style 

You then have the option of selecting a further item to change - you can change any 
or all of the items listed in the display. When you have made all the changes you want 
you should leave the command by pressing the X key, as indicated in the control area. 

This is the one case where you do not normally leave by pressing ESC. Normally when 
you press ESC, any changes that you have completed are kept; only half-completed 
actions are aborted. The Defaults command is an exception. If you leave it by pressing 
ESC any design options that you have made during that use of the command are 
cancelled. 

..,., 



PROVISIONAL 
HELP DESIGN the FORMAT the printed page COMMANDS 
press F 1 Press the first letter of option press F3 
PROMPTS ESCAPE 
press F2 When f1n1shed press KEY X press ESC 

•••• : •••• 1 •••• : •••• 2 •••• : ••• , 3 •••• : •••• 4 •••• : •••• S •••• : •• , ,6 •••• : •••• 7, ••• : ••• ,8 

Bottom margin ( type No. & RET )------------------------------ 6 

Characters/inch (type No & RETL---------------------------- 10 

Display width 80. 64. 40. 18.6.4) ----------------------------- 8 

Gaps between lines (0 1.21 ---------------------------- 0 

L,nes per page (type No.& RETI ------------------------------ 16 

Start page no 'type No. & ENT 1 
------------------------------ 0 

Type density Ismql e or double 1------------------------------ S 

Upper margin I type No & RET I ------------------------------ 0 

View a wide document layout -------------------------------OFF 

Figure 7.6: The Design Command 

7 .6 WIDE DOCUMENTS The right margin is initially set at column 80 so that you can have up to 80 characters 
per line in your document. You may move the right margin further to the right - up to 
a maximum of column 160. 

It is then impossible for QUILL to show the full width of your document on the screen. 
In this situation the display area acts like a window, through which you see only part 
of the full width of your document. As you move the cursor along a line, the window 
will slide across the width of your document, so that it always shows the region containing 
the cursor. This behaviour, which is known as sideways scrolling, is an extension of the 
normal up and down movement to show part of a document which has too many lines 
for them all to be seen at once. 

One of the options of the Design command is to view a wide document. This changes 
the display so that you can see the general layout of a document that is more than 80 
(or 64 or 40, depending on the setting you have selected fo[ the display width) characters 
wide., 

In this option each character is represented by a small block. You will be able to distinguish 
the different punctuation marks - commas, full stops, hyphens and so on - and see the 
structure of a whole page. You will not be able to read the characters and will have 
to use the Design command again to switch off this option before you can continue 
editing the document. 

24 



PROVISIONAL 

The provision of glossaries is a powerful feature of QUILL, in that it allows you to perform 
commonly-used operations by pressing only two keys. 

One of the most common uses is to enable you to insert into your document a common 
word or phase, without having to type it in full every time. The following example shows 
how to define a glossary entry by storing the text 'Yours faithfully,' under the Y key. 

You may only define a glossary entry from QUILL's main display (eg you may not define 
a glossary entry from within a command). 

To start a glossary definition, you press SHIFT and, while holding it down, press the 
glossary key (F5). You then release both keys and then press the key under which you 
want the entry to be stored. In this example, therefore, you will first press SHIFT and 
F5 and then the Y key. You then type in the text, exactly as you wish it to appear: 

Yours faithfully, 

and then end the definition by pressing F5 once more. 

To use the glossary entry you simply press f5 once and then the key under which the 
entry is stored. Thus if you now press f5 and then the Y key, the text 

Yours faithfully, 

will appear at the current cursor position in the document. 

If you redefine the glossary entry the new definition will replace the old one. For example, 
you could press SHIFT and F5, the Y key, then type: 

Yours sincerely, 

and end by pressing F5 once more. The previous entry is lost Pressing F5 and the Y 
key will, in future, add the new phase into your document. You can clear a glossary 
entry by redefining it to contain no text If you press SHIFT and F5, then the Y key 
and follow this immediately by pressing F5 again, you will have deleted that glossary entry. 

When you leave QUILL, by means of the Quit command, all existing glossary definitions 
are saved onto the system Microdrive cartridge automatically. They are then loaded back 
into memory on any subsequent occasion that you load QUILL from that cartridge, so 
that there will be no need to keep redefining them 

CHAPTER 8 
GLOSSARIES 
8.1 INTRODUCTION 

8.2 DEFINING A 
GLOSSARY ENTRY 

8.3 USING A 
GLOSSARY ENTRY 

8.4 REDEFINING A 
GLOSSARY ENTRY 

8.5 KEEPING A 
GLOSSARY 

25 





PROVISIONAL CHAPTER 9 
QUILL 
REFERENCE 

The five function keys are used in QUILL for the following purposes 

Function Key Use 

F1 Help 
F2 turn the prompts on and off 
F3 call the command menu 
F4 text style, and insert/overwrite 
F5 use, and define a glossary entry 

9.1 THE FUNCTION 
KEYS 

Notes 

1) Switching between insert and overwrite modes is selected by pressing SHIFT and, 
while holding it down, pressing F4 (shift-F4) 

2) Defining a glossary is selected by pressing SHIFT and, while holding it down, 
pressing F5 (shift-F5). 

9.2 FILES 
A full file name consists of three sections, separated by underscores The three 9.2.1 File Names 
components are: 

an optional drive specifier 
a file name of up to x characters 
an optional three-letter extension 

eg MDV1 
eg LETTER 

eg DOC 

A tull file name for an QUILL file could therefore be 
' 

MDV2_LETTER_DOC 

If you do not include a drive specifier in a file name then QUILL assumes that you are 
referring to the current drive, that is, the drive that was last used The one exception 
is when you are loading QUILL itself from SuperBASIC, as described in Section 21 In 
this case you must include the drive specifier in the file name. 

You do not normally need to specify an extension since QUILL supplies a default extension 
for every file access. The Load and Save commands supply a default extension of _DOC. 
The default extension for Import files is _EXP 

If you include an extension in any file name you type in then it will be used in preference 
to the default extension normally provided by QUILL 

Every time that an QUILL command asks you to type in a file name you have the option 9.2.2 Wild Cards 
of pressing the ? key to obtain a list of the names of files on the current drive. The file 
name '' • _ • '' (file name and extension) will appear in the input line and, if you accept 
this by pressing ENTER, you will be given a list of all files on the current drive. 

In this context the "•" character is a wild card which stands for any sequence of 
characters. You may also use the character "?" to represent any single character in 
a file name. 

You have the option of using the line editor, described in Section 9.5, to modify the 
suggested file name, in order to obtain a list of the names of a particular group of files. 

If, for example, you edit the file name to read "• _ TST" and then press ENTER you 
will be given a list of the names of all files with an extension of _ TST. Changing the 
file name to "X • _ *" would result in a listing of all files, with any extension, whose 
names begin with X. ' 

You could use the single character wild card as, for example, 

MYFILE?_ * 
which would result in a listing of all files with names such as: 



~ROVISIONAL 
MYFILE1 MYFILE2 MYFILE3 

and so on, with any extension. 

Note: that this facility is only available when you are requesting a list of file names 
before typing in a file name for any of the file-based commands (Files, Load, 
Save and Print). 

9.3 HELP Pressing F1 displays a Help screen, containing information relevant to your current action 
and your possible options You can ask for further information on any of the topics listed 
at the bottom of the display by typing in its name. Just pressing ENTER goes back one 
level in Help, until you reach the level at which you entered Help, when you will be returned 
to your document at the exact point where you left it You can return to your document 
immediately from any level of Help by pressing ESC. 

9.4 THE PROMPTS You can turn off the display of the control area and the prompts that it contains by pressing 
F2 This allows you to see more of your document on the display You can restore the 
display of the control area by pressing F2 again - each press changes the state of the 
display between on and off. 

9.5 THE COMMANDS You gain access to the commands by pressing F3. This switches QUILL to display a 
command menu. In addition to being able to select a command you can, at this stage, 
move the cursor with the cursor keys. You are not allowed to insert or delete text ,01 
to define a glossary entry 

The control area display changes to show a list of the commands available. You select 
a command by typing its first letter. A further set of commands is available and you 
can select the alternative set by pressing the Okey (Other) While you are in the command 
mode, the command menu switches between the alternative command sets each time 
you press the O key. 

In general, you can leave any partially completed command by pressing ESC 

At the end of most commands QUILL returns to the main display. 

In any command that requires text input (eg Save, Load, Files, Replace) you may edit 
the text with the aid of a line editor, similar to the line editor available in the other programs 
in the Psion 4D package. This line editor uses the following keys 

Key(s) 
Left cursor 
Right cursor 
Up cursor 
Down cursor 

Action 
Move one character to the left 
Move one character to the right 
Move one word to the left 
Move one word to the right 

Delete one character to the left 
Delete one character to the right 
Delete all text to the left 

CTRL + Left cursor 
CTRL + Right cursor 
CTRL + Up cursor 
CTRL + Down 
cursor 

SHIFT + Left cursor 
SHIFT + Right cursor 

Delete all text to the right 

Move left by one word 
Move right by one word 

The following commands are available. 

COPY You should use this command for either moving or copying text from one place in the 
document to another. 

You are first asked to move the cursor (with the cursor keys) to the start of the text 
to be moved and then to press ENTER. Next you should move the cursor to the end 
of the text you want to move and press ENTER. The text that will be affected is 
highlighted, for clarity. Following this you should move the cursor to the position where 
you want the marked text to appear, and press ENTER once more. 

At this point a copy of the marked text is inserted at the cursor position and you are 
finally asked to press either the Kor the D key, depending on whether you want to Keep 
or to Delete the original copy of the text 

28 



PROVISIONAL 
You are then given the opportunity of making further copies of the text at any other 
point in your document. You should position the cursor where you want another copy 
to appear and press ENTER to insert the copy. You may make as many copies as you 
like. When you have finished inserting copies you should press ESC to end the command 
and return to the command menu. 

This command allows you to set or change a number of the default options which control 
the overall appearance of your document. Within the command you are asked to choose, 
by pressing the appropriate key, from the following options 

DESIGN 

Bottom margin - type in the number of lines space to be left blank at the bottom of 
each printed page of your document. Press ENTER when you have typed in the number. 

Characters/inch - type in the number of characters to be printed per inch. Press ENTER 
when you have typed in the number. (Normal values are 10 or 12, but this will depend 
on your printer.) 

Display width - type in 4, 6 or 8 to select a display of 40, 64 or 80 characers per line 
in the display of your document. Quill will not accept any other characters. 

Gaps between lines - type in 0, 1 or 2 to select how many blank lines will be printed 
between each line of text in your document. Quill will not accept any other characters. 

Lines per page - type in the total number of lines to be used for each page of your 
document. This number includes the blank lines in both the upper and bottom margins. 
Press ENTER when you have typed in the number. If you type in a zero the document 
will not be split into pages. (You can normally print 66 lines on a standard A4 page.) 

Start page number - type in a number, followed by ENTER This number is used to number 
the first page of your document. Successive pages are numbered consecutively from 
this value. QUILL initially sets this number to be 1. You may want to change it if your 
document is a continuation of another document. 

Type density - type in either S or D to select between single or double type density 
Quill will not accept any other characters. 

Upper margin - type in the number of lines space to be left blank at the top of each 
page of your document. Press ENTER when you have typed in the number. 

View a wide document layout - use this option to switch to the display mode for examining 
the overall appearance of a document which is too large for you to see the full width 
of a page on the screen. Selecting this option a second time will return to the normal 
form of display. 

At the end of each option you may select another of the options, or press the X key 
to leave the command. If you press ESC you will leave the command without having 
changed any of the design options. 

This command allows you to erase text from your document. You are first asked to move ERASE 
the cursor (with the cursor keys) to the first character that you want to erase, and then 
press ENTER. You should then move the cursor to the character space following the 
last character to be erased and press ENTER again. The marked text is erased immediately. 

There are five options provided in this command: FILES 

Backup - to make a second, security copy of a document on a 
Microdrive cartridge. You are asked to type in the name 
of the document and the name you want to give to the 
new copy. 

Import - to insert another file from a Microdrive cartridge into 
your document, at the position of the cursor. The file 
must be a file exported from one of the other programs in 
the Psi on 40 package. 

Rename - to change the name of a document or other file on a 
Microdrive cartridge. You are asked to type in the old 
name and then the new name. 



PROVISIONAL 
Delete - to delete a named document or file from a Microdrive 

cartridge. You are asked to type in the name of the file 
you want to delete. 

FOOTER This command allows you to specify a line of text to be used as the last line on each 
pnnted page. Note that the footer does not appear in the display of your document on 
the screen, but it is shown when you are viewing a wide document. (See the Defaults 
command) 

You are first asked to select the position of the footer from the four options 

None - no footer text 
Left - at the left margin 
Centre - centred in the page 
Right - at the right margin 

You press the space bar until the required option is highlighted and then press ENTER. 
you are then asked to type the text for the footer, ending by pressing ENTER. You can 
include the page number anywhere in the text. The page number can be in one of three 
forms, depending on the three characters you type into the text to mark the position 
of the page number. The three options are 

Characters 

nnn or NNN 
rrr or RRR 
aaa or AAA 

Page Number Style 

Arabic Numerals eg 1, 2, 3, 4 
Roman Numerals eg I, 11, 111, IV 
Alphabetic eg A, B, C, D 

You are finally asked to type in a number, from Oto 9 to indicate the number of lines 
space to be left between the bottom of the text and the footer. 

GOTO You may use this command to move the cursor to the top, bottom or to a specified 
page in your document. You are offered three options 

Top - to move the cursor to the beginning of your document. 
Bottom - to move the cursor to the end of your document. 

- typing in a number, followed by ENTER moves the cursor to the start of that page 
of your document. If there are no page breaks in your document this option will move 
the cursor to the end of your document. 

HEADER This command allows you to specify a line of text to be used as the first line on each 
printed page. Note that the header does not appear in the display of your document 
on the screen, but it is shown when you are viewing a wide document. (See the Defaults 
command) 

You are first asked to select the position of the header from the four options: 

None - no header text 
Left - at the left margin 
Centre - centred in the page 
Right - at the right margin 

You press the space bar until the required option is highlighted and then press ENTER. 
you are then asked to type the text for the header, ending by pressing ENTER. You 
can include the page number anywhere in the text. The page number can be in one 
of three forms, depending on the three characters you type into the text to mark the 
position of the page number. The three options are 

Characters 

nnn or NNN 
rrr or RRR 
aaa or AAA 

Page Number Style 

Arabic Numerals eg 1, 2, 3, 4 
Roman Numerals eg I, II, Ill, IV 
Alphabetic eg A, B, C, D 

You are finally asked to type in a number, from Oto 9 to indicate the number of lines 
space to be left between the header and the top of the text. 

30 



PROVISIONAL 
This command allows you to specify a point within a word where it can be split, with 
an automatically-inserted hyphen, if it extends beyond the end of a line. Words not marked 
in this way will, if necessary, be moved to the next line in their entirety 

HYPHENATE 

You should move the cursor to the first character following the position where you want 
to allow a split to be made and press ENTER. , 

The command will have no apparent effect on the word if it is not at the end of a line. 

You should use this command to select the type of justification you want. It takes effect 
from the start of the paragraph containing the cursor, and remains in effect to the end 
of the document, or to the next change of Justification 

JUSTIFY 

You are offered the following options, selected by pressing the key corresponding to 
the first letter of the option: 

Left - the text is aligned at the left margin, but the right 
margin is left uneven. 

Centre - the text of each line is centred within the line. 

Right and left - additional spaces are inserted between words in each 
line so that both the left and right margins are aligned 

This command allows you to load a document into memory from a Microdrive cartridge, 
ready for printing or further editing. 

LOAD 

You are asked to type in the name of the document (the name you gave it when you 
saved it) If you just press '?' you will be shown a list of the names of all the documents 
saved on the current Mic rod rive cartridge, and again asked to type in a document name. 

You should use this command to set or change the positions of the left, indent and right MARGINS 
margins for your document. All changes in the margins are shown in the displayed text 
as you make them. 

The control area shows the words LEFT, INDENT and RIGHT, and on first entering this 
command the word LEFT is highlighted. This means that you can use the left and right 
cursor keys to move the left margin. 

You can select any other margin by pressing the space bar until the correct margin is 
highlighted in the control area. In each case you can move the selected margin by pressing 
either the right or left cursor key 

The change in each margin takes effect from the paragraph containing the cursor. It 
remains in effect to the end of your document, or to the next change of position of that 
margin 

When you have finished changing the margins you should press ESC to leave the 
command. 

This command allows you to switch to the display of a further set of commands in the OTHER 
control area. The list of commands in the control area is switched between the alternative 
lists each time you use Other 

Since several commands start with the same letter, you must make sure that the 
command you want is one of those displayed, before you choose it. 

You can use this command to mark a point in your document where you want a new 
page to start. 

PAGE 

You should move the cursor to the point where you want the new page to start and 
press ENTER. 

You can cancel a page break by moving the cursor to any point on the page break line 
and then pressing SHIFT and the right cursor key together. 



PROVISIONAL 
PRINT This command prints all or part of either a named document from the current Microdrive 

cartridge, or the current document. 

You are asked to type in the name of the document which you want to print - typing 
in a '1' at this point will give you a list of names of all the files on the current Microdrive 
cartridge. If, instead of typing in a name, you just press ENTER you will select the 
current document (in memory) for printing 

You are then asked if you want to print the whole document. If you reply by 
pressing the Y key the document will be printed immediately. If you press any 
other key you will be asked for the page numbers at which you want printing 
to start and stop. You should type in the two numbers (each followed by ENTER) 
and the pages within that range will be printed. 

QUIT This command allows you to leave QUILL and return to SuperBASIC You then have 
three options: 

ENTER - to save your current document before returning to 
SuperBASIC. You are given the further option to type in a 
name for the saved document. If you again Just press 
ENTER the document will be saved with its old name, 
replacing the old version of the document on the 
Microdrive cartridge 

A - to abandon your current document and return to 
SuperBASIC without saving it. 

ESC - to cancel the command and return to your document. 

REPLACE You can use this command to replace some or all occurrences of one piece of text by 
another. 

You are first asked to type in the text to be replaced, followed by ENTER, and then 
are asked to type in the replacement text, again followed by ENTER. 

QUILL searches from the start of the document until the first occurrence of the old text 
is found. It then offers you the option to replace the old text with the new. You should 
press the Y key to replace the text, or any other key if you do not want to replace it. 

QUILL will then search for the next occurrence and again offer you the option to make 
the replacement. This process will continue until you reach the end of the document. 

SAVE You use this command to save a copy of your document to a Microdrive cartridge. 

You are asked to type in a name for your document, so that it can be identified. The 
document is then saved under that name. If, instead of typing in a name, you just press 
ENTER, the document will be saved with its old name, replacing the old version. 

The text of the document remains in the computer's memory and at the end of the 
command you can continue working on it. 

SEARCH This command searches your document for a particular word or phrase. 

You are first asked to type in the text which you want to find. When you press ENTER 
QUILL starts at the top of your document and searches for the first occurrence of the text. 

If, instead of typing in text, you just press ENTER, Quill will continue a previous search 
to find the next occurrence of the text you last typed in when using the Search command. 

TABS The Tabs command allows you to specify the positions and types of tab stops on a 
line of text. Each change of the tab stops will take effect from the start of the current 
paragraph (the one containing the cursor) It will remain in effect to the end of your 
document, or until the next change of tab stops 

The tab positions are drawn on the display and the cursor positioned at the start of that 
line. You can move the cursor along the line by using the left and right cursor keys. 
Pressing the TABULATE key moves the cursor to the next tab stop to the right: pressing 
SHIFT and TABULATE moves to the next tab stop to the left. 

1? 



PROVISIONAl 
You can change the type of the tab stop by 

a) pressing the space bar until the correct type is highlighted in the control area. 
b) pressing the L, C, R, or D key 

There are four types of tab stop provided: 

Left · the tab stop behaves like a left margin; the text is positioned to the riqht of the 
tab stop 

Hight the tab stop behaves like a right margin, the text is positioned to the left of the 
tab stop 

Centre the text will be centred around the tab stop 

Decimal this rs used tor aligning decimal numbers. Each number will be positioned so 
that its decimal point rs at the tab stop. Until a decimal point is encountered it behaves 
like a right tab 

You can remove a tab marker by deleting it (press SHIFT and the left or right cursor key) 

I o insert a tab marker you should select the type you want, move the cursor to the 
appropriate point and press ENTER. When you have made all the changes you want 
you should press ESC to leave the command and return to the command menu. 

This command deletes the whole of your current document, without saving it on a ZAP 
Microdrive cartridge, allowing you to start again. QUILL returns to the same state as when 
it has just been loaded (see Section 9 8) 

You can change the style of the text in your document by pressing F4 and then the 9.6 STYLE 
first letter of one of the tour options listed below. The selected style affects all text 
subsequently typed in. 

You are offered the following options 

Bold · text is converted to a bold, or heavy, typeface 

High script ·· text is printed in the upper half of the line. 

Low script text is printed in the lower half of the line. 

Underline · text is underlined. 

You then have the option of immediate+y pressing ESC, in which case all text that you 
type will be in the new style (until the next change of style). 

Alternatively you can move the cursor from its present position with the cursor keys 
All text that the cursor passes through will have the new style added to it Press ESC 
to end this option and return to the main display. 

You may select Bold style independently of the other three options, but you may only 
select one of High script, Low script or Underline to be active at any one time. If you 
select any one of these three the other two will be deselected automatically. 

You can switch off any of the style options by the same method as you used to turn 
it on · that is by pressing F4 and then the appropriate key (B, H, L or U) 

When you have just loaded QUILL it is in insert mode, as shown at the left of the status 
area. In this mode any text that you type in will be inserted into your document at the 
position of the cursor. Any surrounding text will be spread out to make room for the 
inserted text 

9.7 INSERT 
AND 
OVERWRITE 
MODES 

If you press SHIFT and, while keeping it held down, press F4, QUILL will switch to 
overwrite mode. In this mode any text that you type in will replace, character by character, 
any text from the cursor position onwards. 

You can switch back to insert mode by the same method, that is by holding SHIFT 
down and pressing F4. 



9.8 
GLOSSARIES 

9.9 THE 
START-UP 

PARAMETERS 

34 

P:ROVISIONAL 
You can define a glossary action for any alphabetic key on the keyboard Such a key 
can be made to produce any sequence of characters or commands, when used together 
with the glossary key (F5) 

To define a glossary entry you should press SHIFT and, while it is still held down, press 
F5, release both keys and then press the key whose action you want to define. This 
key will then "learn" any sequence of key presses that you subsequently make (the 
sequence of actions is carried out at the same time). You should mark the end of the 
learning sequence by pressing F5 once more. 

At any later time you can use the glossary entry by pressing F5 once, followed by the 
key whose action you have previously defined. If you attempt to use a key that you have 
not defined, nothing will happen 

You can define each key on the keyboard to have a different action, and there is no 
restriction on the number of characters stored - either under each key or in total. The 
stored sequences do, however, occupy some of the space in the computer that could 
otherwise be used for your document 

When you have defined one or more glossary entries they will be saved on the system 
Microdrive cartridge automatically when you use the Quit command. The glossary 
definitions are reloaded from the system cartridge every time you load QUILL. 

If you add to or change the glossary definitions during a session with QUILL, the new 
glossary will replace the old one when you Quit 

When you first load QUILL it is in the following state: 

Mode: 
Display width: 
Left margin: 

Indent margin 
Right margin 
Upper margin: 

Bottom margin: 
Justification: 
Tab stops 

Characters/inch· 
Lines per page: 

Gaps between lines: 
Page header 
Page footer 

Start page number: 
Type density: 

Style Bold 
Underline 

High script 
Low script 

insert 
80 characters 
0 
10 
80 
6 
6 
Right and Left 
Left, at columns 10, 20,30, , 80 
12 
66 
0 
off 
on, centred number of type NNN 
1 
single 
off 
off 
off 
off 



0 ,.. 
)> 

~ c: 
"' 



QLAbacus 





PRDYISIUNAL CHAPTER 1 
ABOUT 
ABACUS 

ABACUS is a 'thinking' worksheet which can be used for planning, budgeting, tabulating 1.1 INTRODUCTION 
data, calculation, information storage or for the presentation of information. This 
information is represented, conceptually, on a huge, tabulated grid divided in 256 rows 
and 64 columns. The data area you see on the computer screen is a window on the 
grid, which you can move about the grid rapidly. The intersections of the rows and 
columns represent more than 16,000 cells or boxes in the grid. You can enter text into 
any cell or cells, or the cells may be used for the storage of numbers or data. 

The real power of ABACUS, however, comes from the use of rules or formulae which 
can connect different blocks, rows or columns, or even cells of the grid This means 
that data inserted in one area can immediately be evaluated and represented in another 
form elsewhere in the grid 
For example, you can use twelve of the columns to represent months of the year and 
you can then enter sales data along a "sales" row. The next two rows can contain 
formulae to calculate the cost of sales (as a percentage of sales plus a fixed cost, say) 
and the profit The monthly profits will then be evaluated automatically each time you 
type in a sales figure. The yearly totals can also be summed by another formula, so 
that a change in the sales of, say, March will immediately lead to a completely different 
profit profile and total for the year All the figures are evaluated by ABACUS automatically 

ABACUS is uniquely powerful as a worksheet in many respects. It will use the text that 
you enter to refer to columns, rows, cells and blocks on the grid. It also automatically 
applies the formulae you enter to whole rows, columns or blocks of cells - without recourse 
to any complex command structure. 

ABACUS can be used in a very wide variety of planning and office tasks in finance, 
science, engineering, management and many other fields. 

ABACUS is an "intelligent" worksheet because it uses the names you use, because it 
always prompts you with the most likely choices of parameters required and because 
it always informs and guides you in the entry of data and in the decisions which you 
must make. The software is self-documented and includes comprehensive Help files which 
you may enter at any stage, whatever you are doing in ABACUS. 

ABACUS is also hugely powerful with an enormous range of in-built functions for operating 
on text as well as numbers. In addition, as you learn more about the use of this powerful 
package, you will come to learn of facilities and commands which allow great versatility 
and flexibility in your work. These commands include the joining of grids, the use of · 
multiple windows, the variation of column widths, justification of text and the use of 
different units (including monetary, integer, decimal and exponential forms). You can 
also represent the data from ABACUS in graphics or in a table in the word processor, 
through the export commands of PSION 40. 

In fact in many respects ABACUS is like a visual programming language - but one which 
is easy to use. You may manipulate text, data, or formulae, you may use input and 
outputstatements and text variables. It is only one's imagination which limits the use 
of the applications and the possibilities of this program. 





PROVISIONAL 
When you switch on the computer it will only respond to commands in BASIC. You 
will have to load ABACUS from its Microdrive cartridge. You will normally do so by inserting 
the ABACUS cartridge in drive 1 (the left hand drive) and then typing 

LGO MDV1_ABACUS ENTER 

After a few seconds the screen will show the message 

ABACUS - Copyright Psion Ltd 1983 
Press any key to start 

You should then press any key on the keyboard to start ABACUS. 

When you have loaded ABACUS the display on the screen should look like that shown 
in Figure 2.1. This is known as the main display. 
ABACUS allows you to choose whether to display eighty, sixty four or forty characters 
per line of the display. (You can change betweenthem with the Design command, 
described in Chapter 6 ) If you are using a domestic television the display may not be 
clear enough for you to see eighty or sixty four characters per line. If this is the case 
you will need to use the forty character display mode, and the main display will look 
like that of Figure 2. 2 Apart from the difference in appearance ABACUS works in exactly 
the same way in all three modes. Most of the diagrams in this manual are shown for 
the eighty and sixty four character modes. 

~- 
·---·~-- 

LP CURSOR DATA & FORMULA TEXT type .. l COMMANDS 
p ess F1 press +-1' .• .., press F2 

I PROMPTS GOTO enter directly followed by -lSCAPE 
press F2 press FS s press ENTER text s ENT press ESC 

B I ( I 0 I E · I F I (j 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

11 
12 
13 
14 
15 
16 

7 

CURRENT .CELL: A1 . GRID USED At:A.1 
CURRENT CELL EMPTY 

Figure 2.1 The Main Display 180 and 64 Character Model 

The largest area of the screen contains the window showing part of the grid. The bottom 
two lines of the display contain the status area, which gives information about the current 
state of the grid. It is described more fully later in this chapter. 

CHAPTER 2 
BASIC 
OPERATIONS 
2. 1 INTRODUCTION 

2.2 GENERAL 
APPEARANCE 



PROVISIONAL 
---- TEXT type" . - 1! CURSOR DATA & FORMULA 

press+-• .•.. 
GOTO cell 
press F 5 

~LPF:cJ[ 

enter directl y 
& press ENTER 

PROMPT F2 IC@MANDS F3 

followed by 
text & ENT . J 

]I ESCAPE ESC==:] 

7 

A 
1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 

B t 

I
I CURRENT CELL Al 
[ CURRENT CELL EMPTY 

GRID USED Al :A1 MEMORY REMALNING 101:ff I 
Figure 2.2 The Main Display 140 Character Model 

!L _, 
Figure 2.3 The Window 

BDDDB 
p ----- --- - - -- 

~ 

At the top of the screen rs a region, known as the control area The contents of this area will be constantly 
changing so that it always shows the options you have, and gives confirmation of your choices. 

Figure 2.4 The Status Area. 

At the moment it is divided into seven sections, showing the options you have at this, the main level. It shows 
that you may 

4 

press the Help key, 
turn off the prompts 
type in a number, 
move the cross wires, 
type in text, 
type in a formula, 
use a command, 
press the ESC key. 

J 
[:==== 
Figure 2.5 The Control Area. 



PROVISIONAL 

\E:3DDD9 
I r----r 

Figure 2.6 Help. 
The first option, displayed at the extreme left of the control area, shows that you may 
ask for Help by pressing function key 1 (F1 ). Regardless of any other changes in the 
control area display, the Help option will always be shown. This indicates that the Help 
facility is always available, no matter what you are doing. 

Try pressing the Help key (F1) now. When you do, the grid display will disappear, to 
be replaced by one giving more details about the options open to you at the main level. 

In addition, you will see that there is a list of topics about which more help is available, 
shown across the bottom of the display. You may ask for further information about any 
one of these topics by typing in its name and pressing ENTER. You do not need to type 
in the whole of a name; you only need to type in the first few letters - enough to distinguish 
it from any of the other topics in the list 

When, after typing in one of these names, you press ENTER you will find that further, 
more detailed, information is shown about the topic you have selected, and another list 
of sub-topics will be shown You may then select one of these sub-topics by typing in 
the first few letters of its name, as described before. 

You may continue this process until no further information is available. At any stage you 
may return to the previous screen by simply pressing ENTER. Repeatedly pressing ENTER 
will eventually take you back to the main display of your grid, with the control and status 
areas. At this point you will have left the Help facility and will have been returned to 
the exact situation before you pressed the Help key. 

A faster way to return from Help is to press ESC This will return you from any point 
within Help, back to the state from which it was first called. 

Try using the Help facility to examine some of the many pathways through the information. 
Don't worry if you do not understand some of the information that is shown - it will 
make sense when you actually need to use it All you need to do at the moment is to 
become familiar with the way in which the Help facility is used. When you have finished, 
press ESC to return to the main display. 

It must be emphasised that Help is always available, at any time. Whenever you are 
not sure what you should be doing, just press the Help key, even if you are, for example, 
in the middle of typing in numbers or text as part of a command You will not always 
start at the same point in Help, but will be presented with the information most relevant 
to what you were doing when you pressed the Help key. 

When you have found the information you need and leave Help (by use of the ESC 
or ENTER keys) you will always be returned to the exact point from which you started, 
as though there had been no interruption. 

Use the Help key as often as you like - it is there to assist you and will usually be the 
quickest and simplest way of solving your problems. 

2.3 HELP 

5 



PROVISIONAL 
2.4 THE PROMPTS In addition to showing your options,the control area highlights your choice and, when 

necessary, suggests what you should do. These aids to using ABACUS are known as 
prompt messages or Just prompts. 

You can switch off the display of the control area and the prompts it contains by pressing 
function key 2 IF2) When you do this the extra space on the screen is added to the 
window, so that you can see a larger section of the grid. You will find this option useful 
for examining your application when you have completed it You may also want to use 
this form of display when you have become familiar with ABACUS and no longer need 
the information in the control area. You can restore the control area display at any time 
by pressing F2 again 

Figure 2 7 Prompts Figure 2 8 The Grid Labels. 

2. 5 THE CURSOR At the top of the window, just below the control area, you will see a line in which a 
number of letters appear. These letters label vertical columns of cells making up the grid 
As you can see, columns A,B,C, and so on are visible. Down the side of the window 
there is a series of numbers, from 1 to 15. These numbers label the rows of cells in 
the grid 

A combination of a letter and a number will therefore identify one particular cell, and 
is known as a cell reference. Such a reference is, for example, A 1 This refers to the 
cell which is in column A and row 1, (the top left hand cell in the window) You will 
see that this cell is different from all the others in that it is filled by a large red rectangle. 
This is known as the cursor and it marks the current cell, that is the cell which will receive 
any data you type in 

The cell reference of the current cell is given by the CELL label in the status area at the 
bottom of the screen In addition, the status area shows the extent of the used portion 
of the grid, the amount of memory left las a percentage of the total) and the contents 
of the current cell This cell is, of course, empty at the moment 

BDDDB 
1 

·--~-~---- - ·==ii 
===-----'--"--'--'--~ 
Figure 2. 9 The Cursor. 

[3DDDB] 
I LJ 

~ 

Figure 2.10 Moving the Cursor. 

You can move the cursor by means of the cursor keys - try pressing the right cursor 
key once. You will see that the cursor moves one column to the right and the current 
cell indicator now shows B 1. If you then press the left cursor key once the cursor returns 
to cell A 1 . Pressing the left cursor key again will have no effect because you are at the 



PRUVl~IONAL 
extreme left hand edge of the grid. Try using the four cursor keys to move the cursor 
around the window. 

You may have noticed, in your experimenting with the cursor keys, what happens when 
the cursor reaches the right hand side, or the bottom, of the window. If you have not, 
try it now. Keep pressing the right cursor key until the cursor reaches the extreme right 
hand side of the window. When you press the right cursor key again the cursor will 
not appear to move, but you will see that the letters across the top of the window will 
change. When you attempt to make the cursor leave the visible area of the grid the 
window will move across the grid so that the cursor remains in view. The window is 
always adjusted automatically to keep the current cell in the visible part 

By now you will have realised that the cursor keys are a useful method of moving the 
cursor, provided you only wish to move it one or two cells. It is very inefficient for making 
large movements across the grid. For such larqe movements it is more convenient to 
go directly to the required cell You can do this by pressing function key 5 (F5) and 
then typing the required cell reference. 

Notice how the cursor movement option box in the control area is highlighted as soon 
as you press F5, to confirm your selection. Each of the options shown in the three central 
panels of the control area works in this way As soon as you select the option the relevant 
panel is highlighted and remains so while you are typing your input. It gives reassurance 
that you have selected the option you want. 

As an example of using the option to go to a particular cell, let us move the cursor to 
cell 011. First press F5 You will see that the words 'Go. to cell,A 1' appear below the 
window. ABACUS is suggesting that the cursor is to be moved to the top left hand corner 
of the grid If you accept this suggestion (by just pressing ENTER) the cursor will move 
to that point. To move the cursor to another cell you should type in the cell reference 
- tn this case you should type 

d11 
and then press ENTER. Tl re cell reference you type in replaces that suggested by ABACUS 
and the cursor moves directly to the cell you have specified. 

You should now move the cursor back to the top left hand corner of the grid by using 
this option again this time you can accept the suggested cell reference (A 1) so all you 
have to type is 

F5 ENTER 

You will find that you go back to the original state of the display, with the cursor at 
the top left hand corner of the window, in cell A 1. Try using this command to move 
around the grid and finish by returning the cursor to cell A 1 . 

Now move the cursor to cell Y1, by typing in F5 Y1 ENTER Look at' the letters labelling 
the columns across the top of the window and you will find what happens if you go 
beyond column Z. The column to the right of column Z is labeled AA, the next one is 
labeled AB, and so on. This is obviously necessary for you to be able to refer to more 
than 26 columns. 

Can you guess what happens to the column labels after column AZ? Move the cursor 
to cell AY1 to see if you were right. Continue moving the cursor to the right until you 
can go no further; you will then have found the label of the last column in the grid. 
How many columns are there in total? (You will find that the last column is labeled BL 
- there are 64 columns ) You can also move down the grid to find the last row but you 
will have to go a long way; there are 256 rows in the grid. 

Return the cursor to cell A 1 and then type: 

100 
but don't press ENTER just yet. Notice that the number or formula option box in the 
control area is now highlighted, to confirm your action. The number 100 will also have 
appeared in the line just below the window onto the grid, to the right of the question 
mark. (This is the same place that the cell references appeared when you were moving 
the cursor around the grid by use of F5 ) 

All typed input appears in this line, which is known as the input line (surprise!). 

2.6 ENTERING 
NUMBERS 

7 



2. 7 ENTERING TEXT 

8 

PROVISIONAL 

[E-~[]O[]~J f3DDDB 
~--==r- LJ 

J I I 

Figure 2.11 Numeric Entry Figure 2.12 The Input Line 

The small flashing rectangle in the input line marks where the next input character will 
appear, and is known as the input cursor, to distinguish it from the main cursor in the 
grid. If you make a mistake at any time during typing to the input line, you can correct 
it by holding down the shift key and then pressing the left cursor key to delete the input, 
character by character. The correct input can then be typed 

OK, you can press ENTER now! When you do, the value 100 will be transferred to the 
current cell IA 1) and the input line will clear, ready for more input. You will see that 
the value 100 also appears in the status area, at the bottom of the display Although 
this facility might seem rather pointless at the moment, you will find it useful when you 
start to use formulae, as described in Chapter 5 You may like, at this stage, to practise 
entering a few numbers at different points in the grid. 

Once you are familiar with number entry, putting text into a cell is simple. You follow 
exactly the same procedure, except that you start by typing quotation marks I") into 
the input line. As soon as you type the quotation marks, ABACUS responds by 
emphasising the text entry option box in the control area. You then type in exactly what 
you want to appear in the cell, followed by pressing ENTER. There is no need for a 
closing quotation mark since ABACUS already knows you are typing in text Try entering 
text into a few cells and, in particular, notice the difference between entering, say 

1000 ENTER (a number) 

and 

"1000 ENTER (a text string) 

5tJ[ JOBI f;JD[Jl]El 

'ir -~~ - - ~I c - - ---~--- -~- -~ [ -- - 
C . 1 

Figure 2. 13 Text Entry Figure 2. 14 The Commands. 

As indicated by the top right hand option in the control area, you can use a command 
by first pressing F3 This changes the central part of the control area to show a list, 
or menu, of the available commands. It is known as the command menu and is illustrated 
in Figure 2.15. 



PROVISIONAL 
HELP l IC()MMANDS Echo Load 
ress ft~ Amend Files Merge 

PROMPTS Copy Grid Order 
press F2 Defaults Justify Print 

A I B I c I 0 

Quit w,n~~:J COMMANDS 
Rubout Xe cute ress F3 
Save Zap ESCAPE 
Units press ESC 

E l F l G 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

~~I 
command> D 

RR.ENT CELL: Al .. · . &RID USED AtAI · .. MEMORY REMA.lNl.NG; ·:. ~.· · .. ~.·· .... 
RRENT CELL EMPTY · · v, · 

. . . .. - - . I 

Figure 2.15 The Command Menu. 

Most of the commands are described in later chapters but we can take a quick look 
at two of them. These are Zap, which you can use to clear the whole grid, and Quit, 
which allows you to leave ABACUS and return to BASIC. 

Try the Zap command first. Press F3 and locate the Zap command in the displayed menu. 
Press the Z key, when the word Zap will appear in the input line - you never need to 
type more than the first letter of any command because ABACUS does most of the work 
for you Also, the command box in the control area changes to show the menu for Zap, 
telling you that you have two options. Try pressing ESC first, to return to the main level 
without any deletions Since you can not recover a zapped grid, you will find this option 
useful if you call the command accidentally (It is also worth remembering that you can 
get out of any command, at any stage, by pressing ESC ) Now return to the command 
menu by pressing F3 again and then press Z to call the Zap command again, but this 
time press ENTER next, to clear the grid. You will be left with a blank grid and with 
the cursor in cell A 1, ready to start afresh. 

Whenever you want to leave ABACUS and return to BASIC, you must use the Quit 
command. This works in a similar way to Zap, in that you first press F3 and then the 
first letter of the command (0) Returning to BASIC causes you to lose the contents 
of your grid, so you are again given the option of going back to the command menu 
by pressing ESC. If you are sure you want to quit, press ENTER, to exit to BASIC. 

You can generally use the ESC key to cancel the current action, or to leave a particular 2.9 ESCAPE 
sequence of operations. 

We have already seen how you can use the ESC key to leave Help, from any level (Section 
24) and to leave the command menu (Section 2. 10). 

You can also use ESC to cancel input to the input line. Try typing in a number and, 
rather· than pressing ENTER, press ESC. The entry is cancelled, as you would expect. 



PRov,s,oNAL 
BDDDB 

Figure 2. 16 Escape. r: 
2.10 THE LINE EDITOR A further feature, available at all times that you are typing characters at the keyboard, 

is a full line editor. With its aid you can modify any or all of the editable text in the input line. 

Left and Right Cursor 
Keys 

Up and Down Cursor 
Keys 

2.11 MORE ABOUT 
NUMBERS AND TEXT 

1 () 

The editable text excludes, for example, the command prompt in the input line when 
you are using a command. In general, any text that appears as the result of pressing 
a single key can not be edited since it has already been interpreted and acted upon 
You can edit any text that you have typed in full, before you press ENTER to pass the 
text to ABACUS. 

Two situations where the line editor is particularly useful are when modifying a formula 
by means of the Amend command (see Section 6. 7) and when you have made a mistake 
in a formula. If you make a mistake and type in a formula that gives an error you will 
be told the nature of the error. The text of the formula is shown in the input line, ready 
for correcting. 

At all times each character that you type will be inserted to the left of the input line cursor 
position, and the cursor will move one space to the right. Regardless of the position 
of the cursor, all the text in the input line is accepted as input when you press ENTER. 

The line editor uses the four cursor keys, together with the CTRL and SHIFT keys. 

The left and right cursor keys, used on their own, move the input line cursor by one 
character to the left or right. 

If you press SHIFT and, while holding it down, press the left or right cursor key the 
input line cursor moves left or right by units of a word, that is to the next space or comma. 

If you press CTRL and, while holding it down, press the left cursor key you will delete 
the character to the left of the cursor. Pressing CTRL together with the right cursor key 
deletes the character under the cursor. The following text closes up to fill the gap. 

If you press the up cursor key the cursor moves to the beginning of the editable text 
in the input line; the down cursor key moves the cursor to the end of the text. · 

Holding down the CTRL key and pressing the up cursor key will delete all editable text 
to the left of the cursor. Pressing CTRL and the down cursor key deletes all text to the 
right, including the character under the cursor. 

Here is some more information about how ABACUS handles the display of numbers and 
text in the grid. As well as going into some detail about the different methods of display, 
it uses several new commands and could be omitted at a first reading. 

ABACUS stores all numbers to the full accuracy of 16 significant figures. This full accuracy 
might not, however, be shown in the grid cells. To illustrate this difference, put the number 
123.4567 in cell A 1. The value displayed in the cell and the exact value shown in the 
status area will agree. 



PROVISIONAL 
-· -- 

HELP UNI rs Defines units or numerical Formats COMMANDS 
press Fl INTEGER DECIMAL EXPONENT press F3 
PROMPTS MONETARY PERCENT GENERAL ESCAPE 
press F2 Type the first lett r of the ophon press ESC 

A B T ( I D I E I F .• I e. ' 

1 123 46 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
n 
t3 
14 
15 

~ 
command) Un1ts,Oec1mals 

~ENT CELL: Al . GRIO·U· SEO At:Al 
[~ENT CEll VALUE 123.4567: 

MEMORY '8EMAINING 98, 

F,uure 2 17 The Unus Command. 

Now call the Units command (by pressing F3 and then the U key). There are two main 
options; Cells or Defaults. You should press ENTER to select the (suggested) Cells option. 

The display will look like that shown in Figure 2.17 and you are now offered the option 
of several different forms of display for numbers in the grid - let's try a few. 

First, press the M key (to select the monetary form of display) You are then asked to 
specify the range of cells which are to be affected, and could reply by typing in a range 
reference (eg, A 1 83) or Just the reference to a single cell. In this case we want to chance 
only the current cell (A 1) You should therefore type in A 1 and press ENTER. 

The display in cell A 1 will change to 123.46, even though the actual value ( 123 456) 
is still kept, and shown in the status area. The monetary form of display always shows 
the number rounded to two decimal places and with a leading currency sign. (You can 
change the sign to $, or anything else, by using one of the options in the Design 
command, as described in Section 4.4. After having made this change in the display 
you are returned to the main level of ABACUS. 

Let us now change the display in cell A 1 to integer (whole number) format, by calling 
the Cells option of the Units command again, but this time press the I key, and then 
A 1 and ENTER (again we need only affect the current cell). The cell display now shows 
123 - the decimal point and all figures following it are not shown in integer format. 

We can now try decimal format. For this format you must also specify the number of 
figures you want to be displayed after the decimal point; let's use five decimal places. 
After calling the Cells option of Units, in the usual way, press ENTER (since Decimal 
is the default option) and then specify five decimal places by typing 

5 ENTER 
Finally, in response to the 'range' prompt, type A 1 again, to affect only the current cell. 
Cell A 1 will now show 123.45670, as required. 

Now use the command again, but this time press the P key, to specify the percent format. 
Use one decimal place and select the current cell (type 1 ENTER A 1 ENTER). The display 
will now show 12345.7% - the percent option shows a number multiplied by 100 with 
an added % sign Note that the stored value, as shown in the status area, is still 123.4567, 
regardless of the cell display 

11 



2.12 THE 
MICRODRIVES 

12 

fKUVl~IUNAL 
We can now try the exponential format, with three decimal places, by typing 

F3 U ENTER E 3 ENTER A 1 ENTER 

Before you press ENTER for the third time the input line should contain: 

Command Units,Cells,exponent,decimal places 3,range A 1 

and, after pressing it, the cell display will be 1 235 E + 02 The exponential format is 
commonly used to display numbers which are too large or too small to be written rn 
decimal format. The number is written as a value between 1 and 10, multiplied by the 
approprate power of ten The number 2 300 000 000, for example, can be written as 
2.3 multiplied by 1 000 000 000. Now 1 000 000 000 is ten raised to the ninth power 
(nine tens multiplied together), so that 2 300 000 000 could be written in exponentral 
format as 2 3 E + 09 Very small numbers are written in exponential format by using 
negative powers of ten. Thus, the number 0.000123, which is 1.23 divided by 10000 
(ten raised to the fourth power), can be written in exponential format as 1 23 E-04. 

The remaining option in the Cells option of the Units command is the general format, 
which you can see in cell A 1 by typing: 

G Al ENTER 

This format again does not require you to specify the number ot decrmal places Using 
the general option lets ABACUS choose a sensible format for the display of each number. 
It does the best it can to display each number in the space that is available. 

Before we leave the Units command, try displaying the number in cell A 1 in decimal 
format, with nine decimal places (type D 9 ENTER A 1 ENTER) Cell A 1 now shows 

, since the required display will not fit in the space available. 
Whenever you see a cell filled like this you know that there is not enough room for the 
number to be displayed You should then either use the Units command to change the 
display format, or increase the width of that column with the Grid command These 
commands are used in many of the examples in Chapter 5 

Now cle.. the grid by using the Zap command and, with the cursor at cell A 1, type 

"this is a long bit of text ENTER 

Although the text is too long to be contained in one cell, it is all shown and overflows 
across the following cells. Now put the number 1 into cell B 1. The text is cut off at 
the end of cell A 1 as it is not allowed to overflow across another filled cell. Move the 
cursor back to cell A 1 to verify that the whole of the text is still stored (see the status 
area) even if it is not displayed in full. 

Move the cursor back to cell B 1 and use the Rubout command to erase the contents 
of this cell. When you call this command (press F3 and then R) you will be asked to 
specify the range of cells whose contents you want to delete. In this case we only want 
to delete the contents of the current cell (B 1) and can do so by Just pressing ENTER. 
Now that the following cell is empty, the full text appears in the grid again. 

Once you have loaded ABACUS, as described in Section 2 1, you should not remove 
the ABACUS cartridge from drive 1. It is, however, sensible to make at least one copy 
on another cartridge, remove it and replace it in its case in order to protect it This removes 
any risk ~f "'C:0i_~entally losinq or damaging your only copy of the program. 

You can do this by using the Backup option of the Files command. For example, if you 
want to copy ABACUS from drive 1 to a blank, formatted cartridge in drive 2 you would 
type: 

F3 F B MDV1_ABACUS ENTER MDV2_ABACUS ENTER 

You can use the Save command to save, on a blank, formatted, cartridge in drive 2, 
any application that you have written (remember to specify drive 2 if it was not the last 
drive used). 

Alternatively you can insert a cartridge containing previously saved applications. You can 
then load any of these applications with the Load command. 

These two commands will Save and Load applications on the cartridge in the current 
drive. This is the drive that was last used and, when you have just loaded ABACUS as 
described in Section 21, this will be drive 1. 



PROVISIONAL 
To change the current drive to drive 2 you must include the drive specifier in the file 
name (See Section 6 7 for a full description of Microdrive file names ) 

You could, for example, load a tile called "JACK_ABA" from drive 2 by using the Load 
command as: 

F3 L MDV2_JACK_ABA ENTER 

You do not need to include the extension. The Load command will assume that it is 
_ABA unless you type in something different You could therefore just use 

F3 L MDV2 JACK ENTER 

See the descriptions of the file-based commands (Load, Save, Print and Files) for the 
extensions assumed in each case. 

Remember that the command used in the last two examples will make drive 2 the default 
drive so that you could now load another file, called "JILLABA" from drive 2 by 

F3 L JILL ENTER 

Drive 2 will remain the default drive until you specify a different drive specifier in a file name. 





r,~OVISIONAL 

Much of the power of ABACUS lies in its ability to handle whole rows, columns or ranges 
of cells in a single operation. This is done by the use of simple expressions which allow 
you, for example, to fill all or part of a row of cells. The values in the cells may all be 
made the same or they may vary in a regular way 

This chapter describes some of the properties of cells and the ways in which you can 
refer to them 

The cell is the basic unit for holding information in ABACUS Each cell can contain one 
item of information which may be text, a number or a formula. Chapter 2 shows how 
you put either text or a number into a cell and Chapter 4 explains how you can use 
a formula. 

For each cell that contains information, ABACUS also keeps a record of how that 
information is to be displayed. You can, for example, display numbers or text at the left, 
centre or right of the cell, and you can (as described in Section 2 .11) display numbers 
in several different formats. 

You can use the Justify command to change the position of the display within a cell. 
It allows you to select the position of numbers or of text independently. 

Put a value of 100 in cell A 1 and then try using the Justify command - press !3 and 
then the J key. You will see that you are first asked to select between a Cells and a 
Defaults option. These two have different efects, as we shall see later. For the moment 
you should select the Cells option by pressing ENTER. You are then asked to choose 
between text (the default) or numbers and should select numbers, by pressing the N 
key Next you must select from the options of Left, Centre or Right justificaton, with 
Right being the default. Choose Left justification by pressing the L key .. B Finally you 
are asked to specify the range of cells that are to be affected. In this case you should 
Just type in A I and then press ENTER You will see that the value of 100 in cell A 1 
will move to the left hand side of the cell 

Try the other possibilities in the Cells option of the Justify command to see its effects 
on cells which contain text as well as those showing a numeric value. 

The Cells option of the Units command (to modify the display format for numbers) is 
described in Section 2.11 and follows a similar pattern 

Note that you can change the numeric format or numeric Justification of a cell which 
currently contains text, but nothing will appear to happen. If, however, you later change 
the contents of the cell from text to numeric you will see that the new format or justification 
has been stored. This also applies to a change of text justification for a cell which currently 
contains numeric information. 

CHAPTER 3 
CELLS, ROWS 
COLUMNS 
AND RANGES 
3.1 INTRODUCTION 

3.2 CELLS 

3.2.1 Properties of Cells 

Cells that contain no information do not exist as far as ABACUS is concerned, and use 3.2.2 Empty Cells 
no memory They can therefore have no properties. If you attempt to use the Cells option 
of either the Justify or the Units command on an empty cell you will find that they have 
no effect. 

Clear the grid with the Zap command and then use the Cells option of the Units command 
to change the display format of cell A 1 to percent format with one decimal place now 
type the number 0.5 into cell A 1. You will see that it is not displayed as a percentage 
(you would expect to see 50 0%) but is in general format. 

The reason is that each time you put information into a previously empty cell, it is created 
(memory is reserved for it) with a set of default properties. When you have just loaded 
ABACUS these defaults are that text is justified left and numbers are justified right All 
numbers are displayed in general format 



PROVISIONAL 
If you want to change these defaults you must use the Defaults option of the Justify 
and Units commands. For example, use the Defaults option of the Units cornrnand.tpress 
F3, U and D) to select a default of percent format with one decimal place You will see 
that the choices are similar to those in the Cells option, but you are not asked for a cell 
range. The default is set for all empty cells. 

Move the cursor to an empty cell and type in the number 0.5. You will see that it is 
now displayed as 50.0%. 

The Defaults option of the Justify command works in the same way Again you are not 
asked to type in a cell range because the new default will be used each time you put 
informaton into a previously empty cell. 

Try using the Defaults options to make changes to the default justificaton for both numbers 
and text. See how they affect the numbers or text that you put into empty cells. Remember 
to restore the defaults to their original state; numbers justified right, text justified left and 
numbers displayed in general format. 

3.3 ROWS As a first example, let us fill the first row, from column B to column D, with the value 
100. One way of doing this is to use the range identifier, row, as follows. Place the 
cursor in cell A 1 and then type: 

row = 100 ENTER 

This means that the value 100 is to be placed in the cells of the current row (row 1), 
but so far we have not specified which columns are to be involved. As you will see, 
a prompt appears in the input line suggesting that the row be filled starting at column 
A (the column containing the cursor) The system will always make a reasonable 
suggestion for the starting point. If this is what you want you can accept it simply by 
pressing ENTER In this case, however, we want to start at column B so you should press: 

B ENTER 

The input line changes to show that the filling of the row is to start at column B and 
a further prompt will appear with a suggestion of BL (the last column in the grid) for 
the end column. Again this will have to be changed, since we want to end at column 
D, so you should press: 

D ENTER 

The instruction is now complete and will be carried out - the value 100 will appear in 
cells B 1 to D 1 and the input line will clear, ready for your next input 

You must be careful to distinguish between row, used as a range identifier, and the 
function rowt). which returns a row number (see Chapter 4). 

You use the range identifier, row, to indicate that the data following the equals sign 
is to apply to the cells of the current row, rather than Just to a single cell Every time 
you use it, ABACUS will ask for the start and end points in the row, suggesting reasonable 
values based on your previous work. You can accept the suggestion by pressing ENTER 
or you can type in a replacement value, as described above. 

3.4 COLUMNS Filling a column follows a very similar pattern except, of course, that you refer to a column 
by one or two letters rather than the number that identifies a row. Suppose we want 
to put the text "hello" in the cells of column D, from row 5 to row 11. We can do 
this by using the second range identifier, col. Move the cursor to cell D5 and type 

col = "hello" ENTER 

This time ABACUS suggests the correct starting point (row 5) as this row contains the 
cursor, and you can accept this suggestion by pressing ENTER Row 256 will then be 
offered as a suggested end point and you should change this by typing: 

11 ENTER 

in exactly the same way as in the previous example The text will then appear in cells 
D5 to D 11 inclusive and the input line will clear, ready for the next input. 

Again, you must be careful not to confuse col with the function colt). which returns 
a column number. 

16 



PROVISIONAL 
As with row, each time you use col you will be asked to specify the f11 ::,l and last cell 
to be affected You may, as usual, accept or replace the values suggested by ABACUS. 

In addition to this way of using the range identifiers row and col, you can also use them 
as arguments to functions in place of range references (see Section 3 6) The following 
example combines both ways of using row and col. 

col = sum(row) 

It fills each cell of a column with the total of the values in the cells of the correspondinq 
row. 

Chapter 5 contains many examples of using them in both ways 

The previous examples referred to rows and columns by an explicit use of their number 3.5 LABELS 
and letter cell references. An important alternative for identifying rows or columns is to 
use labels, that rs names which you may choose yourself These labels are then used 
to refer to specific rows, columns or cells. 

Any text that you put into a cell can be used as a label You can use labels in any 
command or formula where you would otherwise use a letter and number reference. 
The advantage is that you can use meaningful and memorable names, removing the 
need to remember what row and column a particular cell is in. 

This is an extremely powerful and flexible method which you can use to great advantage 
to simplify the setting out and operation of a grid. The following two sections explain 
how you can use these labels. The examples in Chapter 5 use this technique extensively 
but in this chapter we shall keep to simple situations. 

A label may refer to either a row or a column, depending on the contents of the other 
cells in the grid. The basic rule when you use a label to identify a row, is that ABACUS 
searches along the row and column which intersect at the cell containing the label name. 
The first filled cell to be found below and to the right of the position of the label will 
determine whether the label should refer to a row or to a column. Figures 3.1 and 3 2 
should help make this clear. 

3.5.1 Row and 
Column Labels 

HELP CURSOR DATA & FORMULA TEXT type I COMMANDS 
ress F 1 press~t.~ press F 3 

PROMPTS GOTO cell enter directly followed by ESCAPE 
press F2 press FS & press ENTER text & ENT press ESC 

I I I '!, \ ' I . B c D .E F G 
l 
2 
3 

" 5 
6 
7 
8 
9 

18 
11 
12 
13' 
14 
15 
J4 

COSTS 100. 00 

CURRENT CELL: A1 GRID USED At:os 
I CURRENT CELL EMPTY 
Figure 3.1 Labeling a Row. 

In Figure 3.1 the label refers to a row and in the second example it refers to a column. 



PROVISIONAL 
CURSROR 

followed by 
text & ENT 

COMMAND 
press F3 

HELP 
press F 1 
PROMPTS 
press F2 

DATA & FORMULAll TEXT type .. 

ESCAPE 
press ES C 

press,_,,. .• 
GOTO cell II enter directly 
press FS & press ENTER 

t 
2 
3 
4 
5 
.6 
1 
8 
9 
ll 
11 
12 
13 
14 
15 
16 

MARCH 

100. 00 

7 

CURRENT CELL: At GRID USED At:(4 
CURRENT ceu. . EMPTY 

Figure 3.2 Labeling a Column 

In more complex cases other factors will be taken into account to resolve a row or column 
reference, and these are described in Section 6.2. 

3.5.2 Labeling Cells You can also use labels to refer to single cells, but in this case two labels are needed. 
In the following example the labels 'March' and 'Costs' can be used to refer to the shaded 
cell. rHE;P If ;~;_;,R c ·1--o~T~~ ~ORM~Lt0lux·T-·;1-;-1 co0M.-MAN-o~ --·c:TI 

ressFI 'press•',, press F3 

PROMP!Oi GOTO cell 

I 
eclecd"ec;]ly followed byj ESCAPE ~-I 

press F2 press FS s press ENTER text & ENT press ESC 
L........_ ----~ -- 

A t e 1 c I fl I I F ~ 
MARCH 

100.0 0 

7 

(URR~NT (Etl.: Al GR40 tlSfC ;tt;~1 "J~Off't lrtfMAlf.llN:fl:9.8!4 
CUU£NT au. EMPTY 

Figure 3.3 Labeling a Cell. 

1R 



PROVISIONAL 
The reference is made up of the names of the two labels, separated by a full stop (eg, 
March.Costs) It is not necessary to give the full names, and no distinction is made 
between upper and lower case letters Only enough letters of each name are needed 
to make sure that the identification is unique. In the earlier case, 'mar.cos' would be 
perfectly adequate The order of the labels is also irrelevant, so you could also use 
'cos mar' to refer to the same cell. 

As the examples in Chapter 5 show, labels are powerful tools which result in enormous 
savings in time and effort during the creation or modification of an application They 
are, however, only tools and, like all tools, need a little care in their use. You would 
not expect to be able to construct a chair by taking a few bits of wood, cutting them 
up in a haphazard fashion and then tacking them together as they they came to hand. 
Everyone knows that some sort of plan is required In a similar way, you must plan your 
grid entries to make maximum use of the advantages of labels. 

In addition to being able to refer to a whole row or a whole column, you can make 3.6 RANGES 
an instruction work on a rectangular block, or range, of cells. Again, you can use labels 
to replace letter and number references. 

A range reference is made up of two parts. The first part is the row and column reference 
of the top left hand cell of the range. This is separated by a colon from the second part, 
which is the row and column reference of the bottom right hand corner of the range 
Range references will therefore appear as 

A2:D27 

An example of the use of a range reference would be the use of the Copy command 
to copy the contents of a range of cells to a similar range at a different place in the 
grid. Figure 3.4 shows a range reference being used with the Copy command 

PROMPTS 
press F 2 

ESCAPE 
press ESC 

HELP 
press Fl 

COPY- contents of a block of cells to a 
new location 
Enter top left bottom right cell & ENTER 
followed by new location & ENTER 

COMMANDS 
press F 3 

B c D E f G 
l' 
2 
3 
4 
5 
6 
7 
8 
9. 

11: 
t1 
l2 
n 
14 
fS 
l 
Command> Copy, 

llZllZI 
4.IZl0 
700 

2 IZl0 
5.00 
8 00 

100 
6 00 
9.00 

1 00 
4 12) IZJ 
700 

2 00 
5 IZJ 12) 
8 00 

3 00 
6 Q)IZJ 
9 00 

from block B3 OS. to EB 

r
, CURRfNT CEU:: Al GRID USEO;<AJ:05 
CURRENT'CfU EMPTY 

MEMOIW RfMAINtNG: 97 S ~ ~ . .._, 

.~, .;~, ~~- ""! 

Figure 3.4 A Range Reference 

In all cases ABACUS will suggest starting and finishing points in a sensible way, depending 
on the current state of the grid. The starting point, for example, is normally chosen to 
lie in the current row or column, as appropriate The end point is usually selected to 
be the same as the end point of the last similar operation You may accept the suggestions 
or type in a replacement value. 





PROVISIONAL 

ABACUS contains a number of pre-defined functions which are used to perform specific 
calculations on the contents of one or more cells. Each function takes a number of input 
values, known as arguments, and from them calculates a specific result 

The arguments are placed in brackets after the name of the function and, if there is more 
than one, are seperated by a comma. Most of the functions provided return a numeric 
value, for example, the function sum() This takes, as an argument, a range reference 
and returns a value equal to the sum of the numeric values contained in all the cells 
within the range. Some functions, such as month(), return a text value ( month( 1), for 
example, returns the text "January"). A few functions require no arguments, but the 
brackets are still needed An example of such a function is pi() which returns the numerical 
value of the mathematical constant pi (approximately 3 14). 

Two particularly useful functions are col() and row() These return the number of the 
current column and row (containing the cursor) respectively. For example col() will return 
a value of 1 from column A, 2 from column B, and so on. The function row() simply 
returns the row number 

As an example we can use the two functions month() and col() to label columns of the 
grid. The object will be to place the headings January, February, and so on at the top 
of columns B to M. Type in 

row = month( col() ) 

and select the column range from B to M. You will see that the result is not quite what 
we want in that, although the labels start at column B, the first label is February and 
not January The reason for this is that, in column B, col() returns the value 2 and month(2) 
is the text "February". We can correct this mistake by making sure that the argument 
for the function month() is 1 when in column B, 2 when in column C, and so on. All 
we have to do is to alter the instruction so that 1 is subtracted from the value returned 
by coli), before calculating the month Typing in 

row = month(col()-1) 

and selecting the column range from B to M will now give the correct result 

CHAPTER 4 
FUNCTIONS 
AND 
FORMULAE 
4.1 FUNCTIONS 

A formula is usually used to relate the contents of one cell to the contents of one or 4.2 FORMULAE 
more of the other cells in the grid. The idea of formula is very important in the use of 
ABACUS as it allows you to describe even the most complicated calculations in a simple 
way A formula is entered into a cell in exactly the same way as is used for numbers. 
Anything that is not recognised as a number (starting with a numeric digit) or a text 
value (starting with a quotation mark) is assumed to be a formula. 

Let us first try a very simple example. Move the cursor to cell 83 and enter the number 
100, move the cursor to cell C3 and enter 200. Now move the cursor to cell 03 and 
type in the following formula 

83 + C3 
When you press ENTER you will see two things happen. Firstly the value 300 will appear 
in cell 03; the result of the formula has been calculated by adding together the contents 
of cell 83 and cell C3 and the total has been placed in cell 03. In addition you will see 
that the status area at the bottom of the screen shows the formula used to calculate 
the value in this cell. When a cell contains a formula the actual formula will always be 
shown at the bottom of the screen, but the cell will show the result of the calculation. 

The rest of the examples using formulae will make use of the labeling facility and the 
row and col range identifiers first described in Chapter 3. They allow much more efficent 
methods of entering information into the grid than the direct use of letter and number 
cell references, such as in the last example 



4.3 A SIMPLE CASH 
FLOW EXAMPLE A 

1 
2 Sales 
3 Costs 
4 Profit 
5 

I B 
January 

£1000.00 
£722 00 
£278 00 

I c 
February 

£1050.00 
£749 50 
£300.50 

I D 
March 

£1102 50 
£778.37 
£324.13 

PROVISIONAL 
I E 
April 

£1157.62 
£808 69 
£348.93 

Figure 4 1 Simple Cash Flow Analysis 

You should start this example with a grid containing month headings in cells 81 to M1. 
If you have anything else in the grid you should clear it with the Zap command and 
enter the month headings, as described in Section 4.1 

Now move the cursor to cell A2, enter the text "Sales" and then put the value 1000 
in cell 82. Now move the cursor to cell C2 and type in a formula in the form: 

row= sales.january* 1.05 

Accept the range selection given by ABACUS (column C to column Ml by pressing ENTER 
twice. Note that ABACUS knows the end of the row is at column M because of your 
previous use of this end point, when you inserted the month headings When you press 
ENTER a second time you will see a whole series of values appearing in row 2, from 
column C onwards, and the formula B2 • 1 .05 will appear in the status area at the bottom '-- 
of the screen 

If you move the cursor along row three you will see that the formula for each cell is 
slightly different In each case the formula takes the contents of the cell on the immediate 
left and multiplies it by 1.05 to obtain the value to place in the current cell. This process 
was completely automatic. The system has remembered that the original definition of 
the formula was in 'sales february' (cell C2) and referred to the contents of 'sates.januarv' 
(cell B2) one column to the left 

In ABACUS all fomulae work in this way unless you specify otherwise. Each formula 
remembers the relative positions of all cells to which it refers. When such a formula is 
used in more than one cell the references are adjusted to maintain such a relative cell 
reference. The examples in Sections 5.4 and 5.8 explain how you can change this normal 
behaviour. 

It may prove helpful to point out that the initial value of 1000 placed in cell 82 was 
necessary for two purposes; firstly to ensure that the label "Sales" was recognised as 
a row reference (see Section 3.4.1) and secondly to specify the first value to be used 
by the formula. The system now recognises that "Sales" should refer to a row. 

Now position the cursor at cell A3 and enter the text "Costs". Without moving the cursor, 
type in the formula: 

costs = sales * 0.55 + 172 

This formula calculates the cost from two components. They can be regarded as 
manufacturing costs (55% of sales) and fixed costs totalling 172.00. 

Use the suggested start and end points of column B and column M. Since the contents 
of the row is defined in terms of "Sales", the label "Costs" will also be taken as a row 
reference, with the same range as "Sales". 

Again you should move the cursor along the row, examining the different formulae shown 
at the bottom of the screen. in order to understand how the results have been calculated. 

Finally, put the text "Profit" in cell A5 and type in a further formula 

profit = sales - costs 

with the same range selection as before (i.e. columns 8 to M) The system will do all 
the rest of the work for you, producing a simple, but complete, example. If you now 
change the display to monetary format with the command (remember to press F3) 

Units,Cells,Monetary ,B2:M4 

you should find that the first few columns appear as in Figure 4.1. 

')') 



PROVISIONAL 
When you have typed in the simple cash flow application described in the previous section, - 4A 
try changing the number in cell 82 (Sales January) AUTO-CALCULATION 

Move the cursor to this cell - the easiest method is to press F5 and then type in the 
cell reference (either 82 or sal.jan) followed by ENTER. 

Now type in any number you like. When you press ENTER you will see that all the 
numbers in the grid will change! 

The reason is that the values of all the formulae in the cells of the grid are recalculated 
automatically each time you make an entry to a cell. Since all the formulae in this example 
refer, directly or indirectly, to the value held in cell 82, all their values will change when 
you alter the contents of this cell. 

This facility makes it very easy to to use ABACUS as an aid to making management 
decisions. You can alter a value and see immediately what effect it has on the rest of 
the figures in the grid Even in this simple cash flow example, you can see how changes 
in sales, manufacturing costs and fixed costs will affect the profits. 

You can switch off the auto-calculate facility by means of one of the options in the Design 
command This is useful, for example, when you have many complicated formulae in 
the grid and do not want to wait for a recalculation each time you change a single value. 
There is an example of this type of use in Section 5.10. 

Try switching off the auto-calculate facility by pressing F3 and then the D key, to call 
the Design command. The display changes to show a list of the options, as shown in 
Figure 4.2. You can select any one of these options by typing its first letter. Select the 
Auto-calculate option by pressing A. You will see that the auto-calculate state changes 
automatically 

HELP DESIGN Allows rnodrfu anon of options COMMANDS 
cress F 1 Press one of the opts A.B,C.D.F.G.L.M.PS press F3 
PROMPTS ESCAPE 
press FZ When finished press KEY X press ESC 

AUTO-CALCULATE on input--------------------------------- YES 

BLANK 1f zero----------------------------------------- NO 

CALCULATION order row or columns--------------------------- ROW 

DISPLAY 80. 64,40. columns 18.6.41 ---------------------------80 

FORM feed between pages ---------------------------------YES 

GAPS between lines on printers -----------------------------0 
LINES per page of printer page ----------------------------- 66 

MONETARY sign(,$. or other-------------------------------( 

PRINTER paper width lcharactersL----------------------------80 

STATIONARY continuous. single page---------------------------CONT 

CURRENT CELL:A1 GRID USED Al:A1. 
CURRENT CEU EHPtY 

.~Y RelAINING: IC 
... , 

Figure 4.2 The Design Command 

This command is an exception in that you leave it by pressing X, instead of the more 
normal ESC. You are left in the main display. 

If you now change the contents of cell 83 you will see that there is no change to the 
contents of any of the other cells. You can also force a recalculation of all the formulae 
in the grid at any time by using the Xecute command. While you have the auto-calculate 
turned off, try using this command. Make sure that the command menu is displayed 



PROVISIONAL 
in the control area (press F3) and then press the X key The values-in.tho cells of the 
grid will be recalculated, just as for a normal auto-calculate. The Xecute command returns 
you, as usual, from the command menu to the main display. 

Before you go any further you should restore the auto-calculate facility by using the Design 
command again. Select the Auto-calculate option as before. Remember to leave the 
command by pressing X. 

24 



PROVISIONAL 

The following sections illustrate the use of ABACUS by developing a number of examples 
In addition to explaining the way a number of features work, the examples have been 
chosen to show something of the wide range of applications to which ABACUS is suited. 
The best way of learning about ABACUS is to use it and the examples have been written 
with this in mind. 

You are recommended to work through all the examples yourself, typing them in as you 
go along. Each contains some additional information, as well as giving more practice 
with the topics covered in earlier examples You may well be able to think of modifications 
and improvements to the examples - they should give you ideas about how to construct 
applications of your own. 

Above all, you are encouraged to experiment. You can not do any harm to either the 
computer or to ABACUS, and the more things you try out, the faster you will learn 

In all the examples the text, numbers and formulae are shown exactly as you would 
type them in. If a cell range is required it will be given in brackets at the end of the 
line. In many cases the range you need will be that suggested by ABACUS and you 
can select it simply by pressing ENTER. In other cases you will have to type in the range 
yourself, in the format requested by ABACUS. Where the cursor needs to be positioned 
on a particular cell, the cell reference will be given in square brackets at the beginning 
of the line For example, the line 

IA4[ row=month(col()-1) (columns B to M) 

should be read as: 

move the cursor to cell A4 and type in 
row= month(col()-1) 
selecting the range from column B to column M. 

Where you have to type in an explicit range reference, eg b3 e 15, it will be given in 
that form 

When commands are given in full they are shown exactly as they will appear in the display. 
Remember that you only need to type in the first letter of each option and the rest is 
filled in by ABACUS. If you want to use the default option (the one suggested by ABACUS) 
you should Just press ENTER, as indicated in the control area. 

Each example assumes that you start with a completely blank grid. If necessary you should 
clear the grid with the Zap command before starting to type in the example 

This is a more complete version of the simple cash flow example of Chapter 4. When 
you have finished the grid it should look like Figure 5 .1 (which shows only the first five 
columns). 

The first two cell entries produce an underlined title for the grid, 

IC 1 I "CASH FLOW 
lc2I rept("=",len(c1)) 

We shall use such a heading for each example. The second entry underlines the title 
with · =' signs, to the exact length of the title. If you decide to change the title there 
is no need to alter the formula in cell B2 since it uses the len() function to read the length 
of the text in cell C 1 . 

I A41 row= month(col()-1) (columns B to M) 
IA5I row=rept("-",width()+ 1) (columns A to M) 

These row entries produce month headings, as described in Chapter 4, and rule a line 
across the whole of the used part of the grid. The function width() returns the width, 
in character spaces, of each column. It can therefore be used to rule lines across a grid 
with columns of different widths. There is one extra character space separating each 
column of the grid, which is why the additional + 1 is needed. 

·· CHAPTER 5 
THE 
EXAMPLES 
5.1 ABOUT THE 

EXAMPLES 

5.2 CASH FLOW 
MODELLING 

25 



PROVISIONAL 
A B c D - E 

1 I CASH FLOW 
2 
3 
41 January February March April 
5 
6 
7 SALES 4000.00 4080.00 4161.60 4244.83 
8 COST OF SALES 2750.00 2790.00 2830.80 2872.42 
9 

10 GROSS PROFIT 1250.00 1290.00 1330.80 1372.42 
11 EXPENSES 
12 wages 700.00 700.00 700.00 700.00 
13 advertising 100.00 100.00 100.00 100.00 
14 rent 200.00 200.00 200.00 200.00 
15 electricity 50.00 50.00 50.00 50.00 
16 depreciation 90.00 90.00 90.00 90.00 
17 
18 TOT AL EXPENSES 1140.00 1140.00 1140 00 1140.00 
19 -···-·-----------------·-------· 
20 PROFIT 110.00 150.00 190.80 232.42 
21 ---------· -------- ---·-···---· ---·········---- .. - 

Figure 5.1 The· Completed Cash Flow Grid. (first five columns! 

IA61 "SALES 
tsel 4000 
I C6 I row= sal.jan * 1 .02 (columns C to M) 

These entries fill in the sales figures for the year, assuming that the January sales were 
4000 and that sales are increasing at 2% per month. 

IA 7/ "COST OF SALES 
cos=sal*0.5+750 (columns B to M) 

(The costs are assumed to be half of the selling price plus a fixed amount of 750.00 ) 

IABI row=a5 (columns A to M) 
IA91 "GROSS PROFIT 

gro = sal-cos (columns B to Ml 

This rules off the grid again and calculates the monthly gross profit figures. 

I A 11 I "EXPENSES 

IA12I "wages 
row= 700 (columns B to Ml 

I A 1 3 I "advertising 
row= 100 (columns B to M) 

I A 1 41 "rent 
row= 200 (columns B to M) 

I A 1 5 I "electricity 
row= 50 (columns B to M) 

I A 1 6 I '' depreciation 
row= 90 (columns B to M) 

These entries fill in the expense figures, assuming them to be constant throughout the 
year. You can, of course, change the expense headings and amounts to suit yourself. 
You can include more or fewer entries, as long as you make the necessary changes 
to the cell references in the rest of the example. You may want to have different values 
for each month, but it is faster to set up the table with fixed values and modify them 
later. A simple way to change any value is given at the end of the example. 

IA 171 row = a5 (columns A to M) 
IA 181 "TOTAL EXPENSES 
ls1 Bl row= sumtcoll (rows 12 to 16, columns B to Ml 
IA19I row=a5 (columns A to Ml 

You now have the totals of the monthly expenses. 

26 



PROVISIONAL 
The sum() function adds the contents of all the numeric cells in the range specified as" 
its argument. All empty cells, together with those containing text, are ignored. The range 
could be given as an explicit range reference - B 12: B 16 for example In this case, however, 
each range is only a single column so we have used the range specifier 'col'. All you 
need to do is to answer the range questions asked by ABACUS, just pressing ENTER 
if the suggested range is what you want. 

Note that this formula uses the range identifiers row and col in the two different ways 
that were mentioned in Chapter 3. Firstly, row is used to indicate that the formula is 
to be placed in several cells of the current row. Secondly, col is used to specify the range 
of cells over which the addition should take place Both of the range identifiers need 
you to confirm (or change) their beginning and end points In this case ABACUS deals 
with the range for the sum() function first. 

IA20I "NET PROFIT 
net= gross-tot (columns B to M) 
I A21 \ row= rept(" =",width()+ 1) (columns A to M) 

The table is now complete, with the net profit figures calculated as the difference between 
the gross profits and the total expenses. All that you have to do now is to adjust the 
appearance of the table by using a few commands. Remember to press F3 each time 
you want to use a command. 

grid width, 15,FROM a TO a 

Note that the Grid command has its own menu of options. At the conclusion of one 
of these options the command returns to its own menu. You must press ESC to return 
to the main display level. (The Files command works in a similar way.) 

Justify,Cells,Text,Right,a4:m4 
Justify,Cells,Text,Right,a12:a16 
Units,Cells,Decimal,Decimal places 2,a1 :m21 

We have chosen to display the figures in decimal format, with two decimal places. If 
you prefer the pound sign to appear you should replace the last command by 

Units,Cells,Monetary,a 1 :m21 

It is very simple to alter any of the figures. Suppose you want to increase the February 
advertising figure. All you have to do is press F5 (go to a cell) and type the cell reference 

feb.adv 

The cursor will move to that cell and you can type a new value. 

Remember that the sales figures were calculated by a formula which assumed a 2% 
increase each month. If you change one of these cells to a numeric value you will destroy 
the formula in that cell. The formulae in the other cells of the row will, however, be 
unchanged. The amounts in the following cells will still increase by 2% per month, starting 
from the new value. 

This is a 'quickie' to produce a simple graphic representation of a set of figures in bar 
chart form. You have seen most of the formulae before, so you will not need too many 
comments. 

Figure 5 2 shows the appearance of the chart with a few numbers added. 

Remember to clear the grid with the Zap command before starting to type it in. 

IC 1 \ "SIMPLE BAR CHART 
lc2l rept("=",len(c1)) 

I A41 "Values 
1841 col="!" (rows 4 to 15) 
IA5l row=rept("=",width()+1) (columns A to F) 

I C61 col= rept(" *" ,a6) (rows 6 to 15) 
These cells in column C are set to display a row of asterisks. The number of asterisks 
shown in each cell is governed by the value in the cell in column A of the same row. 
The cell reference (a6) in this formula is a relative one. Look at the formulae in the cells 
of row C. The cell reference in each one is different - it has been adjusted to refer to 
the correct row of column A. ABACUS treats all cell references like this unless you specify 
otherwise. How to use different types of cell references is described in Section 5 .4. 

5.3 A SIMPLE 
BAR CHART 

27 



5.4 MULTIPLICATION 
TABLES 

28 

PROVISION Al 
E I F A c I D 

SIMPLE BAR CHART 1 
2 
3 
4 Values 
51========================================== 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

10 
17.35 

17 
3 

27 
38 
0 
15 
23 
8 

***************** 

*4************************* 
************************************** 

Figure 5.2 A Simple Bar Chart 

We might as well reduce the width of column B to one character, since it is only dividing 
the values from their display Press F3 and use the command: 

grid width, 1 , FROM b TO b 

To use this bar chart, all you have to do is to put numbers in the cells of column A, 
between A6 and A 15 inclusive. You will find that the reptt) function doesn't like negative 
numbers, but anything else will be accepted. Of course, if you use too large a number 
you won't see the end of the bar, as it will disappear out of the end of the window! 

This simple example may prove useful to a child who wants to learn the multiplication 
tables. It allows you to request a particular table and then displays it 

The table in Figure 5.3 shows an example of the display it produces 

A I B I c ID I E I F 

1 I MULTIPLICATION TABLES 
2 
3 The 7 times table 
4 1 • 7 = 7 
5 2 • 7 = 14 
6 3 • 7 = 21 
7 4 • 7 = 28 
8 5 • 7 = 35 
9 6 • 7 = 42 

10 7 • 7 = 49 
11 8 • 7 = 56 
12 9 • 7 = 63 
13 10 * 7 = 70 
14 11 * 7 = 77 
15 12 * 7 _, 84 

Figure 5.3 A Multiplication table 

Firstly we title the application as normal. 

I B 11 "MULTIPLICATION TABLES 
IB21 rept("=",len(b1)) 

The next three lines give a heading to the table. 

IB31 "The 
ic31 askn("Which multiplication table do you want? ") 
ID 3 I "times table 

Here we have used the askn() function to request input; it allows you to choose which 
table you want, by typing in a number. 



?ROVISIONAL 
This function takes a text string as its argument and displays the text in the input line. 
It then waits for you to type in a number, followed by ENTER. The number that you 
type in will be displayed in the cell which contains askn(). 

Note that askn() will not wait for input during a normal auto-calculation of the grid. It 
will only display the message and request input when you force a recalculation of the 
grid by using the Xecute command. 

While you are constructing the application the cell containing the askn() function will 
show zero. Once you have input a value to the cell it will be retained until the next time 
you force a recalculation with the Xecute command. The remaining grid entries use the 
column-filling facility to produce the body of the multiplication table. 

I 841 col= str(row()-3,2,0) +" *" (rows 4 to 15) 

This is the most complicated formula of the example. It is used to display the multiplier 
in each row of the table. The number is converted to a text string so that we can combine 
it with the multiplication sign and display them both in a single cell. 

The str() function performs the conversion of a number to the equivalent string of digits. 
It takes three values; the number to be converted, a code for the format (integer, 
exponential, general, etc) in which the number is to be displayed, and the number of 
decimal places to be shown. The codes for the different formats are given in the entry 
for str() in Section 6.9 of the reference chapter. 

In this case the value is obtained from the expression 'row()-3', whose value is 1 in row 
four, 2 in row five, and so on, up to 12 in row 15. The next value (2) selects display 
as an integer (whole number). The third number normally specifies how many decimal 
places are to be used. Its value must always be given but is ignored for integers which, 
by definition, have no fractional part. It has been given a value of zero (any other value 
could have been used). 

Finally the result is concatenated with the string " • ", so that both the multiplier and 
the multiplication sign are displayed in a single column. 

I C4/ col= $c3 (rows 4 to 15) 

Column C contains copies of the value typed in in answer to the askn() function. This 
is the second number of the product in each row of the table. The cell reference is 
preceded by a $ sign to make it an absolute cell reference. When you have entered 
the formula, look at the contents of the cells of column C. You will see that they all 
contain the cell reference $C3. The reference has not been adjusted in each row, unlike 
the example in Section 4.3. You can make any cell reference absolute by adding a leading 
$ sign. 

ID41 col="=" (rows 4 to 15) 
I E41 col= $c3*(row()-3) (rows 4 to 15) 

These last two column entries are almost self-explanatory. They are used to produce 
the equals sign and the answer for each row of the table. The last formula multiplies 
the value from the askn() function (another absolute cell reference) by the row()-3 
expression which, as we saw earlier, gives numbers from one to twelve in successive 
rows. 

We now need to use a few commands to change the display of the table to a more 
convenient form. Use the following commands: 

Justify,Cells,Text,Right,b3:b15 
Justify,Cells,Text,Right,d4:d15 
Justify ,Cells,Numbers,Centre,c3 
grid width, 5 FROM b TO b 
grid width, 3 FROM c TO c 
grid width, 2 FROM d TO d 
grid width, 4 FROM e TO e 

Remember to press ESC to leave the Grid command. 

You use the table by forcing a recalculation of the grid with the Xecute command. You 
are prompted for input - the text of the askn() function will appear in the input line - 
and should type in a number between one and twelve. 

29 



5.5 CHEQUE BOOK 
RECONCILIATION 

30 

PROVISIONAi. 
This example allows you to keep a check on your bank account. You-enter details of 
your cheques in the spaces provided. At the end of the month you add the details of 
your salary, standing orders etc, by use of the Xecute command. You are then provided 
with a balance which you can compare with your bank statements. 

The result, with a few figures added, is shown in Figure 54. 
A B C 

CHEQUE BOOK RECONCILIATION 
D 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 I Closing balance 
31 

Month January 

Opening balance 200.00 
Salary 527.35 
Miscellaneous income 0.00 

CREDIT 727.35 

Standing orders 130 00 
Charges 0.00 

Cheques Date Cheque no Amount 
3/01/84 123456 50.00 
10/01/84 123457 50.00 
14/01/84 123458 32.21 
17/01/84 123459 50.00 
24/01/84 123460 50.00 
31/01/84 123461 50.00 

DEBIT 412.21 

315.14 

Figure 5 .4 Cheque Book Reconciliation 

f B 11 "CHEQUE BOOK RECONCILIATION 
[B21 rept("=",len(b1)) 

I C41 "Month 
f 041 askt("Enter month? ") 

The askt() function works in a similar way to asknt). but the expected input is a text 
string. When you use Xecute you should type in the name of the month for your balance. 

f A61 "Opening balance 
f A 71 "Salary 
f ABI "Miscellaneous income 

IC61 col=askn(a6+" for "+$d4+"? ") (rows 6 to 8) 

The prompt string for askn() is constructed from the text of other cell entries, using both 
relative and absolute cell references. 

[Bl OI "CREDIT 
IC 1 ol sum(col) (rows 6 to 8) 

Cell C 10 is used to contain the total of all credits for the month. This cell is labeled; 
its reference is 'credit. month'. 

Its contents are calculated using the sum() function which we first met in Section 5.2 
It adds the numeric contents of all cells in the range specified by its argument. Remember 
that it ignores any cell in the range that is empty or that contains text. 



PROVISIONAL 
In this case we have again used it as sum(col), which specifies that the cells to be summed 
lie in the current column. As normal, ABACUS asks you to specify the exact range, 
suggesting reasonable values based on your previous work. 

IC 11 I rept(" = ",len(str(credit.month,0,2))) 

Cell C 11 underlines the total, using the usual rept() and len() functions. In this case, 
however, we do not know in advance the number of characters to underline. We therefore 
have to convert the number to a string of characters with the str() function, assuming 
that it is to be shown in decimal format with two decimal places. The length of this 
string gives the correct number of characters to underline. 

I A 1 31 "Standing orders 
IA 141 "Charges 
IA13I col=askn(a13+" for "+$d4+"? ") 

These allow you to enter the monthly debits in response to prompts, using the same 
method as described earlier. 

I A 161 "CHEQUES 
I B 1 61 "Date 
IC 1 61 "Cheque no 
ID161 "Amount 
I B 1 71 row="---" (columns B to D) 

These cells set up an area of the grid which you will later use to enter the details of 
your cheques 

18281 "DEBIT 
ID28I sum(col) (rows 13 to 26) 

This calculates the total of the debits. Remember that sum() only adds numeric values 
in the cells of the specified range. Cells containing text, and empty cells, are not included. 
The sum will therefore ignore all unused entries in the list of cheques, as well as the 
table heading in column D 

IA30I 
IC30I 

"Closing balance 
credit.month - debit.amount 

The calculation of the closing balance completes the grid entries. You should now use 
the commands to tidy up the appearance of the application 

First we can use the Echo command to fill the rest of the cheque table and complete 
the underlining of the totals. 

echo,cell b17, range b18:d26 
echo,cell c11, range d29:d29 
echo,cell c11, range c31 :c31 

Next we need to set the numeric display to decimal, with two decimal places, for the 
whole of the application, with integer format for the cheque numbers: 

Units,Cells,Decimal,Decimal places 2,a1 :d30 
Units,Cells,lnteger,c17:c26 

Section 3 2 explained that empty cells do not exist as far as ABACUS is concerned and 
they do not take up any space in memory. The change to decimal format (or to any 
format other than the default of general format) will therefore only affect non-empty cells. 
This is why we filled the cheque table with "---" before making the change to decimal 
format 

An alternative method is to change the default format, as described in Section 3.2. 

Finally we can modify the justification of the text, including the underlining, to improve · 
the final appearance. 

Justify, Cells, Text, Right, b 16: d26 
Justify,Cells,Text,Right,c11 
Justify,Cells,Text,Right,d29 
Justify,Cells,Text,Right,c31 

31 



5.6 STANDARD 
DEVIATION 

32 

PROVISIONAL 
The part of the grid that is used is too large for it all to be visible in the window at once. 
In order to see the final results, together with the values entered via the asktt) and askn() 
functions, you might like to use the split window facility A vertical split is most suitable 
for this grid and you can set it up by moving the cursor to the centre of the window 
and then using the command: 

Window, Vertical, Separate 

The split will occur at the position of the cell containing the cursor so that you can divide 
the screen in any proportion that you want Then set the top left corner of the left hand 
window to cell A 1, and the right hand window to cell B 15 for the best effect ( f 4 switches 
the cursor between the two windows.) 

I c I D 
ST AND ARD DEVIATION 

E 

Value 
5.00 
6.00 
7.00 
8.00 
9 00 

10.00 
11.00 
12.00 
13.00 
14.00 

Deviation Square of dev 
-4.50 20.25 
-3. 50 12.25 
-2.50 6.25 
-1.50 2 25 
-0 50 0.25 
0.50 0.25 
1.50 2.25 
2.50 6.25 
3.50 12.25 
4.50 20.25 

Mean 9.50 Variance 
Std. Dev. 

8.25 
2.87 

Figure 5.5 Standard Deviation Calculation 

In addition it uses a grid layout which requires calculation in column order, rather than 
the normal row order. In general, a formula should only refer to cells that are in the region 
above and to the left of the cell containing a formula (including the row and column 
containing the formula - it is perfectly valid for the formula to contain a reference to its 
own cell). 

If you do not follow this rule, as in this example, it is likely that the results may be incorrect. 
In most cases you can obtain a correct result by forcing a recalculation og the grid with 
the Xecute command or, as in this case, calculating the grid in column order. 

I B 1 i "ST AND ARD DEVIATION 
1821 rept("=",len(b1)) 
I 841 "Value 
IC41 "Deviation 
I D41 "Square of dev. 
I 8 5 I col== row() (rows 5 to 14) 

This last formula inserts a set of dummy values in the cells of column B for testing the 
application. When the grid entries are complete you can replace them with any other 
values you like. The table described in this example will only hold ten values - you can 
change this to cope with more if you want 

IA16I "Mean 
I 81 6 I ave(value) (rows 5 to 14) 

deviation= value-$mean.value (rows 5 to 14) 
square= dev* dev (rows 5 to 14) 

lc161 "Variance 
ID 1 6 I ave(square) (rows 5 to 14) 

These formulae show that the variance of a set of numbers is defined as the average 
of the squares of the deviations from the mean, 



P'ROVl'SIONAL 
IC171 "Std. Dev. 
ID171 sqr(variance) 

and that the standard deviation can be calculated as the square root of the variance. 

ID1 al rept("-",len(str(std.sq,3,0))) 

The numbers in this example are left in general format so that it can handle any range 
of values. The underlining therefore uses the length of the text string corresponding to 
the number in the cell above (with cell reference 'std.sq') expressed in general format. 

You can improve the appearance of the display by changing to centre Justification for 
the text in the range 84:D4, and using left justified numbers in the range 816:D17. 

If you try using this example by putting different values in the cells of column 8, you 
will find that it does not give the correct answers. The reason is that the recalculation 
of the grid is performed row by row, from the top downwards. Any alteration you make 
will therefore be worked out on the basis of an incorrect mean value (since the new 
mean will not be calculated until after the deviations from the mean). The solution is 
to make the recalculation of the grid to be in column order, from left to right. You do 
this by use of the Design command. 

Try it now, using the 'C' option to change to column order. Leave the command by 
pressing the X key, as indicated in the control area. When you next change a value 
in column B, the calculation will be correct, since the new mean is now calculated before 
the deviations. Although this ability to change the order of calculation is very useful, you 
should not get into the habit of using it too often - calculating in column order is much 
slower than when using row order. 

If you save a grid to a Microdrive file, the current settings of all the default options (made 
with the Design command) are saved with it. They are used to set the defaults whenever 
you reload the file, so you do not have to change them yourself each time you use it. 
All you need to do is to set the default options to the values you want before saving 
your application with the Save command. 

This example will allow you to plan your household expenditure over the year You can 
enter your estimated expenditure under a number of headings for each quarter. You are 
then provided with quarterly totals, your expenditure for the whole year and the averaged 
monthly cost. 

ID 11 "HOUSEHOLD BUDGET 
ID21 rept("=",len(d1)) 

Now we can set up the structure of the table with its ruled divisions. 

[A41 row=rept("-",width()+1) (columns A to K) 
IA51 col="!" (rows 5 to 20) 

The following commands complete the table structure. 

grid width, 16 FROM b TO b 
grid width, 8 FROM d TO j 
grid width, 1 FROM a TO a 
grid width, 1 FROM c TO c 
grid width, 1 FROM e TO e 
grid width, 1 FROM g TO g 
grid width, 1 FROM i TO i 
grid width, 1 FROM k TO k 

Remember to press ESC to leave the Grid command. 

echo,cell a5, range c5:c22 
echo,cell a5, range e6:e22 
echo,cell a5, range g6:g22 
echo,cell a5, range i6:i22 
echo,cell a5, range k5:k22 
echo,cell a4, range b7:j7 
echo,cell a4, range b21 :k21 
echo,cell a4, range c23:k23 

5. 7 A HOUSEHOLD 
BUDGET 



34 

r1tu,1~1urHH 

!cl o !El F IGI H -Id 
HOUSEHOLD BUDGET 

J 8 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

I 
Figure 5.6 Home Budget Exampl,i 

ESTIMATED EXPENDITURE 
Item Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

Mortgage/Rent 400.00 400.00 400.00 400.00 
Rates 450.00 
Gas 150.00 80.00 60.00 150.00 
Electricity 40.00 30.00 30.00 40.00 
Water rates 35.00 35.00 
Telephone 150.00 150.00 150.00 150.00 
Insurance 
Clothing 
Hire-purchase 
Car tax 
Petrol 
TV licence 
Savings 

Quarterly tots 740.00 1145.00 640.00 775.00 

Yearly Monthly 

Payments £3300.00 £275.00 

Fortunately this takes much less time to type in than it takes to describe! 

IA 71 "!- 
IF51 "ESTIMATED EXPENDITURE 
1861 "Item 
I D 6 I "Jan-Mar 
IF61 "Apr-Jun 
I H 6 I "Jul-Sep 
IJ61 "Oct-Dec 

I BBi "Mortgage/Rent 
I 891 "Rates 
181 ol "Gas 
! B 1 1 I "Electricity 
I B 1 21 "Water rates 
18131 ''Telephone 
! B 141 "Insurance 
I B 1 5 I "Clothing 
B 1 6 I '' Hire purchase 
8171 "Car tax 
B 1 BI "Petrol 
8191 ''T.V. licence 

I 8201 "Savings 

I B 2 21 "Quarterly tots 

10221 sum(col) (rows 8 to 20) 
10221 sum(col) (rows 8 to 20) 
IH22I sum(col) (rows 8 to 20) 
I J22I sum(col) (rows 8 to 20) 

0251 "Yearly 
F25I "Monthly 
8271 "Payments 

0271 sum(d22:j22) 
F27I year.pay/12 
0281 rept(" = ",len(str(year.pay,4,0))) 
[F2BJ d28 



RO VISION AL 
Note that the underlining of the two final figures assumes a monetary format 

You also should use a few more commands, to justify text right in the range 822 827 
(the list of items) and to justify numbers left over the cells containing the yearly and monthly 
payments 

You must also modify the numeric display format Since many of the cells are still empty, 
simply changing the format will have no effect on them (see Section 3 2) You must 
change the default format of the cells to make the effect permanent, regardless of whether 
the cells are empty or not 

The following command will change the display default to monetary units over the whole 
of the budget application. 

Units,Defaults,Monetary, 

The display of Figure 5.6 uses decimal format, with two decimal places, except for the 
yearly and monthly payments, which are in monetary format The appropriate commands 
are: 

Units,Defaults,Decimal,Decimal places 2 
Units,Cells,Monetary,d27:f27 

This last command can use the Cells option since the cells concerned already exist 

You can enter values in this table by moving the cursor to the appropriate cell and typing 
in the number. The easiest way of moving the cursor is to press f5 (Go to cell) and 
then use a cell label, such as 

apr.gas 

This example presents a more sophisticated bar chart display than that produced by the 
example of Section 5.3. In addition to extending the use of absolute and relative cell 
references, it introduces several new functions. 

The chart displays twelve values, labelled by month The values are read from twelve 
cells above the chart The vertical scale is adjusted automatically to make sure that all 
values will fit the display, It is only suited to displaying positive values. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

A 8 c D E F G H I J K L M N 

3 4 3 2 3 4 3 4 1 2 3 2 
SCALED BAR GRAPH 

5.00 
4.50 
4.00 ... * * * * * • 
3.50 * * * * •• * *. 
3.00 * * * * *. * * * * •• • * * ... . .. . .. 
2.50 * *. * * * * * * * * * * * * * * * •• * • * * 
2.00 * * * * * * ... • * * * * * * •• * * • * * * * * * * * • *. * 
1.50 * *. • •• • •• ... . .. . .. . .. . .. • * • ... • • * 

1.00 * * • . .. . .. . .. . .. * • * ... • • * * •• * *. • • * •• * 

0.50 * •• • * * • * * • * * * * * * * • . .. . . . ... • * * * * * * * * 
0.00 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Figure 5. 7 A Scaled Bar Chart 

First you should set the column widths to five in column A, one in column 8 and three 
in columns C to N, using the Width option of the Grid command. 

IC21 row=O (columns C to N) 

Row two will contain the values to be displayed - for the moment it is filled with zeroes, 
as dummy values. 

I F31 "SCALED BAR GRAPH 
IP21 int(max(c2:n2)/5+ 1)*5 
1021 int(min(c2:n2)/5)*5 

5.8 AN AUTO-SCALING 
BAR CHART 

35 



PROVISIONA,t 
Cells P2 and 02 contain the maximum and minimum values for the vertical scale of 
the graph These cells are chosen so that they do not appear· in the final display of the 
chart. Their initial values (when all the diplayed numbers are zero) are five and zero 
respectively. 

The max() function finds the maximum, or largest, numerical value in the range of cells 
specified by its argument. Similarly, the min() function finds the minimum, or smallest, 
value in the range. 

Let us first examine the formula in cell 02. The min() function finds the minimum, or 
smallest, value in the specified range and this is then divided by five. The int() function 
then removes the fractional part of the result of the division. If, for example, the minimum 
value is 13, dividing by 5 gives a value 2.6, and int(2.6) is 2. When this is multiplied 
by 5 we end up with a value of 10, which is the largest multiple of 5 that is less than 
the minimum. 

The formula in cell P2 is similar, except that it finds the largest value in the range and 
adds 1 to the number before the final multiplication by 5 If, as an example, we assume 
that the maximum value is 21, you can verify that the formula will give a value of 25 
- the smallest multiple of 5 that is greater than the maximum. 

The two values in these cells will therefore always bracket the values in the cells from 
C2 to N2. Their difference is always a multiple of five 

The next formula displays the vertical scale of the graph in column A. 

IA41 col=$q2+(14-row())*($p2-$q2)/10 (rows 4 to 14) 

The interval between successive numbers in the scale is (P2-02)/10 Note that, because 
we made the difference between the contents of P2 and 02 a multiple of five, this interval 
can not have an awkward value. 

This interval is multiplied by a number ( 14-row() ) which starts at zero in row fourteen 
and increases by steps of one to a value of ten in row four. The result is added to the 
smallest value, from cell 02, to produce the number for each cell. 

The net result is that the value in cell 02 is displayed in A 14, the value frorn P2 is displayed 
in A4 and the intervening cells contain a set of equally spaced values between these 
two limits. 

1841 col="!" (rows 4 to 14) 
I B 1 41 row= rept(" -",width()+ 1) 
IC 1 51 row= month(col()-2) ( to 3) 

(columns B to N) 
(columns C to N) 

These draw the axes for the chart and add the horizontal axis labels, using the months 
of the year. note that we have used the string slicing operator, similar to that of BASIC, 
to display only the first three characters of each month. 

IC4! if(index(1,row()) index(col(),2) ,"","***") (columns C to N) 

This is the formula that does all the work of producing the bars themselves. It must be 
copied into every cell in the display area: 

echo,cell c4, range c4:n13 

The formula itself needs some explanation. It uses the if() function to decide whether 
to display part of a bar. The if() function takes three arguments. The first is an expression 
which must give a numeric result. If this result is non-zero the cell displays the second 
argument, which may be text or numeric. If, however, the result is zero the third argument 
is displayed in the cell. Again this may be text or numeric. 

In each cell the formula compares the number in column one of that row (the value 
labelling the vertical axis) with the number in row two of that column (the value to be 
displayed in the graph). If the axis label is greater than the display value, the condition 
is true (it evaluates to 1) and nothing is displayed. If the axis label is less than or equal 
to the display value, the condition results in a value of zero, and three asterisks are shown 
in the cell. The net result is that a bar is drawn to the correct height in each column. 

Since a single formula is used for all the cells in the display, the cell reference can be 
neither absolute nor relative, as a few moment's thought will show. The reference to 
the display values must change as we move from column to column (ie it must be relative 

36 



PR 0-V IS IO NA l 
along a column) but must always refer to row two as we move down, from row to row. 
We need a form of cell reference which is relative with respect to columns, but absolute 
with respect to rows. 

Fortunately the index() function can be used to produce this effect. It takes two parameters, 
a column number and then a row number, returning the contents of the specified cell. 
With this we can construct any combination of absolute and relative re.ferences, the 
following examples show: 

Function Column Row 
Ref. Ref. 

index(5,5) absolute absolute 
index(col(),5) relative absolute 
index(5,row()) absolute relative 
index(col() ,row()) relative relative 

The function index(col(),2) therefore returns the contents of the cell in mw two of the 
current column, and index( 1,row()) returns the contents of the cell in column one (A) 
of the current row. 

Try putting different values in cells C2 to N2 and see what effect they have on the display 

This example enables you to calculate the monthly payments due on a repayment 
mortgage. You are asked to input the amount of the loan, the interest rate, the length 
of the loan in years and the month of the first payment. The required repayments are 
calculated and displayed, together with a complete repayment table for the whole period 
of the loan. This table shows you the outstanding sum at the beginning of each month 
until the loan is repaid. 

Several of the calculations in the grid make use of values that are input by use of the 
askn() function. As was pointed out in Section 5 4, these cells will not contain their correct 
values until you use the Xecute command. 

In this section we shall produce the part of the grid that accepts your input and calculates 
the monthly repayments. When you have typed in the formulae and added a few figures 
in response to the askn() functions it should look like Figure 5.8. 

A I B I c I D I E 
1 I MORTGAGE REPAYMENT CALCULATOR 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Loan £25000.00 
Int rate 14 00% 

25 
Mnth 

Term Start April 

REPAYMENTS 

Annual 
Monthly 

£3774 65 
£314.55 

Figure 5.8 Calculating the Repayments 

IC1 I "MORTGAGE REPAYMENT CALCULATOR 
lc2I rept(" = ",len(c1 )) 
I 841 "Loan 
IC41 askn("Amount of loan? ") 

The next three entries request the input of the interest rate. The original input is to a 
cell well away from the displayed portion of the grid so that it can be entered as a 
percentage figure. The value needed by the rest of the formulae is a fractional value 
(eg 121 must be used as 0.12) which is calculated from the input by the formula in cell C5. 

5.9 MORTGAGE 
CALCULATOR 

5.9.1 Mortgage 
Repayment Calculations 

37 



PROVISION Al 
IH41 askn("Percentage interest rate? ") 
I 851 "Int rate 
lcs] h41100 

1861 "Term 
IC61 askn("Period of loan in years maximum 35 ? ") 

IE51 "Mnth 
I 061 "Start 
I E6I askn("Month of first payment Jan= 1, Feb= 2, etc? ") 

I DBI "REPAYMENTS 
lo91 rept("-",len(d8)) 
IC 1 ol "Annual 
10101 mor.loan*mor.int/(1-(1 + rnor.int) (-mar.term)) 

This formula, which calculates the annual repayment, assumes that the interest is 
calculated annually and added to the loan before the twelve monthly repayments are 
made. 

IC 11 I "Monthly 
IO 11 I ann.rep/12 
10121 d9 

The grid is now sufficiently comlete to calculate mortgage repayments. Try using the 
Xecute command and enter the figures requested, so that you can see it working. 

To make the appearance more acceptable, we can change the format of some of the 
numbers with the Units command. In this example there is no need to alter the default 
numeric format (see Section 3.2.2) since you do not need to make new entries in any 
grid cell once the application is completed 

Units,Cells,Percent,Oecimal places 2,c5 
Units,Cells,Monetary,c4 
Units, Cells, Monetary .d 1 O:d 11 

5.9.2 Mortgage This section describes how you can add a repayment table to the mortgage calculator. 
Repayment Table The first part of a repayment table for the values appearing in Figure 5.8 is illustrated 

in Figure 5.9. 

A I 8 I c I D I E 
151 REPAYMENT TABLE 
16 
17 
18 Year 1 2 3 
19 
20 April 28500.00 28186.90 27829.96 
21 May 28185.45 27872.34 27515.41 
22 June 27870.89 27557.79 27200.86 
23 July 27556.34 27243.24 26886.30 
24 August 27241.78 26928.68 26571.75 
25 September 26927.23 26614.13 26257.19 
26 October 26612.67 26299.57 25942.64 
27 November 26298.12 25985.02 25628.08 
28 December 25983 57 25670.47 25313.53 
29 January 25669.0'1 25355.91 24998.98 
30 February 25354.46 25041.36 24684.42 
31 March 25039.90 24726.80 24369.87 
32 
33 Year 1 2 3 
34 
35End-of-year balance 24725.35 24412.25 24055.31 

Figure 5.9 The Repayment Table. 
(First 5 columns) 



P R O v , ~ , " !,.i r. 1 

If you have a mortgage, type in your own figures. Don't spend too much time over the 
results for the first few years - they make rather depressing reading! 

ic1 51 "REPAYMENT TABLE 
IC16I rept("=",len(c15)) 
18181 "Year 
lc181 row=col()-2 (columns C to AK) 
18191 row=rept("-",width0+1) (columns B to AK) 
tszol col=month(row()-20+$mnth.start) (rows 20 to 31) 

These entries set up the headers for the table: now we must add the formulae that will 
calculate the values. We start with the first item which is the initial amount due. It is 
calculated by adding the first year's interest to the amount of the loan 

lc2ol mor.loan*(1 + mor.int) 

Then the rest of the first row is calculated by subtracting the yearly payment and adding 
the interest for the current year. These values should not be calculated beyond the year 
in which the loan is repaid and we allow for this by using the if() function. If the year 
number (given by col()-2) is greater than the term of the mortgage, zero is placed in 
the cell. 

I 0201 if((col()-2) $mor.term,O,(c20-$ann.rep) *(1 + $mar.int)) 
(columns D to AK) 

The remainder of the table can be filled with a single formula. We fill the first column 
with a formula which Just subtracts the monthly repayment from the amount in the cell 
above. Again we use the if() function to prevent the calculations extending beyond the 
year in which the loan is repaid. 

lc21I if((col()-2) $mor.term,O,c20-$mon.rep) (rows 21 to 31) 

You can then use the Echo command to copy the formula from cell C21 to the region 
starting at 021 and ending at AK31 . 

We can now complete the table by adding a final row to give the outstanding balance 
at the end of each year It is probably a good idea to add a copy of the year, from row 
18, for easy reference. 

I 8331 row= year.term (columns 8 to AK) 
IA35I "End-of-year balance 
IC35I if((col()-2) $mor.term,"",c31-mon.rep) (columns C to AK) 

The entire table, and the end-of-year balances should be set to either monetary format 
or to decimal format with two places of decimals. The ranges for these changes are 
C20 AK31 and C35 AK35 respectively 

The French scientist Fourier showed that a repetitive wave of any shape can be built 5. 1 o FOURIER 
up from a set of sine or cosine waves of the correct amplitudes and frequencies. The ANALYSIS 
building up of complex waves from pure sine and cosine waves is known as Fourier 
synthesis and is employed, for example, in many of the music synthesisers in use today. 

The opposite process, decomposing a complex wave shape into a number of pure sine 
and cosine waves, is known as Fourier analysis. This example allows you to perform 
a Fourier analysis of any shape of wave. All you have to do is type in the height of the 
wave at sixteen equally-spaced intervals and let the formulae in the grid do the rest. The 
formulae assume that the wave repeats its shape after the sixteenth value, ie that the 
seventeenth value is the same as the first, the eighteenth is the same as the second, 
and so on. 

The mathematical process that is carried out in this example is known as a Fourier 
transform. A graph of the input values shows the shape of the wave and a graph of 
the output shows how much of each frequency of each sine or cosine wave is present. 

Some examples of the results of performing Fourier transforms on a series of input 
waveforms are shown in Figure 5.10 The 'frequency' axis of each output graph is in 
terms of the number of complete cycles of each component that are present in the input. 
In Figure 5 .10 this axis is labelled and the values extend from zero to fifteen. Figure 
5 1 O(A), for example, shows the results of performing a Fourier transform on one cycle 
of a cosine wave. 



PROVISION~' 
You may be puzzled by the appearance of two peaks, at frequencies of 1 and '15, when 
only one input frequency was present The mathematical process of the transform is 
not capable of measuring frequencies greater than 8 (in general the upper limit is half 
the number of sample points in the original function). The calculation introduces spurious 
results, so that the second half of the graph of the transform is a mirror irnage of the 
first For practical purposes you should ignore the right hand side of each transform when 
interpreting the results. In Figure 510 the spurious frequencies are shown as broken lines. 

FUNCTION 

B 

Figure 5.10 Fourier Transforms 

40 

TRANSFORM 

JTT or, ,~,~IT CT l 
1 2 3 4 5 6 7 8 9 10 11 12 13 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I --\ 
11, i·s 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-,,-11---i-r-1-,-,---,--r--11-f-1 
1 2 3 4 S 6 7 8 9 10 11 12 13 14 1S 

Ill 
1 2 3 4 5 

,--rT-r---r-T: 
9 10 11 12 13 14 : 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I I 
I I I 
I I I 

I' I ' ' I I I I I I~ 
10 II 12 13 14 IS 12345678 



PROVISIONA;, 
Figure 5.1 O(B) shows the transform of two cycles of a cosine wave - double the frequency 
of that in Figure 5 1 O(A) - and, as you would expect, the graph of the transform shows 
the higher frequency. Figure 5 1 O(C) shows the transform of a single cycle of a sine 
wave. In this case the spurious result turns out to be negative. 

The final pair of graphs, in Figure 5 10(0), shows an example of a waveform that is 
made up of a number of components of different frequencies The original waveform 
is, for obvious reasons, known as a square wave. The diagram shows that such a wave 
is composed of decreasing amounts of the odd harmonics (frequencies 1, 3, 5, 7, etc 
are present). 

Since the calculation takes an appreciable time it is worth turning off the auto-calculate, 
by use of the Design command, before typing in the example. 

IC 11 "FOURIER ANALYSIS 
lc2l rept("=",len(c1)) 

IB31 "Function: 
IA81 "Input 
I A91 "Values 

5.10.1 Calculating the 
Fourier Transform 

The input values are placed in the sixteen cells from 89 to 824 inclusive 

We shall now set up the headings for the table which will calculate the cosine components The Cosine Components 
of the wave. The result contains the amounts of all cosine-like waves in the input 

I E31 "Transform: 
I E41 "Cosine 
I D61 "Cycles 
row= col()-5 (columns E to T) 
IESI "Sample 
col= row()-9 (rows 9 to 24) 

Surprisingly, the entire cosine transformation can be performed by a single formula. In 
each row the input value is multiplied by the cosine of an angle (in radians) which is 
calculated as follows: 

angle = 2 * pi() * rownumber * colnumber I 16 

The row number and column number are the vaues given in the row labelled 'Cycle' 
and the column labelled 'Sample' respectively. They each count up from zero to fifteen 
The final divisor is simply the number of points in the input (or output). 

I E91 row= index(2,row()) *cos(pi() *(row()-9) *(col()-5)/8) 
(columns E to T) 

Now use the Echo command to copy the contents of cell E9 to the cells in the range 
from E10 to T24. 

The final result is calculated by summing the contents of each column to produce the 
sixteen output values. 

I A 2 6 I "Components 
IE26l row=sum(col) (rows 9 to 24, columns E to T) 

All the triqonometric functions deal with angles measured in radians, rather than in degrees. Radian Measure 
The difference is only one of using different units - rather like measuring a length in either 
inches or centimeters. A complete circle contains 360 degrees or 6.28 2 • pi() radians. 
You can convert between degree and radian measure as follows: 

radians = degrees * pi()/180 
degrees = radians * 180/pi() 

The calculation of the sine components follows exactly the same pattern as for the cosine The Sine Components 
ones. The resulting values are the amounts of all sine-like waves in the input. 

IX41 "Sine 
I X61 row= col()-24 (columns X to AM) 
I X91 row= index(2,row()) *sin(pi() *(row()-9) *(col()-24)/8 

(columns X to AM) 

Now Echo the contents of cell X9 over the range from X10 to AM24, to fill in the rest 
of the table, and Echo the contents of cell C9 to column V, from V9 to V24 (this makes 

41 



a copy of the 'Sample' values) 

IX26I row=sum(col) (rows 9 to 24, columns X to AM) 

The Power Spectrum Any input wave that is not a pure sine or pure cosine wave will generally produce 
components in both the sine and cosine transforms. Furthermore, when you calculate 
the transform of many types of wave, some of the components will turn out to be negative. 
In order to obtain results which combine both transforms, and are never negative, we 
shall make one more calculation. This will add the squares of the sine and cosine 
components. In the case of a real wave this result shows how much power (energy 
per second) is present in the wave at each frequency, irrespective of whether it is in 
the sine or the cosine components. It is usually called the power spectrum (a spectrum 
records how much of each frequency is present - as well as being the name of a popular 
computer I) In this case we shall calculate the square root of the power spectrum, to 
avoid having too large a range of values for the simple graphical display described in 
Section 5.10.2. 

IC28l "Power 
I E28l row= sqr(cos.comp + 2 + sin.comp+ 2) (columns E to T) 

5.10.2 Graphical Display 
of the Fourier Transform 

The results of this calculation can be made clearer by presenting them in graphical form 
If you would like high-quality graphs the best way is for you to use the Export command 
to create files that can be read by EASEL, containing the input and output values of 
the calculation. The following additions to the grid will allow you to see very simple 
graphical results. You can omit this section if you like, as it is not essential to the working 
of the transform and can be added at any time. It illustrates some of the advantages 
of using labels in a complex application 

A B 
10.00 
-10.00 

c 
80.00 
0 00 

D 
max 

,~ min 
31 max 
32 min = 
33 
34 
35 
36 
37 
38 
39 
40 * 
41 * 
42 * 
43 
44 
45 
46 
47 
48 

INPUT COSINE TRANSFORM 

Figure 5 11 Simple Graphical Output 

The first part produces a bar graph of the input values. 

IA30l "Graph 
IA31l "max= 
I 831 I max(col) (rows 9 to 24) 
IA32I "min = 
I 83 21 min(col) (rows 9 to 24) 
I A33I col= rept(". ",(func.val-$func.min) 

*18/($func.max-$func.min+1))+"*" (rows 33 to 48) 

The second set of entries graphs the power spectrum 

I 031 I "= max 
I C31 I max(e28:t28) 
I 0321 "= min 
[C32l O 
I C33I col= reptt", ",(index(row0-28,28)-$pow.min) 

*18/($pow.max-$pow.min+1))+"*" (rows 33 to 48) 

42 



PROV'sl n,: .. , 
~-' . i r1: \. 

The next set of entries graphs the cosine components. 

IF31 "= max 
I E31 max(e26:t26) 
IF32 "= min 
I E32 min(e26:t26) 
I E3 3 col= reptl". ",(index(row0-28,26)-$cos.min) 

*18/($cos.max-$cos.min+1))+"*" (rows 33 to 48) 

The final set of entries gives a graph of the sine components. 

IY31I "= max 
I X31 I max(x26:am26) 
IY32I "= min 
I X32I min(x26:am26) 
I X33I col= rept(" ." ,(index(row()-9,26)-$sin.min) 

*18/($sin.max-$sin.min+1))+"*" (rows 33 to 48) 

All of these graphs will cope with negative values. In such a case they add an offset 
to all the values. When this happens, the zero level of the graph is shifted towards the 
mid-point of each display Negative results then appear as bars which do not extend 
as far as the zero point on the graph. 

As was mentioned earlier, you should put the input values in cells B9 to B24 inclusive. 
You may try any set of values you like, but here are a few suggestions. The first uses 
a formula to place a single cycle of a pure cosine curve in the input. 

1891 col= 10*cos(pi()*(row()-9)/8) (rows 9 to 24) 

The input and output curves are illustrated in Figure 5.11 and, in slightly more detail, 
in Figure 5 1 O(A) 

The second example shows a cosine curve which includes two complete cycles. It is 
illustrated in Figure 5 1 O(B) 

I 89 I col= 10 * cos(pi() * (row()-9)/4) (rows 9 to 24) 

The third example, illustrated in Figure 5.10(C), is for a single cycle of a pure sine wave. 
In this case the output appears in the sine transform, and all cosine components are zero. 

I 891 col= 10*sin(pi() *(row()-9)/8) (rows 9 to 24) 

The fourth example represents a single cycle of a square wave. The easiest way of entering 
this one is to use the sgn() function on the cosine curve of the first example. This function 
returns + 1, -1 or 0, depending on whether its argument is positive, negative or zero. 

1891 col= 10*sgn(cos(pi()*(row()-9)/8)) (rows 9 to 24) 

The illustration of Figure 5 10(0) shows that a square wave contains more than one 
frequency. It is composed of decreasing amounts of all odd harmonics (frequencies of 
1, 3, 5, 7, etc) 

A fifth example (not illustrated) is for a constant input. You will see that the output shows 
that there is only a zero-frequency component present. 

! 891 col= 10 (rows 9 to 24) 

Remember that, since the auto-calculate is turned off, you must use Xecute 
to calculate each result. 

A further advantage of including lots of labels is that you can move the window to most 
of the interesting points in the grid by using the goto ( f5) facility, followed by a cell 
reference in its label form. Here is a list of some of the more useful cell references that 
you might need: 

input. values 
cosine. transform 
sine. transform 
cosine.components 
sine.components 
power. components 

and, if you have added the graphics, 

input.graph 
power.graph 
cosine.graph 
sine.graph 

5.10.3 Using the 
Fourier Transform 





?ROVISION A. I 

You can refer to single cells, rows, columns or ranges either by using explicit letter and 
number references or by using text labels This section describes the use of explicit 
references; Section 6.2 explains how you can use labels. 

A reference to a single cell consists of two parts, a column and a row reference. 

There are 64 columns in the grid and they are labelled from A to BL. There are 256 
rows, numbered from 1 to 256. Typical cell references are 

A 1 AC13 80200 

You can specify a whole block of cells in the grid by means of a block reference. It is 
made up of two cell references, separated by a colon. You must always type in the 
colon to separate the two parts of the reference. The first cell reference specifies the 
top left hand corner of the block and the second one identifies the bottom right hand 
corner Examples of range references are: 

85:09 AZ23:8A 155 

CHAPTER 6 
ABACUS 
REFERENCE 
6.1 CELL REFERENCES 

6.1.1 Single Cells 

A part of a row or column can be considered as a range that is only one column wide 6.1.2 Range References 
(or one row deep). You can therefore use a range reference to specify part of a row 
or column, such as: 

A3:L3 (cells A to L of row 3) 
07:011 (cells 7 to 11 of column D) 

A range identifier is one of row or col. They refer to the cells of the current row or the 
current column respectively. (The current row and column are those that intersect at 
the cell containing the range identifier ) 

Each time you use one of them in a formula you will be asked to specify the exact range 
of cells within the row or column. Abacus will suggest reasonable starting and ending 
points for the range and you can either accept this choice or change it 

6.1.3 Row and Column 
References 

There are two ways in which you can use range identifiers. You can fill the current row 6.1.4 Range Identifiers 
or column by use of either 

row = (formula) or col = (formula) 

You can also use them as the argument for any function that requires a range, for example, 
count(row). You can, of course, only use them in this way when you only want to refer 
to the cells of a single row or column. 

You can mix the two methods freely, for example, 

col = ave(row) 

Each occurrence in a formula will result in ABACUS asking you for a particular range. 

ABACUS normally assumes that all cell references are relative, ie, that the important thing 
is the difference in position between the cell containing the reference and the cell to 
which you refer. When you copy such a reference into another cell, the references are 
modified to keep this relative difference. For example, imagine that a formula in cell B2 
contains a reference to cell A 1 (one column to the left and one row above). If the formula 
in cell B2 is copied into cell D4 it will, in this new location, refer to cell C3 (again one 
column to the left and one row above). 

This is illustrated in Figure 6.1. A formula in cell X contains a reference to the lightly 
shaded cell. If this formula is copied to cell Y it then refers to the heavily shaded cell. 
The two cells in each pair have the same relative positions. 

6.1.5 Relative and 
Absolute Cell 
References 



6.2 LABELS 

6.2.1 Row and 
Column Labels 

PROVISJijN A! 

17r~]q~~~~ 
I c=J 

i Leo 

BDDDB 

- 
__ --:J 

Figure 6. 1 Relative Cell References Figure 6.2 Absolute Cell References. 

Suppose we put the formula A 1 * 2 into cell A2, and then use the Echo command to 
copy the formula into cells in the range B2 G2. Examining the cells of row 2 will show 
that they have the following contents: 

CELL: 
Contents: 

A2 
A 1 *2 

B2 
B1*2 

C2 
C1 *2 

F2 G2 
F1*2 G1*2 

02 
01 *2 

E2 
E1*2 

You can make any cell reference absolute by prefacing it with a $ sign Such a reference 
will not be modified when the formula is copied to other cells. For example, if a reference 
in cell B2 was to $A 1, any copy of the formula will also contain the reference $A 1 
Figure 6.2 shows the effect of an absolute cell reference. A formula in cell X contains 
an absolute reference to the shaded cell. A copy of the formula in cell Y refers to the 
same cell 

Let us try the previous example, but this time we shall use an absolute reference. Put 
the formula $A 1 * 2 in cell A2 and Echo it to cells 82 to G2 inclusive. You will then find 
that the cells contain the following: 

CELL 
Contents: 

A2 B2 C2 02 E2 F2 G2 
$A1*2 $A1*2 $A1*2 $A1*2 $A1*2 $A1*2 $A1*2 

See also the index() function Its use is fully explained in Section 5.8 

A label is a cell containing a text string, used to identify a row or column in the grid. 
You can also use labels to refer to a single cell, but you may not use them to replace 
a range reference, to refer to a whole block of cells. 

Whenever you refer to a label in an expression or formula, ABACUS uses a set of rules 
to determine whether it refers to a row, a column or a cell. The rules for rows and columns 
are: 

1 . The row and column intersecting at the label are scanned (to the right and below) 
to find a numeric entry. , 

a) If only a row entry is found, the label refers to the row, starting at the found entry 
b) If only a column entry is found, the label refers to the column, starting at the found 

entry. 
c) If entries are found in both the row and the column the entry closest to the labelled 

cell is used to make the choice. 

2. If no decision can be made under 1 ), but the label is used on the left hand side of 
an expression, it will be given the type of any label(s) used on the right hand side. 

If both of these rules fail, you are told that ABACUS can not decide the meaning of the 
label. 

6.2.2 Cell Labels You need to use two labels to identify a single cell and you make the cell reference by 
giving both labels, separated by a full stop. For example, if you have two labels "fruit" 
and "apples", you can refer to a cell as 

46 



fruit.apples 

(or by any unique abbreviation, such as fr.ap). The order of the two labels is unimportant 
so you could also use apples.fruit, ap.fr and so on. 

Such a reference refers to the cell at the intersection of the rows and columns containing 
the labels but, as Figure 6.3 shows, there are two such cells (labelled X and Y) 

IB[I_JDL] 
CK]~ - - - - -FRUIT 

~ t 
APPLES [TI 

Figure 6 3 Labelling a Cell. 

The cell that is selected is the one in the right-most column and the lower of the two 
rows. In the previous example, the cell labelled Y will be selected. You should, therefore, 
always place labels above or to the left of the cells to which they refer. 

A formula is any allowed combination of functions, cell references, labels and arithmetic 6.3 FORMULAE 
operators. Examples are: 

A1 *83 
month(col()-1) 
if(instr(B6,"is"), 1,0) 
rept(" = ",len(G23)) + ":" 

Each new formula, in addition to being used in one or more grid cells, is stored separately 6.3.1 Master Formulae 
in a list of master formulae. Each master formula may therefore appear in one cell or 
in many. When you fill cells by use of the row and column fill operations, or by using 
the Copy and Echo commands, all the filled cells share a single master formula. If a 
master formula contains relative cell references they are adjusted, in each cell using the 
formula, to be valid for that particular location. The formulae may therefore appear 
superficially different but are all based on the one master formula. 

There are several advantages to this approach, the most important being that less memory 
is used than if the formula in every cell is stored separately This allows you to construct 
much more complex grids without running out of memory A further advantage is that 
you can modify all copies of the formula by editing only one of the copies If you use 
the Amend command to change any copy of a master formula, the master is also modified 
and all copies are changed simultaneously. This is why you should use the row and column 
operations, and the Echo and Copy commands, vvhenever possible, rather than filling 
each cell separately. 

One case, however, needs explanation to remove a possible source of confusion. When 
you use the Grid command to insert or delete a row (or column) then any relative cell 
references in the formulae in the following cells are modified to take their new positions 
into account ABACUS locates the first formula in the affected portion and uses this as 
a model to work out the necessary changes to the remaining formulae. All relevant master 
formulae are modified. If you have used copies of a master formula on both sides of 
the change to the grid it is possible, in some circumstances, for the formulae in cells 
before the position of the insertion or deletion to be made incorrect. This is unlikely to 
happen if you plan your grid correctly. If, however, you do find that this has happened, 
you can correct it by typing a replacement formula into the affected cells (so that they 
use a different master formula) You must not use the Amend command, as this will 
simply change the master formula and make the formulae in later cells incorrect for their 
new positions. 

47 



PROVISIONAL 
6.4 ARITHMETIC The arithmetic operations in ABACUS follow the same rules as for the arithmetic in BASIC. 

The valid range for numbers is from +-2.9E-39 to +-1.7E+38. All calculations are 
accurate to 1 7 significant digits but only a maximum of 16 significant digits may be 
displayed. 

The following arithmetic operations are provided: 

+ Addition (on numbers), or concatenation (on strings) 
- Subtraction 
• Multiplication 
I Division 
'Raising to a power 
= Equal 
Greater than 
Less than 
= Less than or equal to 
= Greater than or equal to 
Not equal to 

Both operands must be of the 
same type. The result is a 
number, 1 if the comparison 
is true and O if it is not. 

Functions and operations have the following priorities 

Operation 

Subscripting and slicing 
All functions 

Priority 

Unary minus (ie, minus just used to negate something) 
• ,I 
+ .: (minus used to subtract one number from another) 

12 
11 
10 
9 
8 
6 
5 
4 
3 
2 

not 
and 
or 

In addition, string slicing is provided, again in a form similar to that of BASIC. The slicing 
operations provided are: 

(n) select the nth character 

(n to m) select all characters from the nth to mth character inclusive. 

(n to) select from character n to end. 

(to m) select from the beginning to the mth character. 

6.5 THE FUNCTION 
KEYS 

The five function keys are used as follows: 

F1 call the Help facility 
F2 remove/restore control area 
F3 call the commands 
F4 move cursor between the two halves of a split window 
F5 Go to a cell 

6.6 THE LINE EDITOR The line editor is always available to modify the contents of the input line. 

Key(s) 

Left cursor 
Right cursor 
Up cursor 
Down cursor 

Action 

Move one character to the left 
Move one character to the right 
Move one word to the left 
Move one word to the right 

Delete one character to the left 
Delete one character to the right 
Delete all text to the left 
Delete all text to the right 

Move left by one word 
Move right by one word 

CTRL + Left cursor 
CTRL + Right cursor 
CTRL + Up cursor 
CTRL + Down cursor 

SHIFT + Left cursor 
SHIFT + Right cursor 



PROVl~IO N .~ I .• . ·- 
A full file name consists of three sections, separated by underscores. The three 
components are: 

6.7 FILES 
6. 7 .1 File Names 

an optional drive specifier 
a file name of up to x characters 
an optional three-letter extension 

A full file name for an ABACUS file could therefore be: 

MDV2_FRED_ABA 

If you do not include a drive specifier in a file name then ABACUS assumes that you 
are referring to the current drive, that is, the drive that was last used. The one exception 
is when you are loading ABACUS itself from BASIC, as described in Section 2.1. In this 
case you must include the drive specifier in the file name. 

eg MDV1 
eg FRED 
eg ABA 

You do not normally need to specify an extension since ABACUS supplies a default 
extension for every file access. The Load and Save commands supply a default extension 
of _ABA The default extension for Import and Export files is _EXP, and when you 
Print to a file the default extension is _LIS. 

If you include an extension in any file name you type in then it will be used in preference 
to the default extension normally provided by ABACUS. 

Every time that an ABACUS command asks you to type in a file name you have the 
option of pressing the ? key to obtain a list of the names of files on the current drive. 
The file name "• _ •" (file name and extension) will appear in the input line and, if you 
accept this by pressing ENTER, you will be given a list of all files on the current drive. 

In this context the "*" character is a wild card which stands for any sequence of 6. 7 .2 Wild Cards 
characters. You may also use the character "?" to represent any single character in 
a file name. 

You have the option of using the line editor to modify the suggested file name, in order 
to obtain a list of the names of a paricular group of files. 

If, for example, you edit the file name to read "* _ TST" and then press ENTER you 
will be given a list of the names of all files with an extension of _ TST. Changing the 
file name to "X * _ *" would result in a listing of all files, with any extension, whose 
names begin with X 

You could use the single character wild card as, for example, 

MYFILE? * 
which would result in a listing of all files with names such as: 

MYFILE1 MYFILE2 MYFILE3 

and so on, with any extension. 

Note that this facility is only available when you are requesting a list of file names 
before typing in a file name for any of the file-based commands (Files, Load, Save 
and Print). 

This section contains a full description of all the commands available in ABACUS. Many 6.8 THE COMMANDS 
of the commands require additional options or qualifiers to specify, for example, the range 
of cells over which they are to act In such cases the options will be described in the 
same way that they are presented on the display when you actually use the command. 
You can access the commands by pressing f3, when a list of the commands is displayed 
(this is the command menu). Any command can then be invoked by pressing a single 
key, which is the first letter (given in upper-case in the menu) of the command. In the 
descriptions given below, this single letter is shown in brackets after the name of the 
command. All of the commands leave you in the main grid display. 

AMEND (A) This command allows you to change the contents of a cell. The contents 
of the current cell are copied to the input line, ready for editing with 
the line editor described in Sections 2.10 and 6.6. 



COPY (C) 

DESIGN (D) 

(Design) A 

(Design) B 

(Design) C 

"" 

0~nv,slONAL 
When you press ENTER the edited version replaces the original cell 
contents. 

Remember that you will also edit the master formula (see Section 6.3.1) 
so that any change to a formula in a cell will cause a corresponding 
change in all other cells that share the same formula. 

You use this command to copy one or more cells from one area of 
the grid to another. You will first be asked to give the range reference 
of the block to be copied, eg A 1 B3, and should then press ENTER. 
You will next be asked to specify the cell reference for the top left hand 
corner of the area to which the block of cells is to be copied When 
you then press ENTER the block of cells will be copied 

If any of the formulae that are being copied contain relative cell 
references, these references will be adjusted during the copy to be valid 
in the new area of the grid 

You use the Design command to modify a number of the 'background' 
features of ABACUS, such as whether the display should be set for 
a domestic television or a monitor. The choices remain in force until 
you modify them again, or until you leave ABACUS. When you save 
an application these defaults are saved with it so that they are used 
every time you load the application 

Changing the defaults, however, does not affect ABACUS itself They 
must be reset to the values you want each time you reload ABACUS 
from BASIC to create a new application. 

In the Design command the grid display is replaced by a list of options. 
You should respond by pressing the key corresponding to the first letter 
of the option you require. You may then be asked to specify further 
information, which will be either a number or a single letter, as described 
in the following list At the end of each default selection you are returned 
to the Design command menu so that you can make multiple changes. 

When you have finished you can return to the main grid display by 
pressing the X key. 

If you press ESC you will return immediately to the main grid display. 
In this case all of the changes you made with that use of the command 
will be cancelled. 

The options are: 

used to specify auto-calculate or no auto-calculate. Each time you press 
the A key the auto-calculate option switches between YES and NO 

If you choose YES, the whole spreadsheet will be recalculated after 
each entry. Selecting NO, however, means that the spreadsheet will 
only be recalculated when you use the Xecute command. The initial 
value is YES. 

switches between two ways of treating zero values in the grid. The 
default is to display the value zero in the appropriate format for that 
cell. You may select the alternative, which is to display a blank cell if 
its contents evaluate to zero. 

Note that, in this option, a blank cell will only be shown if the value 
is truly zero. Suppose you have selected decimal display format, with 
two decimal places, and the value in such a cell is 0.003. The cell will 
show 0.00, rather than being blank, since the true value is non-zero. 

selects between calculating the spreadsheet in ROW or COLumn order. 
The option changes each time you press the C key ( as for auto 
calculate). The specified order will be used for both auto-calculate and 
the Xecute command. The initial value is for row order. 



PROVISIONAi. 
(Design) F 

(Design) G 

(Design) L 

(Design) M 

(Design) P 

(Design) S 

(Design) T 

ECHO (E) 

FILES (F) 

HELP 
press F 1 
PROMPTS 
press F 2 

selects whether or not a form-feed is issued at the end of each page 
of printed output, in the same way as for auto-calculate. The initial value 
is YES. 

sets the line spacing on printed output by specifying the number of 
gaps between the lines of text You are asked to type in 0, 1 or 2 (no 
ENTER is necessary) You can set ordinary double-spaced printer output, 
for example, by specifying one gap between each line. The initial value 
is zero. 

specifies how many lines on a page of printed output. You should type 
in a number, followed by ENTER The initial value is 66 

specifies the currency sign to be used in the display of monetary values. 
You should type in the single character that you want (no ENTER is 
necessary) The initial value is the pound sign. 

sets the number of characters per line of printed output. You should 
type in a number, followed by ENTER The initial value is 80. 

switches between the use of continuous or separate sheet printer 
stationery, in the same way as for auto-calculate The initial value is 
for continuous stationery 

selects the form of display for use with a domestic television or a 
monitor, in the same way as for auto-calculate. The initial value is for 
a monitor display. 

The Echo command makes a copy of the data or formula in a particular 
cell to all the cells in a specified range. 

You are given the option of specifying the cell reference of the cell to 
be copied, or pressing ENTER to use the current cell. You then should 
type in the ranqe over which the cell contents are to be copied, followed 
by ENTER. 

The appearance of the display for the Files command is shown in Figure 
6.4 

FILES- Delete Rename Backup Import Export 
Export sends data to other programs 
Import receives data from other programs 
TYPE THE FIRST LETTER OF THE OPTION 

COMMANDS 
press F 3 
ESCAPE 
press F4 

'4 
5 

" 7 8 
9 
ll 
11 
12 
13 
14 
15 
J!. 
Files>[] 

Ct,RRf;NT CEt.4: At·.: --~CiRtO US£0 A1:A1 
CURREil CELL EHPtY_ 

··:;~~~··•:j~ 
. ~ .. ...: .. , - 

F,gure 6.4 The Files Command 



Files>B 

Files>D 

Files>E 

Files>I 

52 

PROVISIONAL 
This command allows you to modify ABACUS files, previously saved 
on a Microdrive cartridge. The options ask you to type in the names 
of files. Each time you are asked for a file name you can press ? for 
a list of all files on the current cartridge. You can then accept the 
suggestion of * _ * to display all the files (by pressing ENTER) or you 
can use the line editor to change either the file name or its extension, 
to list any particular subset. This is explained more fully in Section 6. 7. 

At the conclusion of any option you are left in the Files command menu, 
ready to use another Files option You can return to the main display 
by pressing ESC. 

You are offered the following options: 

used to make a backup copy of an ABACUS file. You are asked for 
the name of the file to be copied Making copies of your files is strongly 
recommended, to protect yourself against accidental loss of, or damage 
to, the cartridge, and against making a mistake which causes your 
application to be corrupted or deleted. 

deletes a named file from a Microdrive cartridge. Note that this 
command is NOT reversible and should therefore be used with 
GREAT CARE. 

exports a named file. The file is saved in a form suitable for being read 
by the database or the business graphics. Note that you should not 
send files to the word processor by means of the Export option. Such 
files need additional formatting information and you should therefore 
use the Print command for this purpose. 

You can export the file by rows or by columns and are first asked to 
press ENTER to accept the suggestion of exporting by rows, or to press 
the C key to choose export by columns. 

You are then asked to type in the range reference for the section of 
the grid that you want to export, and finally asked to type in a name 
for the exported file. 

The section of the grid being exported must have text in the first cell 
of each row (or of each column if you export it in column order). This 
text is used to label the data. Any row (or column) that has an empty 
first cell is ignored. There must be data in the cell immediately following 
the label. The type of this data (numeric or text) determines the data 
type used for all the data in the rest of the row (or column) 

If you do not specify a file name extension ABACUS will supply an 
extension of _EXP 

imports a named file. It allows ABACUS to read files exported by any 
of the other programs in the Psion package. 

You may import a file in either row or column order, and are asked 
to select which. You are also asked for the cell reference of the top 
left hand corner of the area of the grid into which the data is to be 
imported. 

When you import a file from the database, the data from each record 
will be placed in the cells of one row· (or column) Each column (or 
row) will contain a text label corresponding to the field name in the 
database record. 

If you import a file from the business graphics, each set of figures will 
be inserted into the cells of a row (or column) The first cell will contain 
a text label corresponding to the name of the set of figures. 

Note that you can invert the grid of an ABACUS application, exchanging 
rows and columns, by exporting the grid contents in row order and 
then importing the file in column order. 



PROVISIONAi 

Files>R 

GRID (G) 

Grid >] 

Grid>D 

Grid>W 

JUSTIFY (J) 

If you do not specify a file name extension ABACUS will assume an 
extension of _EXP 

renames a file. You are asked to type in the original file name, followed 
by the new name you want to give to the file. 

If you do not specify a file name extension for the original file ABACUS 
will assume an extension of _ABA If you do not specify a file name 
extension for the new file ABACUS will assume that it should be the 
same as for the old file. 

The Grid command is used to make changes which affect the entire 
spreadsheet. It allows you to insert or delete an entire row or column, 
or to change the number of characters displayed in one or more 
columns. 

At the conclusion of any option you are left in the Grid command menu, 
ready to use another Grid option You can return to the main display 
by pressing ESC. 

The options are: 

allows you to insert an empty row or column into the grid You are 
first asked if you want to insert a row (press ENTER) or a column (press 
Cl You are then asked to give the row (or column) reference. When 
you then press ENTER an empty row (or column) will be inserted above 
(or to the left of) the one specified. The last row (or column) will be 
lost from the grid. You will not be able to recover it. 

allows you to delete one or more rows or columns from the grid. You 
are first asked if you want to delete rows (press ENTER) or columns 
(press C) You are then asked to give the reference of the starting row 
(or column) of the region you want to delete, followed by ENTER. You 
are then asked for the row (or column) reference of the end of the 
region. 

When you then press ENTER the selected region is deleted and the 
following rows (or columns) close up to fill the gap. Empty rows (or 
columns) will be inserted at the bottom (or at the extreme left of) the 
grid. 

In both of these options all formulae in the rows or columns that are 
moved will be adjusted to correct them for their new positions (note 
the warning in Section xx). 

allows you to change the width (number of characters) of one or more 
columns. You are first asked to specify the number of characters in 
a column, and will then be asked to specify the starting and ending 
columns over which you wish the change to take effect. 

The Justify command is used to modify the positioning of text and 
numbers in a range of cells. It has two main options; to modify existing 
cells, or to set the default justification for future creation of currently 
empty cells. You should press ENTER to select the Cells option, or the 
D key to select the Defaults option. 

You are then asked to specify whether you want to modify the 
Justification of text (by pressing ENTER) or of numbers (by pressing 
the N key) In either case you can then select left (ENTER), right (R) 
or centre (Cl Justification 

In the case of the Cells option you are finally asked to give the range 
over which the change is to act. You do not have to give a range in 
the Defaults option. The new default will apply to all newly-created cells, 
at any point in the grid, until you make a further change in the default 
Justification. 



PROVISIONAL 
HELP 
ress F1 

CURSOR DATA & FORMULA TEXT type .. 
press ~·· _, 
GOTO cell enter directly followed by 
press FS & press ENTER text&ENT 

4t .·« C. ·.·t · 0 
ESCAPE 
press ESC 

COMMANDS 
press F 3 

PROMPTS 
press FZ 

'f . , I G 

l 
2 
J 
4 
5 
6 
7 
8 
9 ,. 

11. 
f2 
13 
r1, ·~ t6 T- 

LEFT 123.40 
RIGHT 123.40 

DEFAULT 123.40 
I text left. numbers r1ghtl 

tuRRER:T CW.::.lt GRID USED M.:07 
CURREMT CELL EMPTY 

Figure 6.5 Justification 

Some of the different types of Justification, together with the default 
settings (text justified left and numbers Justified right) are shown in Figure 
6.5. 

LOAD (L) This is used to load a file from the Microdrive. You are first asked to 
specify the file name; pressing the "?" key at this point gives you a 
list the files on the current Microdrive. You can, as for the Files and 
Save commands, choose to list all the files or you can choose to list 
a subset of the files as described in Section 6. 7. 

If you do not include an extension in the file name you type in, ABACUS 
will assume an extension of _ABA 

MERGE (M) This command is used to combine, or consolidate, data from a 
previously saved file with the data in the current grid You are first asked 
for the file name of the file to be merged from the Microdrive cartridge 
and will then have to indicate whether the data in this file is to be added 
to (press ENTER) or subtracted from (press S) the data in the current 
grid 

Whenever a cell in the file, containing a number or a formula, matches 
a corresponding data cell in thF' grid, the value from the file will be added 
to or subtracted from the grid data The command will not have any 
effect on grid cells containing text, which are therefore protected against 
alteration. 

The resulting grid contains only numeric values; the formulae that 
produced these values in the original grid cells will be destroyed. The 
formulae would not have any meaning rn the consolidated grid. 

This command offers a fast and easy method of combining the data 
in two similar models. It is, of course, essential that you have laid out 
the two grids in exactly the same way, using the same cell locations, 
for the results of the command to make sense. 

54 



ROVISIONAl 
ORDER (0) 

PRINT (P) 

QUIT (0) 

RUBOUT (R) 

SAVE (S) 

UNITS (U) 

You use this command to sort the rows of the grid into ascending order, 
based on the contents of one particular column. 

You are first asked to specify the column on which the sorting is to 
be based. You are then asked for the first and last rows to be sorted. 
The rows are rearranged so that the contents of the cells of the chosen 
column are in ascending order with increasing row number. The exact 
ordering sequence that is used is: 

Empty cells 
Numeric cells, in ascending numeric order 
Text cells in alphabetic order 

You should only use the Order command on rows or columns which 
contain data. It is likely to invalidate any formulae present in the affected 
portion of the grid. 

This command is used to send a selected portion of the grid to a printer 
or to a Microdrive file You are first asked to specify the range of cells 
which you want printed. Then you are asked if you want the grid border 
to be included (press ENTER) or not (press the N key) Following this 
you should specify whether the output should be sent to the printer 
(press ENTER) or to a Microdrive file (press the F key). If you choose 
to send the output to a file, you are also asked to type in a file name 
(ending with ENTER) 

The selected portion of the grid will be sent to the chosen destination. 

If you want to send data to the word processor you should not use 
the Export option of the Files command since this discards the spacing 
between the cell items. You should use the Print command to send 
the grid contents to a file and then Import the print file into your word 
processor document. 

If you do not, in the case of the option to print to a file, specify an 
extension when you type in the file name, ABACUS will assume an 
extension of _PRI 

You use the Quit command to leave ABACUS. On leaving the current 
grid contents are lost, so you are asked to confirm your request. You 
can cancel the command and return to your spreadsheet by pressing 
ESC. If you press ENTER you will confirm your wish to leave ABACUS. 

This command is used to rub out, or delete, the contents of one or 
more cells in the grid. When you use this command you will be asked 
to specify a range of cells. If you specify a range, all the cells in that 
range will be cleared; if you just press ENTER at this point only the 
current cell will be rubbed out. 

This is used to save a file to the Microdrive. You are first asked to specify 
the file name; pressing the "]" key at this point gives you a list the 
files on the current Microdrive. As for the Load and Files commands 
you can choose to list all the files, or select a subset by specifying all 
or part of the file name or the extension, as described in Section 6.7. 

If you do not include an extension when you type in the file name, 
ABACUS will assume an extension of _ABA. 

The Units command is used to change the way that numbers are 
displayed within a cell, or group of cells. It does not affect the values 
of the numbers in any way. 

You are first asked to select whether you want the command to affect 
existing cells (just press ENTER) or to set the default format for 
subsequently created cells (press the D key). 

In either case you are then asked to choose the display format from 
the following list (the list assumes the Cells option): 



PROVISIONAL 
Units,Cells,D numbers are displayed in fixed-point decimal notation, that is, all 

numbers are shown in the same way, with a fixed number of decimal 
places. Numbers which actually contain more decimal places than are 
displayed will be rounded up or down as necessary The option asks 
you to type in the number of decimal places you want to be shown. 
It will not accept a value greater than 15. 

Units,Cells,E numbers are displayed in exponential, or scientific notation. Again the 
displayed number is rounded up or down as necessary. The option asks 
you to type in the number of decimal places you want to be shown. 
It will not accept a value greater than 15. 

Units,Cells,P this displays numbers as percentages so that, for example, the value 
0.55 is displayed as 55%. The option asks you to type in the number 
of decimal places you want to be shown It will not accept a value 
greater than 1 5. 

Units,Cells,I numbers are shown as integers, or whole numbers. Any decimal fraction 
is stripped off and no rounding up or down takes place. You are given 
the option for negative values to be enclosed in brackets, rather than 
with a leading minus sign. 

Units,Cells,G this is a general numeric format in which any of the previous formats 
is chosen, depending on the value of the number, to make best use 
of the space available in the cell. 

Units,Cells,M numbers are displayed in fixed-point decimal format, with two decimal 
places and a leading currency symbol. This is, of course, designed for 
displaying monetary values. You are given the option for negative values 
to be enclosed in brackets, rather than with a leading minus sign. 

In the case of the Cells option you are finally asked to specify the range 
over which the change is to act. If you Just press ENTER, only the 
current cell will be affected. 

You are not asked to specify a range if you selected the Defaults option. 
In this case the selected format will be used for all new cells, as they 
are created. 

WINDOW(W) You use this command to control whether the display is a single window 
or is split into two windows which can be used to show two separate 
portions of the grid. 

You are first asked to choose between a vertical (V) split, a horizontal 
(H) split, or to join (J) a split display back into a single window. If the 
window is initially split and you want to change from, say, a horizontal 
to a vertical split you must first join the two windows before making 
the new split 

If you choose to split the window then the split will occur at the column 
or row containing the cursor.' You should therefore position the cursor 
at the point where you want the split to occur before making the split. 
Whole columns will always be displayed but if you have changed the 
width of some columns so that they are very narrow you may find that 
extra columns are shown. Each window in a vertical split will never 
be less than ten characters wide. 

You then are given a further, optional, choice as to whether the two 
windows should move together (T) or separately (S). If you specify the 
T option, this means that any change in the position of one window, 
in the direction parallel to the split, will cause a corresponding change 
in the position of the other, so that a constant separation is maintained 
between them. Movements at right angles to the split are not related 
in this way. The S option allows the two windows to move around 
the surface of the grid independently. This optional choice will not, of 
course, be given in the case where you request joining to a single 
window. 

56 



CUSROR HELP 
ress F2 press ,-t.-, 

GOTO cell 
press FS 

PROMPTS 
press F2 

8 
t 
2 
3 
4 
5 
6 
1. 

L I M 
291 
38 
31 
32 
33 
34 
35 

DATA & FORMULA\! TEXT type" II COMMANDS 
press F3 

enter directly followed by ESCAPE 
& press ENTER text & ENT press ESC 

c I 0 £ T G 

N p 0 0 

CURRENT CELL: Al . · GRID USED At:Al 
CURRENT CELL EMPTY 

Figure 6.6 A Horizontally Split Window 

~

-··~--~· 

HELP CURSOR 
. press F1 !press,_•,~ 

PROMPTS GOTO cell 
press F 2 press F 5 

---- 
TEXT type" COMMANDS 
fol press F3 
followed by ESCAPE 
text & ENT press ESC 

E ·t .F , I G 

DATA & FORMULA 

enter directly 
& press ENTER 

8 
1 
2 
3 
4 
s 
6 
7 
8 
9 

18 
11 
12 
13 
14 
15 

7 

( 

44 
4S 
46 
47 
48 
49 
59 
51 
52 
53 
54 
55 
,56 
S7 
Se s, 

uilJB USED ·ar.-t . "..,. •. _,- . '" I 
·CURRENT CELL __ .: A. 1 • 
(UQRENT Ul.L EMPTY 
Figure 6.7 A Vertically Split Window. 

The appearance of the display for a horizontal and a vertical split is 
shown in Figures 6.6 and 6.7 respectively. 



XECUTE (X) 

ZAP (Z) 

PROVISIONAi. 
This command is used to force a recalculation of all formulae appearing 
in the grid. A recalculation is normally performed automatically when 
you make any new entry in the grid. You will only need to use this 
command if you have switched off the automatic recalculation option 
by use the Design command or if you want to activate any askn() or 
asks() functions stored in the cells of the grid 

This command clears the entire contents of the grid and returns you 
to the beginning of ABACUS for a fresh start. Since this command is 
drastic (and irreversible) in its action, you will be asked to confirm your 
request. If you press ESC you will return to the command menu without 
any deletion taking place. You should press ENTER to confirm your 
wish to clear the grid. 

6.9 FUNCTIONS You can think of a function as a kind of recipe which converts a number of values, known 
as the function's Arguments into a different value, which is said to be the value that 
is returned by the function. 

The functions provided by ABACUS may take three, two, one or no arguments. The 
arguments for a function are placed in brackets after its name. You must not leave a 
space between the name and the opening bracket, but spaces are allowed between items 
within the brackets. If a function takes more than one argument, the arguments are 
separated by commas All functions must be followed by the brackets, even if they take 
no arguments. The presence of the brackets is a useful reminder that you are referring 
to a function They allow you to distinguish between a label and a function, even if they 
have the same name. 

In the descriptions of the functions 

n is either a literal number or a reference to a cell containing a numeric value, 

text is either a literal text string (enclosed in quotes) or a reference to a cell 
containing text, 

rangeis a grid range reference. The following functions are provided. 

ABS(n) 

ASKN(text) 

ASKT(text) 

ATN(n) 

AVE(range) 

CHR(n) 

Returns the absolute value (that is, the value ignoring any minus sign) 
of the argument. 

For example, abs(3) returns 3 and abs(-7) returns 7. 

This function is used for the input of numeric data. It displays the given 
text (which may be up to 40 characters in length and will normally end 
with a "?") as a prompt in the input line and waits for a reply to be 
typed in. The reply is placed in the current cell. Input will only be 
requested when recalculating the grid by use of the Xecute command, 
and is not asked for during an auto-calculate after each grid entry 

the input of text strings It displays the given text (which may be up 
to 40 characters in length and will normally end with a"?") as a prompt 
in the input line and waits for a reply to be typed in. The reply is placed 
in the current cell. Input will only be requested when recalculating the 
grid by use of the Xecute command, and is not asked for during an 
auto-calculate after each grid entry. 

Returns the angle,in radians. whose tangent is n 

Returns the average of the numeric values contained in all the cells in 
the specified range. Empty cells and cells containing text are ignored 
in the calculation of the average. If there are no numeric cells in the 
range it will return a value of zero. 

This function returns the ASCII character whose code is n Characters 
with ASCII codes less than 32 have no effect on the screen, but may 
be sent to the printer if they are preceeded by an ASCII null, ie, chr(O) 
For example, chr(O) + chr( 13) passes the ASCII character for a carriage 
return to a printer This is useful if your printer needs control code 
sequences to produce special effects - refer to your printer manual for 
any special codes that it needs. 



PROVISIONAL 

CODE(text) 

COL() 

COS(n) 

COUNT 
(range) 

DATE() 

DEG(n) 

EXP(n) 

IF 
(expression, 
true, false) 

INDEX(n 1,n2) 

INSTR 
(text1 ,text2) 

INT(n) 

IRR(range,n) 

You can send an "A" to the screen with chr(65) 

This returns the ASCII value of the first character found in the specified 
text. 

Returns the number of the current column. 

Returns the cosine of the given (radian) angle. 

Returns the number of non-empty cells in the specified range. Both text 
and numeric cells are included in the count 

Returns today's date as a text string in the form. 

"DD/MM/YYYY 

You must first have set the system clock, as described in the technical 
manual 

Takes an angle, measured in radians, and converts it to the same angle 
in degrees. 

Returns the value of e (approximately 2 718) raised to the power n. 
The returned value will be in error if n lies outside the range from -87 
to + 88, since the result will then exceed the numeric range of ABACUS 

The value of the expression is calculated and used to determine which 
of the following two arguments should be returned If the expression 
evaluates to O it is considered to be false and the ''false'' argument 
is returned. Any non zero value for the expression is interpreted as being 
true and causes the "true" argument to be returned. The "true" and 
"false" arguments may be either text or numeric in nature. Thus all 
the following examples are valid uses of the function; 

if(A 1 = B 1 , "equal"," not equal") 
if(A 1, 1,0) 

You can also mix a text and a numeric arqurnent as in the following 
example Try this one out if you are not sure how if() works. 

\. 

A 1 1 
81 0 
Cl if(A 1 or Bl ,"either",O) 

You should see the word 'either' appearing in cell Cl since the first 
parameter of if() returns a non-zero (true) value if either cell A 1 or cell 
81 contains a non-zero value. If you change the contents of cell A 1 
to be zero then you will see a zero displayed in cell C 1 since the 
condition will be false and the third argument will be returned. 

Returns the contents of the cell in row n 1 and column n2 

This finds the first occurrence of "text2" within "text l " and returns 
the position of the first character of "text2" in "text1 '', It will return 
a value of zero if no match is found. The match is case-dependent. 

instr(" January"," Jan") returns 1 
instr("January","an") returns 2 
instr(" January"," AN") returns O 

Returns the integer value of the number, by truncating at the decimal 
point. The truncation always operates towards zero. Thus; 

int(3. 7) returns 3 
int(-4.8) returns -4 

Calculates the Internal Rate of Return for the numeric data in the 
specified range, which may be either a row or a column. 

The data in the range represents a cash flow for each of a series of 
periods, separated by n months. Negative values represent cash outlays 
and positive values represent cash returns. 



The function returns the rate of interest necessary so that investment 
of your outlay would match the proposed returns. 

The function is best explained by means of an example, using the same 
conventions as those in Chapter 5. 

Suppose you are offered a return of twenty thousand pounds at the 
end of each of the next seven years, in return for an initial outlay of 
one hundred thousand pounds Is this a good deal? 

IA 11 "flow 
IA21 -100000 
IA31 col=20000 (rows 3 to 9) 

We can refer to the range of the data by the label "flow" and the interval 
between successive periods is twelve months: 

lc2I irr(flow,12) (rows 2 to 9) 

The completed grid should look like Figure 6 8, showing that the internal 
rate of return is 9 .11 If you can invest your hundred thousand pounds 
at a higher rate of interest you should do so, and forget the deal. 

A B I C 
1 flow 
2 -100000.00 
3 20000.00 
4 20000 00 
5 20000.00 
6 20000.00 
7 20000.00 
8 20000.00 
9 20000.00 9 10 

Figure 6.8 Internal Rate of Return 

Note that the first item in the range is counted as period zero, the next 
is period one, and so on. The function assumes that each amount is 
payable in full at the end of the relevant period 

LEN(text) Returns the number of characters in the specified text. 

N(n) Returns the natural, or base e, logarithm of n. An error results if n is 
negative or zero, since logarithms are not defined in this range. 

LOOKUP 
(range,n) 

This function implements a look-up table in the grid. Two tables of values 
are assumed to be present The first table occupies the specified range 
(which can be in a row or a column) The second table runs parallel 
to the first, in the following row or column. For example, if the first 
table is in column G, from G 10 to G25, the second will be assumed 
to be from H 10 to H25 Every entry in the first table should have a 
corresponding entry in the second. The first table is searched for the 
largest value that is less than or equal to n. The function returns the 
corresponding entry from the second table. Note that it is assumed, 
for the correct operation of this function, that both tables contain 
numeric values, and that those in the first table are arranged in ascending 
order. 

The first value in the first table is a dummy. It must be less than the 
second value, which is the lower limit for the table lookup process It 
is otherwise ignored. The first value in the second table is the default 
value. It will be the value returned if lookup() is called with any number 
less than the lower limit 

LOWER(text) Converts the specified text to lower case. 

MAX(range) Returns the largest numeric value found in the cells in the specified 
range. If there are no numeric cells in the range the function will return 
the smallest possible number (-1 7 E + 38) 

60 



PROVISIONAL 
MIN(range) 

MONTH(n) 

NPV(range, 
n1 ,n2) 

Returns the smallest numeric value found in the cells within the specified 
range. If there are no numeric cells in the range the function will return 
the largest possible number ( + 1. 7 E + 38). 

Returns, as text, the name of month n 

For example month(3) returns the text "March". 

If an argument larger than 12 is used, it is replaced by the remainder 
after division by 12 so that, for example, month( 13) and month( 1) will 
both give the result "January" 

Calculates the Net Present Value for the cash flow data in the specified 
range. The pecentage interest rate is n1 (n1 = 14 represents a 14% 
rate) The data is assumed to refer to a series of periods, separated 
by equal intervals of n2 months. 

The net present value is the amount ot money required now to produce 
a given future cash flow, assuming an interest rate. As with irr(), it is 
best explained by means of an example. 

Suppose you are given the opportunity to buy, for a single payment 
of seventy thousand pounds, a ten-year lease on a shop which is 
currently producing a yearly net income of ten thousand pounds You 
expect the income to increase by 10% per year If you did not buy 
the shop your seventy thousand pounds would earn 14 % interest. What 
should you do? 

You should calculate the net present value of the income and compare 
it with the sum you are asked to pay 

I A 1 I "flow 
IA2i O 
IA31 10000 
IA41 col =a3*1.1 (rows 4 to 12) 
IA14I npv(flow,14,12) (rows 2 to 12) 

The result is shown in Figure 6. 9 
A B 

1 flow 
2 0 00 
3 10000.00 
4 11000 00 
5 12100 00 
6 13310 00 
7 14641 00 
8 16105.10 
9 17715.61 

10 19487 17 
11 21435.89 
12 23579 48 
13 
14 75088.51 

Figure 6.9 Net Present Value · Method 1 

The net present value (in cell A 14) of the cash flow from the shop is 
more than the asking price, so you should go ahead. 

The first item in the list is for period zero, the second is for period one, 
and so on. This is consitent with the assumption, made by the function, 
that the returns are received at the end of each period You therefore 
have to wait for one period before you obtain any return on your 
investment. In a real situation of this type you would probably work 
on a monthly basis, rather than on twelve month periods. 

"1 



Pl() 

RAD(n) 

REPT(text,n) 

ROW() 

SGN(n) 

SIN(n) 

STR 
(n, type,dp) 

SQR(n) 

SUM(range) 

TAN(n) 

TIME() 

62 

PROVISIONAt 
An alternative way to tackle the problem is to include your payment 
as a (negative) cash flow as the period zero cash flow. This is shown 
in Figure 6 10. The only difference between this example and the 
previous one is: 

IA21 -70000 
In this form a positive result (in cell A 14) shows that the deal would 
be profitable 

A B 
1 flow 
2 -70000.00 
3 10000 00 
4 11000 00 
5 12100.00 
6 13310.00 
7 14641.00 
8 16105.10 
9 17715.61 

10 19487 17 
11 21435 89 
12 2357948 
13 
14 5088 51 

Figure 6 10 Net Present Value Method 2 

Returns the value of the mathematical constant pi 

Takes an angle, measured in degrees, and converts it to the same angle 
in radians 

This function will fill the current cell with n copies of the given text, 
which may be up to 255 characters in length. For example, 

rept(" * ",5) will put five asterisks in the current 
cell rept(" abc" ,3) makes three repetitions of "abc": 

Returns the number of the current row. 

Returns + 1, -1, or 0, depending on whether the argument is positive, 
negative or zero. 

Returns the value of the sine of the specified (radian) angle. 

Converts a number, n, to the equivalent text string. The 'type' parameter 
indicates the form of the converted string as follows; 

O decimal (floating point) 
1 exponential, or scientific, notation 
2 integer. 
3 general format 
4 monetary format 
5 percentage 

The third parameter indicates the number of figures after the decimal 
point in the converted string. It should always be specified, although 
its value is ignored for integer, general and monetary formats. 

Returns the square root of the number n, which must not be negative. 

Returns the sum of all the numeric values within the specified range 
Empty cells and cells containing text are ignored 

Returns the tangent of the specified (radian) angle. 

Returns, as text, the time of day in the format HH:MM:SS. You must 
first have set the system clock, as desribed in the technical manual. 



PROVISIONAL 
UPPER(text) 

VAL(text) 

WIDTH() 

Converts the specified string to upper case. 

Val converts the text to its equivalent numeric value. It will only convert 
text composed of valid numeric characters and the conversion will stop 
at the first character that can not be interpreted as a digit For example, 
val("l lABC") will return the value I.I, and val("ABC") will return 0.0 

Returns the width, in character space 





0 r- 
l> 
§. 
~- 



QLArchive 





PROVISIONAL 

ARCHIVE is an intelligent database which you can use for any type of information retrieval 
application, from a card index to a full multi-file relational database. The information can 
be presented in a customised screen design or in any printed format. 

When you have just loaded ARCHIVE it is in the keyboard interpreter mode This means 
that it will accept what you type at the keyboard and try to interpret and execute it as 
a known command. 

ARCHIVE has a comprehensive set of database-related commands which allow you to 
make use of its facilities from the moment that you load it. Although the commands 
form a powerful programming language for the construction of specialised applications, 
you can create a useful card index in a few minutes, directly frorn the keyboard 

As soon as you have created a file you can use the available commands to make 
sophisticated searches or selections from the file, sort the records on any number of 
key fields and display the results. 

At all times you are guided by an informative set of prompt messages which never leave 
you in any doubt about what your options are or what you are expected to do If you 
require further information you can always use the Help files. These contain full details 
about all the options. You may ask for Help at any stage, no matter what you are doing, 
and will automatically be given the information that is most relevant to your current needs. 

ARCHIVE has a pyramidal structure, in that the most commonly-needed commands and 
options are available immediately. Beneath the surface are many sophisticated options, 
each of which has a series of sub-levels The full power of ARCHIVE becomes apparent 
as you become more familiar with it and dig more deeply into the pyramid 

The real power of ARCHIVE comes when you write your own procedures in the database 
language. You can create a named procedure to do exactly what you want and then 
use it as an additional command, in exactly the same way as you use the commands 
provided with ARCHIVE. Alternatively you can write a complete program that runs 
independently of the normal commands. 

The ARCHIVE database language has a syntax similar to SuperBASIC and is therefore 
simple to use. Unlike BASIC, however, it is based on program units known as procedures 
which lead naturally to the creation of correct and readable programs. 

The mechanics of writing and modifying a program are aided by a full procedure editor 
which, together with the input line editor (which is available at all times), make editing 
a simple and painless task. 

The commands include simple and fast sorting, searching and selection of records, 
together with many string manipulation operators and fast, accurate arithmetic. 

The data files themselves use variable length fields and records. Not only does this lead 
to the most efficient use of available memory and disk space, but, also to simplified file 
creation. You never need to decide in advance how large a record needs to be. 

ARCHIVE is provided with a number of working examples. You can either use them 
immediately or you can make simple modifications to match them to your exact needs. 
Try out the examples to see some of the range of things that can be done. All the programs 
are fully documented in this manual and contain many general purpose procedures which 
you could include in your own programs. 

CHAPTER 1 
ABOUT 
ARCHIVE 
1 .1 INTRODUCTION 





PROV I~ I UN AL 

When you switch on the computer it will only respond to commands in SuperBASIC 
You will have to load ARCHIVE from its Microdrive cartridge. You will normally do so 
by inserting the ARCHIVE cartridge in drive 1 (the left hand drive) and then typing 

LGO MDV1_ARCHIVE ENTER 

After a few seconds the screen will show the message: 

ARCHIVE - Copyright Psion Ltd 1983 
Press any key to start 

You should then press any key on the keyboard to start ARCHIVE. 

When you have loaded ARCHIVE the display on the screen should look like that shown 
in Figure 2.1. 

The display is divided into three main areas, known as the control area, the display area 
and the work area. 

The control area occupies the top four lines of the display and shows the options that 
you have. Its contents will change from time to time, depending on what you are doing, 
and also gives confirmation of your choices. At the moment it shows that you have three 
main choices which are to: 

press the HELP key, 
change the prompts, 
type in a command, 
obtain a further list of commands, 
press ESC. 

-- 
HELP COMMANDS create look open close COMMANDS 
press F1 delete display back alter find press F3 
PROMPTS f rrst insert last next quit ESCAPE 
press F2 type command & press ENTER (F3 for more) press ESC 

)[) 

FigLire 2.1 The Main Display 

CHAPTER 2 
BASIC 
OPERATIONS 
2.1 LOADING ARCHIVE 

2.2 GENERAL 
APPEARANCE 

3 



Figure 2.2 The Control Area. 

'°) ROVISIONAL 

Figure 2.3 Help 

2.3 HELP The first option, displayed at the left of the control area, shows that you may ask for 
help by pressing the Help key This is function key one (F1) Regardless of any other 
changes in the control area display, the Help option will always be shown This indicates 
that the Help facility is always available, no matter what you are doing. 

Try pressing the Help key now. When you do, the current display will disappear, to be 
replaced by one giving a complete list of the commands. You may ask for further 
information about any one of these commands by typing in its name and pressing ENTER 
You do not need to type the whole of a name; you only need to type in the first few 
letters - enough to distinguish it from any of the other names in the list 

When, after typing in one of these names, you press ENTER you will find that further, 
more detailed, information is shown about the command you have selected, and another 
list of sub-topics will be shown. You may then select one of these sub-topics by typing 
in the first few letters of its name, as described before. You may continue this process 
until no further information is available. 

At any stage you may return to the previous screen by simply pressing ENTER. Repeatedly 
pressing ENTER will eventually take you back to the main display, with the control, display 
and work areas. At this point you will have left the Help facility and will have been returned 
to the exact state before you pressed the Help key. A faster way to return from Help 
is to press ESC. This will return you from any point with Help, back to the state from 
which it was first called. 

Try using the Help facility to examine some of the pathways through the information. 
Don't worry if you do not understand some of the information that is shown - it will 
make sense when you actually need to use it All you need to do at the moment is to 
become familiar with the way in which the Help facility is used. When you have finished, 
press ESC to return to the main display 

It must be emphasized that Help is always available, at any time. Whenever you are 
not sure what you should be doing, Just press the Help key even if you are, for example, 
in the middle of typing in numbers or text as part of a command. You will not always 
start at the same point in Help, but will be presented with the information most relevant 
to what you were doing when you pressed the Help key When you have found the 
information you need and leave Help (by use of the ESC or ENTER keys) you will always 
be returned to the exact point from which you started, as though there had been no 
interruption Use the Help key as often as you like - it is there to assist you and will 
usually be the quickest and simplest way of solving your problems. 

2.4 THE PROMPTS In addition to showing your options.the control area highlights your choice and, when 
necessary, suggests what you should do. These aids to using ARCHIVE are known as 
prompt messages or Just prompts. 

You can switch off the display of the control area and the prompts it contains by pressing 
function key 2 (F2) 

4 



PROVISIUNAL 
Try pressing function key 2 (F2) The display will be redrawn without the control area, 
leaving more room for your work. ARCHIVE works in exactly the same way, whether 
the prompts in the control area are displayed or not - you are free to choose either option 
You will probably find it most useful to work on your programs and files with the prompts 
in the control area visible, and then turn them off to give you more room for looking 
at the finished result The example of Chapter 11 shows an application which does not 
display the prompts. 

You can restore the control area display at any time by pressing F2 again. 

L I 
-~__J 

F,gure 2 .4 Prompts f'1gure 2 5 The Corm nands 

Another option available from the main display is to use a command A list of commands 
appears at the centre of the control area. You can use any of these commands by typing 
its name and pressing ENTER. If the command needs some further text (such as a name) 
you will be asked to type it in 

There are many commands available and they are described in the rest of this manual. 
There are too many for them all to be displayed in the control area at the same time, 
so only the most commonly-needed ones are shown 

You can display a further set by pressing function key 3 (F3) Each time you press F3 
the contents of the control area change to show a further set of commands. This will 
continue until all the commands have been displayed - then the next press of F3 will 
display the original list 

You can use any of the commands, even if its name does not appear in the current 
display in the control area 

r= 
r I~ 

--,, 
--~I 

\ LJ 

Figure 2.6 Further Commands Figure 2. 7 Escape. 

2. 5 USING THE 
COMMANDS 

2.6 FURTHER 
COMMANDS 

The ESC key is used to cancel an action, or to go back to the main display. We have 2.7 ESCAPE 
already seen how it is used in this way to leave Help. 



2.8 THE DISPLAY AND 
WORK AREAS 

2.9 THE MODE 
COMMAND 

6 

PROVl!ilONAL 
The display area is, as its name suggests, where all information produced by ARCHIVE 
is displayed 

The work area uses the bottom five lines of the screen. All commands that you type 
in, together with any error messages, are shown in this region. 

These two areas almost invariably work together, since commands typed into the work 
area produce their results in the display area. As an example, type in the following 
sequence of commands, exactly as they are shown below. 

let x = 13:while x 0:print x:let x = x-1:endwhile ENTER 

The text of this sequence of commands will appear in the first line of the work area. 
When you press ENTER, the numbers from thirteen down to one will be printed on 
successive lines of the display area. The bottom line of the displav area will be left blank 
since the print command moves to a new line of the display after printing each number 
The numbers from one to thirteen are displayed which, together with the bottom blank 
line, occupy all fourteen lines of the display area. 

Finally, type in the command. 

els ENTER 

which will clear the display area completely. 

lEJ-~ I .. 
I 

) LJ 

Figure 2 8 The Display Area. Figure 2.9 The Work Area 

You have the option of combining the control, display and work areas into a single area 
by means of the mode command. Mode also changes the number of characters displayed 
across the screen You can choose between 80, 64 or 40 characters per line of the 
display. When you load ARCHIVE it displays 80 characters across the screen. This is 
suitable if you are using a monitor, but the letters may not be clear enough to read on 
a domestic television. Try the mode command by typing: 

mode 1,4 ENTER 

This changes the display to use 40 characters. The main display, in 40 character mode, 
is shown in Figure 2 10 

As you can see, mode needs two numbers, separated by a comma. The first number 
can be O or 1. A value of O combines the control, display and work areas into a single 
area. Try: 

mode 0,8 ENTER 

If you then type in the previous example again you will see that your input from the 
keyboard and the output numbers all share the whole of the screen. A value of 1 separates 
them into three distinct areas. Try 

mode 1,8 ENTER 

which will restore the display to be as it was when you loaded ARCHIVE. 



fff UVt~IUNAL 
The second number can be 4, 6 or 8 and selects 40, 64 or 80 characters across the 
display Try some different combinations to see the effect on the display. Finish with 
a command that leaves the screen divided into its three areas, but choose the number 
of characters that gives a clear display on your television or monitor 

I- COMMANDS create look open close 
delete display back alter find 

I f1 rst insert last next quit I 
I 

type command & press ENTER (F3 for more) 

I[ HELP F1 II PROMPT F2 II COMMANDS F3 IL ESCAPE ESC 

>O 

L . - -··· -------------- 

hgurt, 2 10 1 tw Mair1 Displav m 40 Character Mode 

7 





PROVISIONAL 
CHAPTER 3 
A CARD 
INDEX 
3. 1 FILES RECORDS 
AND FIELDS 

An ARCHIVE file behaves rather like a card index. A real card index consists of a box 3.1. 1 Introduction 
containing a set of record cards. Each card has various items of information written on 
it. For such a card index to be useful, there have to be rules to determine where each 
piece of information is written on the card. Suppose, for example, that we have a name 
and address index. You would normally write the person's name across the top of the 
card, followed by the address and telephone number (if any) It would be very difficult 
to use if some cards had the name written at the top and others had it written near 
the bottom. You would normally expect to be able to use the index by flipping through 
the cards, reading only the top line, until you found the name you were looking for. 

If you had two sets of record cards, such as a name and address records and a set 
of stock records, you would not normally store them both in the same box. You would 
use two boxes and label them, for example, "Customer Records" and "Stock Records". 

The card index system contains most of the ideas necessary for understanding the working 
of an ARCHIVE file. A file is like the card index box and is given a name to identify it. 
The file is made up of a collection of records, each of which serves the same purpose 
as a record card A file, then, is simply a collection of related records. 

The records within a file all contain the same type of information but each record is different 
from its neighbours. In a customer record file, for example, each record would contain 
the name, address and telephone number of a particular customer, together with details 
of his previous dealings with your company, whether he is entitled to any discount, his 
credit limit, and so on. 

As in a card index the information in each record is organised in a regular way. Some 
of this information might be placed on a record card as shown in Figure xxx, where 
specified areas of the card are reserved for each of the pieces of information. A record 
in an ARCHIVE file is organised in the same way. Each item is stored in a separate region 
of the record, known as a field. A record in a customer file, such as that described above, 
would contain a name field, an address field, a discou, ,t field and so on 

It this were the whole story there would be little point in using an ARCHIVE file in 
preference to a physical card index. There are, however, many advantages when you 
use computerised records. A customer record card index would normally be arranged 
in alphabetical order of customer names which makes it very efficient for finding the 
information about a particular customer. Suppose, however, you want to send a circular 
letter to all your customers who have not placed an order with you during the last six 
months. It would a very tedious task to go through the entire contents of a card index 
to compile such a list In ARCHIVE you can make such a search by using a few simple 
commands. 

Furthermore, it is easy to arrange for a set of address labels to be printed at the same 
time. This simple example shows that you can save a great deal of time and effort by 
using ARCHIVE to store and manipulate your records. 

ARCHIVE is provided with a simple card index. You can use it hy typing: 

run "cardindex" ENTER 

You are asked if you want to make any alterations to the file or if you just want to examine 
its contents. You should reply by pressing either the C key (if you want to make changes) 
or the E key (if you just want to examine the records) ARCHIVE then opens a file called 
"index" which contains the address file records. 

It then shows you the first record in the file, together with a short list of additional 
commands which are described in the next section You can also use any of the standard 
commands that are described in Chapters 4 and 5. 

BYE ~ closes the file and saves any modifications you may have made. It then clears 
the computer's memory and returns you to ARCHIVE, as though you had just loaded it 

3. 1.2 Files 

3. 1.3 Records 

3. 1 .4 Fields 

3. 1.5 ARCHIVE Files 

3.2 THE CARD INDEX 
APPLICATION 

3.2.1 The Additional 
Commands 

a 



10 

PROVl:SIONAL 
HELP - clears the display of your file records and displays information on how to use 
the card index It works like the Help that you get when you press F1. You can get 
further information about any of the topics listed at the bottom of the help screen by 
pressing the key corresponding to its first letter. Press ENTER to go back to the previous 
screen, or ESC to go back to the display of your records. 

SCAN - scans through the whole file, pausing at each record for you to look at its contents. 
If you press any key, except ESC, while the scan is in progress the scan will pause at 
the current record until you press tho space bar. You can abort the listinq at any time 
by pressing ESC 



PROVISIONAL 

In Chapter 3 we used the card index application that is provided with ARCHIVE. It has 
a specially-designed screen display, together with a small set of commands tailored to 
that particular application. In this chapter we shall start to look at the more general 
commands available in the database language itself. Later chapters will explain how you 
can use these commands to produce a complete application of your own. We shall use 
the card index file as an example, since by now you should be familiar with its contents. 
You should try out the commands on the card index to gain familiarity with how they work. 

The card index is designed so that you can use most of ARCHIVE's file commands 
described in this, and the following, chapter on the file that is opened when you run 
"cardindex", as described in Chapter 3. (The major exceptions are look and open, since 
the file is opened automatically.) 

The examples in this chapter assume that you are working with the "index" file provided 
with the card index application 

Before you can use a database file you have to open it. Opening a file makes its contents 
available to you, but you must first decide if you only want to do read the file contents 
or want to be able to change the file contents as well as read them. There are two 
commands which '/OU can use to open a file; look and open. 

The look command opens a file in such a way that you may only read its contents - 
any attempt to write new data to the file will not be permitted. The open command 
allows you both to read and to write new information to the file. In both cases the file 
is opened by making a copy of its contents from the Microdrive cartridge into the 
computer's memory When you close a file opened with the open command the old 
version of the file on the Microdrive cartridge is replaced by the copy that is currently 
in the computer's memory. When you close a file that was opened by the look command 
the version in memory is discarded and no changes are made to the version on the 
Microdrive cartridge 

Let us first use the look command to examine the contents of the card index file. First 
you should type in the following command 

look"index" ENTER 

ARCHIVE is working in interpreter mode, rather like when you type in a SuperBASIC 
command without starting with a line number. The command that you have typed is 
in the work area at the bottom of the screen and is immediately interpreted and obeyed. 
Nothing much appears to happen, except that the Microdrive switches on for a few 
seconds and the cursor moves to the next line of the work area with a second prompt 
sign The contents of the card index file, however, have now been copied into memory 
and are available for reading. 

The rest of the examples in this chapter assume that you have opened the "index" file 
in the way just described. If you use the run "cardindex" method of Chapter 3 there 
will be only one difference. The display of the records will use the special screen layout 
until you first use the display command which is described in the next section 

To make part of the file visible you should now type: 

display ENTER 

when the entire contents of the first record of the file will be written into the display 
area (don't forget to press ENTER) The form of the display is quite different from that 
used in the card index application, described in Chapter 4. It is simply a list of the contents 
of each field of the record, one per line, and each is preceded by the name of the field. 

Each full field variable name is composed of two parts. The first part, which in this case 
is the word "main", is shown on the first line. It is known as the logical file name and 
it identifies which file is being used. Its main purpose is to allow you to use more than 
one open file at at time and to be able to refer to one file or another. As we shall see 
later, you can choose this name yourself. If you do not make your own choice for a 
name (as in this case) ARCHIVE will use the name "main". 

CHAPTER 4 
EXAMINING 
A FILE 
4.1 INTRODUCTION 

4.2 OPENING A FILE 

4.3 DISPLAYING A 
RECORD 



l'HUVl~IUNAL 
The second part of the variable name tor each field is the field name itself If the field 
contains text the name must end with a dollar sign, if there is no dollar sign at thEi end 
of the name the field is used to hold a numeric value. 

If you loaded the card index file with the run command you will have started with the 
first file record displayed in its own special layout. As soon as you use the display 
command this layout changes to the one Just described 

The display command always uses this layout, regardless of any special screen layout 
that you have designed (see Chapter 7) Your own design is replaced by the one used 
by display. If, after using display, you want to use your own design again you will have 
to load it again from the Microdrive cartridge You do this with the sload command, 
as described in Section 7.4. 

The reason for this behaviour is that it allows you to display your file records in a simple 
way, without first having to design a display screen 

4.4 EXAMINING OTHER 
RECORDS Having looked at the first record of the card index, you may want to move on to the 

following record. You do this very simply by using the next command, which is again 
interpreted and obeyed immediately. It shows you the next record in the file Note that 
there is no need to use the display command again. In intepretive mode the display 
area is continuously updated to show the contents of the current record You can use 
the next command to step through the file, record by record until you reach the end 
of the file (it will not pass the last record) 

There are three other related commands which you can use to control which record 
of the file is displayed These are 

back - which displays the previous record, 
first - which displays the first record, 
last - which shows the last record of the file 

Try using these commands to move around the tile, displaying any record you like. 

4.5 CLOSING A FILE When you have finished examining the records of the file you should close it by using 
the close command. Alternatively you may use the quit command which will close all 
open files before returning to SuperBASIC 

If you have made any modifications to the file (as described in the following chapter) 
this will make sure that the changes are recorded on the Microdrive cartridge Since we 
have not made any changes, all that will happen is that the copy of the file in memory 
will be discarded, leaving the memory free for further use. 

During the time a file is open, ARCHIVE may create another, temporary, file for its own 
use. When you close your file ARCHIVE will make sure that any such temporary file 
is erased. If you do not close your file properly (for example, if you just turn off the 
computer when you have finished) any temporary file will be left on your Microdrive 
cartridge. These files are all named PSITEMPx, where x may be a number from O to 
9. If you see such a file on one of your Microdrive cartridges it is a sure sig1, that you 
did not close a file at some time. You can safely delete any such file whenever you see it. 

4.6 SEARCHING A FILE 
4.6.1 Introduction The commands described in Section 4.1 will allow you to examine any record within 

a file and search through the file record by record to find the information you want. 

This technique is quite suitable for searching through a file with only a small number 
of records but would be very inefficient on a large file. The commands described in this 
section will allow you to make such searches automatically, selecting any one or more 
records that you require. 

4.6.2 Find The first and simplest of these commands is find. This will search through the records 
of a file looking for the first occurrence of a specified piece of text in any of the text fields 

If you do not have the "index" file open, use the look command to open it, and use 
display to show the first record. Now type: 

find"smith" ENTER 

12 



PROVISIONAL 
When you press ENTER there will be a slight pause and then the first record containing 
the word "smith" in any of its text fields will be displayed Note that this search is 
independent of whether the text is in upper or lower case and will therefore find "Smith", 
"SMITH" or "smith". 
If the first record that is found containing this text is not the one that you want, you 
can find the next occurrence by typing 

continue ENTER 

The continue command will repeat the previous search, looking for the next occurrence 4.6.3 Continue 
of the text in any text field of the following records. If, at any stage, no match is found 
in the remaining records of the file the display will keep the last record shown. 

A second method of locating a particular record is to use the search command Search 4.6.4 Search 
must be followed by a condition which results in a numeric value. The records of the 
file are scanned for the first one in which this number is non-zero. For example: 

search name$=" Jones" and city$= "London" ENTER 

will find the first record in the file which matches both conditions Unlike the find 
command, you can specify particular fields within the records and only these fields will 
be searched for the match. Again you can use the continue command to find the next 
occurrence, if the first is not the one which you want. 

In many cases, you may want to look a sub group of the records within a lile. Suppose, 4.6.5 Select 
for example, you only want to look at the details of people who live in London. You 
can use the select command to pick out from the file all those records which satisfy 
a certain condition and could, in the present case, use the command 

select city$= "London". ENTER 

This will pick out only those records which match the condition, and the file will then 
behave as though only those selected records are present 

Try this command on the card index file to see how it works. First type: 

print count() ENTER 

which will tell you how many records there are in the file. Then type: 

select city$= "London" ENTER 
print countt) ENTER 

and you will see how many records are left in the file The records removed from the 
file are still held in the computer's memory You can restore them to the file at any time 
by using the reset command Type 

reset 

and print the value of count() again, to check that the file has been restored to its original 
state. 
The records of the file may not always be in the correct order for your purpose and 
you will then want to be able to sort them into the order which you want. Suppose 
you want to sort the records of vour card index file alphabetically by city You can do 
this by using the order command as follows: 

order city$;a ENTER 

This specifies that you want to sort the file in ascending order of the contents of the 4. 7 SORTING A FILE 
city$ field, which becomes the sort key for the file. You can specify more than one sort 
key by giving a list of keys after the order command. For each of the keys you must 
specify whether the sort is to be in ascending or descending order. The following 
command, for example, will sort the file into ascending (alphabetic) order by surname 
and descending order (reverse alphabetic) by city. 

order surname$;a,city$;d ENTER 

Note that a semicolon separates each field name from the "a" or "d" that specifies 
ascending or descending order, but that each pair (of field name and letter) is separated 
from the next by a comma. 

When more than one field rs specified for sorting purposes, the first rs known as the 
primary sort key and the following ones are secondary sort keys. The records are initially 
sorted on their primary sort keys but all records with equal primary sort keys are then 



PROVISUINAl 
ordered according to the next key in the list. If records exist which are equal in respect 
of both of these two keys they are ordered according to the contents of the third key 
field, and so on. 

4.8 LOCATE When a file has been sorted, you can use the locate command to make any particular 
record the current record in the file. Locate is followed by an expression, and its action 
is to find the first record whose primary sort key matches the given expression. This 
record becomes the current record in the file For example, if the card index file has 
been sorted as described in the last example, the command 

locate "Smith" ENTER 

sets on the first record in the sorted file which has the word "Smith" as surname. 

You can locate a record on the contents of more than one sort key by using locate with 
multiple expressions, separated by commas. For example, 

locate "Smith", "London" ENTER 

will find the first record for someone named Smith, living in London. 

The only restriction on the number of expressions that you can use with locate is the 
number of fields on which the file has been sorted 

4.9 LOGICAL FILE 
NAMES As was mentioned in Section 4.3, ARCHIVE will automaticially supply a logical file name 

of "main" when you open a file. If you want to use your own logical file name you must 
specify it at the time that you open a file. 

Suppose, for example, that you want to examine the card index file in the way described 
in Section 4.4, but would like to use the logical file name "card" instead of "main". You 
can do this by using the look command in the following way 

look "index" as "card" ENTER 

This opens the file for reading only, as described earlier, but with a logical file 
name "card" instead of the default name "main". You can display a record from 
a particular file by giving its logical file name after the display command: 

display "card" ENTER 
when you will see the same display of the first record of the file, except that the 
logical file name starting each of the field variable names will be the word "carer. 
You can add the logical file name to all the commands that were described in 
the previous section in the same way. For example the command: 

next "card" ENTER 

will display the following record of the file whose logical file name is "card". This 
will mainly be of use when you are using more than one file. When you only 
have a single file it is not necessary to give the logical file name, even if you have 
specified one. All these commands will act on the current file, regardless of its 
logical file name if they are used without the optional logical file name. If you 
only have one file open it must always be the current file. The idea of a current 
file and the use of more than one file are described in Chapter 11 . 

14 



PROVISIONAL 

It you open a filo with the open command, instead of the look command (which was 
described in Chapter 4) you will be able to write to the file as well as reading from it 
This means that anv additions, deletions or modifications will make a permanent change 
to the copv on tho Microdr1ve cartidge when vou close the file As with look, you have 
the opuon of specitvinq your own logical file name. as shown in the following examples 

open "index" ENTER 

open "index" as "card" ENTER 

You must not usu the commands described 111 this chapter witi1 a file opened with look 
II you attempt to do so you are given an error message to indicate that you are attempting 
to modify the file. 

All the commands allow you the option to specrty d lug1cal Ide 11ar ,1e As before. the 
m,i1n uso of this option is when vou have more than one filu OfJOr 1 .it tho same time. 

The easiest wav to add ono or more records to an oper I file rs hv 11s1ng ti 1e insert 
command When you use this command you will bu asked to tvpo 111 the contents of 
oacl I field of the new record, one by one 

When you have typed in the conents of a field you should press TABULATE (not ENTER I 
11i move on to the next f1nld. You can press TABULATE to1 SHIFT and TABULATE 
1oq,:rt,ur. to move back to tho previous field) at any t1111e ano vou can make as many 
chanqes as you like to the contents of the fields. 

II. alter you have tvpod in the contents of the last field of tho record, you press TABULATE 
c1r Jd'f1 ARCH 1v1: will move back to tho first field of the rucrnd Yo11 can then, 1f necessary. 
1, 1;,k,: Ii 11 \11(:1· 1 .hanqes 10 the contents of any field 

Wil1:11 the: whulc: 11,cr)r cl 1;; completed to your- satisfaction you can press ENTER to insert 
tlir; r rr •vv 111cu1 rl 111 vour file You will unmediatelv be asked to type in the contents of 
tl u- \11st IHild ol another new record You Cc:111 add AS manv new records as you want. 
\\irll:11 vou t1c1v1, no r non. records to insert you can leave tho command by pressinq ESC. 

/1 :.1;1 'rH1cl r 111 :1t1,xl ol adcJ1nq e l record to the filu rs with the append command This adds 
• 1 11v\tv r o..ord whose f1ulds c11 (: lillecl by the current contents of all the froid va: iables for 
1!11: r.,,;orcls 01 that frle 

f:3r;lcm, 11s111~J apper 1rl you should therefore give the uold variables the values you want 
thr,r r1 to h.ivu. bv using the let command. eg 

let fname$ = "John" ENTER 
let surname$ c: "Smith" ENTER 
etc. 

It VOLi then ty1J1; 

append ENTER 

the rt(NV record will be added to the file. 

As with insert, the pcsition in the file where the new record is inserted will depend on 
whether the file has previously been sorted or not. 

CHAPTER 5 
MODIFYING A 
FILE 
5.1 OPENING A FILE 

5.2 INSERT 

II vou vvam to remove a record from the file you can do so by using the delete command. 5.3 DELETE 
Delete removes the current record (the one shown bv the display command) from the 
tile. All you have to do to remove a particular record is to display it, and, having rnacle 
certam that it is the correct one, type: 

delete ENTER 

15 



5.4 CHANGING A 
RECORD 

16 

PROVl!)IONAL 
It is also simple to modify the contents of any or all of the fields within an E.lx1st1r1g record 
1-:::irst you make the record which you wish to change to be the current record (by displaying 
it) You then change the contents of the field variables until the displayed record is exactly 
as you want arid then type in the command 

update ENTER 

Suppose, for example, that you discover tha: John Sruuh spells his surname with a y 
You can modify his record by locating it by, say, 

find "Smith" ENTER 
display ENTER 

You can then use the let command to d1an(Ju l11e contents ol the sumc1111e$ tidd c111cJ 
put this change into the record by typing 

let surname$ = "Smyth" E~JTER 
update ENTER 

Hernernber tnat vou must close tl1u tilu vv1tl1 tl1t, close "1 tl1,; quit t:,,111111a11d, buf\)IV 
switching of! the con 1p11l81, :;o tl1t-1t vour ,:h2111<JU:, ,1ru stored 011 the M1crucl11ve ca: tr 1ciqu 



PHUVISIUNAL 

Suppose you want to use ARCHIVE to make a catalogue of your books. To do this, 
you will have to create a new file called, for example, "books". The first thing to do 
when creating a file is to decide what information it is going to contain; that is, what 
fields you will use in each record. In this case you will obviously need to record the author, 
tile and subject; you may also like to include other details, such as the type (fiction or 
non fiction), ISBN (International Standard Book Number) shelf location, a brief description 
and so on. In this example we shall simply use three text fields to contain the author, 
title and subject and one numeric field which will be used to hold the ISBN. 

You create a file by using the create command. You must specify the name of the file 
to be created and the names of the fields to be used in each record (the names of fields 
which are to hold text strings must end with a dollar sign). When you have finished defining 
the fields of a record you end the create command with endcreate. You can create 
a simple book catalogue file as described above by typing in the following sequence. 
(From now on we shall not always show the ENTER that you must use at the end of 
every line of input.) 

create "books" 
author$ 
title$ 
subject$ 
isbn 
end create 

Note that you do not have to type in the final endcreate command. You can do so if you 
want, but you can end the creation in the file simply by pressing ENTER on a blank input 
line (You must, of course, include endcreate if you use create to create a file from 
within an ARCHIVE program.) 

One of the great advantages of ARCHIVE is that you do not have to decide in advance 
how much memory is to be reserved for each field within a record. If you had to decide 
the length of each field at the time the file was created you would have to allow for 
the longest possible record that you would expect to appear. This would mean that a 
record containing less than this maximum amount of information would have a lot of 
wasted space, reducing the number of records that you could keep. ARCHIVE allows 
each field within a record to be of variable length; the space used for each field is 
automaticaly adjusted to match the amount of information stored in it. This relieves you 
of the responsibility of having to decide in advance how much space should be reserved 
for each field and also ensures that the computer's memory is used to maximum 
efficiency 

At some stage in the future you may find that a file which you have created contains 
a field which you do not use or, more likely, that you need an additional field which 
you forgot to specify when you created the file. In this case you will have to create a 
new file containing the new set of fields and copy the contents of the old file into the 
new one. You will therefore need to have two files open at the same time and the method 
for doing this is described in Chapter II. As with open and look you can, when using 
the create command, specify a logical file name to identify one of a number of open files. 

Athough it is quite straightforward to change the fields used in a file, it is worth taking 
a little care in deciding what fields to use before you create the file. 

CHAPTER 6 
CREATING A 
FILE 
6. 1 INTRODUCTION 

6.2 CREATE 

When you have created a file as described above it is in the computer's memory, as 6.3 ADDING RECORDS 
a file which is open for both reading and writing, but as yet it contains no records. You 
can add records to the file by the methods described .in Chapter 6, that is by using the 
append or insert commands. The easiest way is to use insert as in the following example, 
which uses the book catalogue file that we have just created. 
The display area will now appear as shown in Figure 6.1, with the names. of the fields insert 
listed out 

17 



6.4 LOGICAL FILE 
NAMES 

18. 

PROVISIONAL 
logical name : main 
author$ 
title$ 
subject$ 
isbn 

Figure 6.1 The Diplay for insert 

All you have to do is to type in the contents of each field, ending each one by pressing 
TABULATE (not ENTER) After typing: 

Bloggs, J TABULATE 
A Boring Manual TABULA TE 
Cannon Making TABULA TE 
1234567 TABULATE 

the display area should appear as in Figure 6.2. 

logical name : main 
author$ : Bloggs, J 
title$ : A Boring Manual 
subject$ : Cannon Making 
ibsn : 1234567 

Figure 6. 2 Inserting a record. 

You can then insert the record into the "books" file by pressing ENTER. The display 
area will then return to the appearance of Figure 6.1, ready for inserting another record. 
When you have finished inserting records into the file you should press ESC to leave insert. 

You must remember, before you switch off the computer, to make sure that the file 
contents are saved on the Microdrive cartridge by using the close or quit commands. 

Suppose we want to create a file called "book2" and use a logical file name "second". 
You can do this by writing the first line of the Create command as: 

create "book2" as "second" 

The rest of the command follows exactly as before. If you do not specify the loqical 
file name, ARCHIVE uses the logical file name "main", as you will have seen from the 
earlier example. 



PROVISIONAL 
CHAPTER 7 
CREATING A 
SCREEN 
FORMAT 

When you use the display command on a file that you have created yourself, for example 7 .1 INTRODUCTION 
the book catalogue of Chapter 7, the records are shown in a simple form The logical 
file name is shown at the top of the screen, followed by a list of all the field names 
in a record of the current file The current value of each variable is displayed to the right 
ot its field name. 

You will have seen that the example application provided with ARCHIVE does not use 
this simple form of display but has a specially designed layout for the information within 
a record 

It rs very simple to produce a screen layout of your ovvn ,mcJ yrn I may like to try producing 
one for the book catalogue described m Chapter 6, using the or u. provided as a model 

When you create a screen layout, anything that appr.::dl s in the display area will be part 
of the screen It is probably therefore a good idea to start by clearing the display area 
entirely with the els command You should then select screen editing with the sedit 
command - you should ,vpe in 

sedit ENTER 

ARCHIVE puts you m the main level of the sedit command. At this level you can type 
text anywhere m the display area; you can move the: cursor around the display area by 
means of the four cursor keys. 

You can divide the display area into various sections, by drawing horizontal and verucal 
lines (using, for example, the minus sign and the exclamation mark resµectivelyl You 
can then add the appropriate labels, such as Author, Title and so on If you do not like 
anything that you have drawn on the screen, you can erase it by typing over it with 
spaces If more drastic surgery rs required you can press F5 to l8ave sedit, clear the 
screen with the els command and start again 

Wf1ile m the main level if sedit the control area shows that you have two further options, 
selected by pressing either F3 or F4. Pressing F3 allows you to select a colour for both 
the ink andthe paper The change m colour takes effect from the current position of the 
cursor to the end of that line 

When you press F3 you am first asked to choose an ink colour from the palette of black, 
red, green and white The names of the colours appear 111 the central region of the control 
area You select a colour by repeatedly pressing any key (except ESC or ENTER) until 
the colour you want is highlighted You should then press ENTER to record your choice 
ARCHIVE initially suggests white ink 

Once you have selected an ink colour you will be offered a Similar selection to be used 
for the paper. You should select the colour in the same manner as for ink. In this case 
ARCHIVE makes an initial suggestion of black paper. You can, if you wish, choose the 
same colour for both paper and ink but it does make the following text rather difficult 
to readl 

After you have made a choice of paper and ink colour, you are returned to the main 
level of sedit. 

If you want the colour changed to affect only part of a line of the screen, you should 
move the cursor to the start of the reqion and select the paper and ink colours that you 
want. You should then move the cursor to the end of the region and make a second 
selection of paper and ink colours, returning them to their original values. 

H1u final option, selected by pressing F4, is to allow you reserve space in the screen 
tor the display of the value of a variable When you press F4 you will be asked to type 
in the name ot a variable Normally this will be the name of a field in one of your files, 
but could be the name of any variable that you use. Press ENTER to mark the end of 

7.2 DEFINING A 
SCREEN 

1Q 



7.3 ACTIVATING A 
SCREEN FORMAT 

PROVISIONAL 
the name. This will indicate to ARCHIVE that you want to display the value of that variable, 
starting at the position of the cursor m the display area 

You must then reserve the space for the value. Press any key (except ESC or ENTE:RI 
once for each character space that you want to reserve The reserved space will show 
on the screen as a row of dots. 

When you have reserved sufficient space you should press ENTER again and ARCHIVE 
will go back to the main level of sedit 

If you try to reserve space 111 a r8\J10fl which overlaps any Jrea alreadv rl;Se1 ved for the 
display of some other variable, vou die y1vc1r1 the option of car 1celling the new Jrea or 
of allowing rt to replace the old one 

When you have completed tho d1spldy screen des1qr1 to yrn n saust action you should 
press F5 aqain to leave Hw sedit corm nand 

As an example, suppose you want to label ari dll,J of the sc1dun w1tli tho wo.d "Name". 
and reserve a 15 character space followrng the label to display the value of the variable 
fname$ You should move the cursor tu the placo where vou want the label to start 
and type 1t into the screen exsctlv as you want rt to appea: Next you should press F4 
and type in the name leg fname$1 of the variable you want to 1k,play, ending it by pressinq 
ENTER Finally you should press anv key leg mo space bar I 18 1iin0s c1nd press ENTER 
aqain That region of tho screen will appea: ctS. 

Name: . 

Once you have designed a screen format and have lei I st;clrt ll u, screen format will be 
loft in the active state This moans that the values of all the vanables rn the screen will 
be displayed automatically every time that you ARCHIVE returns to the keyboard interpreter 
after carrying out a command (or a program) You can also force the display of the vanios 
of the variables in an active screen from within a procedure with the sprint command 
If there is no active screen you will find that sprint has no effect 

If a screen format is in the computer's rnemorv but is not active, you can activate 1t 
with the screen command This also displays the text of the screen format, but does 
not show the current values of the variables. A screen which you have previously designed 
and saved on a Microdr1vr, cartridge is also lelt m an active state when you load it into 
the computer's memory with the sload command, described in the next section 

Any active screen is ch)ar::trv;itcd each time you use the els command 

7 .4 SAVING AND 
LOADING SCREENS You can save your semen design on a Microdrwe cartridge by using the command 

ssave "filename" 

7.5 THE DISPLAY 
COMMAND 

where "filename" is the narno of your choice The drsplay screen will bo saved exactly 
d S It appears 

You can reload the display screen at any future time by typing in the command 

sload "filename" 

vvhen you load a screen format it is autornaticallv displayed on tho screen and is made 
active. 

Once you have an active screen format for your display screen you can use all the display 
words (first, last and so on) described in Chapter 5 The current values of any variables 
in the screen format are displayed on return to tho keyboard interpreter, exactly as when 
you use the display command 

Remember that the display command itself always uses its own format and will always 
replace any screen format of your own that is m the computer's memory with its own 
list of the fields of the current record of the current file You •must therefore ssave your 
screen format before you next use display If you do not your screen format will be 
replaced by that used by display and you will not be able to get it back again without 
redesigning it with sedit 



PROVISIG: 

The commands and functions of ARCHIVE together form a programming language which 
you can use to write programs to manipulate your files. You will find that ARCHIVE 
programs are simple to write, although the approach is different from writing programs 
in SuperBASIC If you have written programs in BASIC before you will see one immediate 
difference - ARCHIVE programs do not need line numbers. Many of the commands are, 
however, very like those used in SuperBASIC so you do not have too many new 
commands to learn about 

An ARCHIVE program is made up of one or more separate sections. Each section is 
known as a procedure. A procedure is simply a named section of program. You can 
then refer to the procedure by its name, as with the procedures which you can write 
and use in SuperBASIC In ARCHIVE you can run a procedure by typing its name at 
the keyboard (and pressing ENTER) It behaves in the same way as a command - when 
you write a procedure you are effectively adding a new command to ARCHIVE. 

Procedures may be as simple or as complex as you want to make them. It is, however, 
good practice to use lots of short procedures rather than one long one. You will find 
that you will make fewer programming mistakes. It will also be much easier to find any 
mistakes that do slip through. 

You must use the program editor whenever you want to write or change a procedure. 
This editor provides you with many powerful tools for adding, deleting or changing the 
text of procedures It is described in detail in Chapter 9, but in this chapter we shall 
look briefly at some of the main features so that we can write a few short procedures. 
We shall assume that initially there are no procedures in the computer's memory 

Type 

edit ENTER 

to enter the program editor. You will see that the control area changes to show that 
you should type in the name for a new procedure. You have been placed directly m 
the option to create a new procedure. Entering the editor will always lead you to this 
option if you have not yet defined or loaded any procedures · 

The first thing to do, therefore, is to define the new procedure. Let us start with a very 
simple task; to make life easier by renaming the display command. (This, as you will 
remember from Chapter 4, shows the contents of the current record in the display area ) 
The idea is to give it a single letter name and so reduce the amount of typing necessary 
when using it We shall give it the name 'd'. 

You should just type in the letter 'd', followed by ENTER. The sequence of key presses 
so far, therefore, is: 

edit ENTER 
d ENTER 

Once you have named the new procedure you will be shown the full range of editing 
options. Their actions are described in the next chapter. The left hand side of the display 
area will contain the name of the procedure. The right hand side of the display area 
will show a listing of the procedure. After the steps described above it should show: 

d proc d 
endproc 

You did not need to type in the 'proc' or 'endproc which mark the beginning and the 
end of a procedure. ARCHIVE always inserts them automatically when you create a 
procedure. This is a complete and usable procedure but, since it contains no commands, 
it will do precisely nothing I 

Once you have created a new procedure as described in the previous section you have 
to add the body - that is the sequence of actions that it is to perform. In terms of the 
current example this means that you must now insert the name of the display command 
into the procedure. 

···CHAPTER 8 
PROCEDURES 
8. 1 INTRODUCTION 

8.2 CREATING A 
PROCEDURE 

8.3 WRITING A 
PROCEDURE 

21 



8.4 LISTING AND 
PRINTING 

8.5 SAVING AND 
LOADING PROCEDURES 

22 

PROV.IS 10 NA l 
After you have given a name to the new procedure the contents of the control area 
changes again to show the full range of options available in the edit command As you 
can see, one of these options is to insert lines of text into a procedure All you have 
to do is to press F4 and then type the text of a line, ending it by pressing ENTER Press 
F4 and then type: 

display ENTER 

ARCHIVE inserts tl1t: new line into the procedure. below the highlighted line If you have 
followed this example so far the display will contain. 

d proc d 
display 
endproc 

You could add more lines of text - each line (you mark the end of each line by pressing 
ENTER) would be inserted below the highlighted line 

In this case, however, the procedure rs complete so yuu can leave the edit command 
- by pressing ESC 

All you have to do to use the procedure is to type its name, tallowed by ENTER Ihrs 
new procedure will act in exactly the same way as the display command (remember 
that you must have opened a file before it can be used trying to use the new procedure 
without having first opened a file will produce an error message just as you would get 
with the display command) '- 
Why not try to use this same method to give single-letter names lo all the other file display 
commands; first, last, next, and so on? 

The next time you use the edit command ARCHIVl:: will allow you to select from the 
full set of editing options ·· remember that you are only directed to the option to create 
a new procedure when them are no procedures m the computer's memory 

You may be puzzled to see that the option to create a new procedure is not one ot 
those shown in the control area. The reason is that it is one of a number of sub-comrnands 
within edit. You can select one of these sub-commands in the normal way you use, to 
select any command - press F3 and then the first letter of the name. To create a new 
procedure you will have, therefore, to press F3 and then the N key (for New procedure! 

From this point on the process follows the same method as described earlier. 

Vvhenever you call the edit command you will see that you are shown, at the left of 
the display area, a list of the names of all the defined procedures present in the computer's 
memory 

You can list any one of these procedures from within the edit command by pressing 
the TABULATE key (to move down the list) or the SHIFT and TABULATE keys together 
Ito move up the list) until the particular procedure name is highlighted. The procedure 
is automatically listed at the right hand side of the screen. If the procedure is too long 
to fit in the display area you will be shown the first part of it. You can then scroll up 
and down through the procedure with the aid of the up and down cursor keys. When 
you have finished looking at the procedure listing you can leave the edit command by 
pressing ESC 

If you want a printed listing of your procedures you can use the llist command. All you 
have to do is to type in 

llist ENTER 

and all the procedures currently in the computer's memory will be listed on the printer 

If you want to keep the procedures that you have defined for future use you can do 
so by using the save command This stores all defined procedures in a single named 
file on the Mic rod rive cartridge. If you want to save the new display procedures that 
you have just defined with a file name "view", you should type in 

save "view" 



PROVISIONAi.. 
At any later· time yuu can bring these procedures back into the computer's memory by 
typing 

load "view" 

Re11<H111ng cornmontv-usod commands with single-names is one of making life easier for 
vourselt An alternative would be to write a longer procedure to display the contents 
of the records in any of your data filos fry using the edit command to define the following 
procedure. Don't worry if you make a few mistakes while typing it in - you will learn 
how to correct them in the next chapter 

proc vufile 
els 
input "which file?:";file$ 
look file$ 
display 
let key$= "z" 
while key$ "q" 

sprint 
let key$= lower(getkey()) 
if key$= "I" :first:endif 
if key$= "I" :last:endif 
if key$= "n":next:endif 
if key$= "b":back:endif 
endwhile 

close 
endproc 

Remember that you leave edit by pressing ESC You can use the procedure by typing 

vufile ENTER 

It will first clear the display area and then prompt you to type in a file name. When you 
have entered the name of one of your data files the procedure will open that file m read 
only mode ,1nd display its first record. It will then wait for you to press a key and will 
respond to the: keys f, I, n, b or q. The first four of these will cause the appropriate display 
action (first, last, next or back! and pressing the q (quit) key will close the file and end 
the procedure. 

11 you find you have made any typing errors, so that the procedure does not work properly, 
you can correct them with the aid of the line and program editors described in the next 
chapter. 

Since this is the first program of any great length that we have written a few comments 
might prove helpful Firstly note how the example is indented to clarify the structure of 
the procedure. There is no need for you to type it like this, with all the indentations. 
They are added automatically as you write, list or print the procedure. 

The main part of the procedure (waiting for a key to be pressed and performing the 
appropriate action) is enclosed between while and endwhile. These commands cause 
the section of procedure that they enclose to be performed repeatedly, while the condition 
following while is true (not-zero). This repetitive loop will only be left when the condition 
is false (in this case, when you press the q key). For correct operation every while 
command must have a matching endwhile. 

The if command, used several times within this loop, also requires that each if has a 
matching endif to mark the end of the sequence of instructions to be executed if the 
condition is true If and endif are, like while and endwhile, separate commands and 
can be used on different lines. We could, for example, have written the first of the if 
statements in this procedure as; 

if key$= "f" 
first 

end if 

You may include several lines of statements between if and endif; they will all be executed, 
provided the condition following if is true. In the vufile procedure these statements are 
sufficiently short that each can be written on a single line, using the colon to separate 
the individual statements. 

8.6 EXAMINING 
FILE RECORDS 

23 



PRov,s,nN ,, t 
As you can see, an sprint command is used within the main loop of this procedure. 
The reason for its inclusion is that, although the display commands (first, last etc ) always 
move to the correct record, the data in the display area is not normally changed until 
control returns to the keyboard at the end of a procedure The sprint command forces 
the new data to be written into the display area immediately, regardless of whether a 
procedure is being executed or not If we had not included the sprint command no 
information would have been shown in the display area until you pressed the q key to 
leave a procedure In that case all you would see would be the result of the last of any 
sequence of key presses that you had made This only applies to the commands which 
affect the display of the whole of a record: anything that you put into the display area 
by using the print command, for example, will appear immediately 

There is more information about procedures, concerning the use of parameters and local 
variables, in Sections 10 3.5 and 11 3 

?4 



PROVISIQMAl 

This chapter describes the line and program editors and how to use them. We shall include 
a few simple examples, but the best way to learn is by using them yourself. 

When you have read this chapter you could try writing a few simple programs of your 
own, or you could try modifying the procedures you typed in while working on the last 
chapter. If you want to use longer examples you could use the editor to type in all or 
part of the the programs in the following chapters. 

A full lino editor is available at all times that you are typing characters at the keyboard 
With its aid you can modify any or all of tl10 editable text in the input line 

The editable text excludes, for example, the proc statement at the beginning of a 
procedure In general, any text that appears as the result of pressing a single key can 
not be edited You can edit any text that you have tvped in full, before vou press ENTER 
to pass the text to ARCHIVE. 

At all times each character that you type will be inserted to the left of the cursor position, 
and the cursor will move one space to the right Regardless of the position of the cursor, 

~ all the text in the input line is accepted as input when you press ENTER. 

The line editor uses the four cursor keys, together with the Cf Rl, and SHIFT keys 

Left and 
Right Cursor 
Keys 

The left and right cursor keys, used on their own, move the curse: by 
one character to the left or right in the input line. 

If you press SHIFT and, while holding it down, press the left or right 
cursor key the input line cursor moves left or right by units of a word, 
that is to the next space or comma 

If you press CTRL and, while holding it down, p1 ess the left cursor key 
you will delete the character to the left of the cursor. Pressing CTRL 
together with the right cursor key deletes the character under the cursor. 
The following text closes up to fill the gap 

Up and 
Down Cursor 
Keys 

If you press the up cursor key the cursor moves to the beginning of 
the editable text in the input line; the down cursor key moves the cursor 
to the end of the text 

Holding down the CTRL key and pressing the up cursor key will delete 
all editable text to the left of the cursor. Pressing CTRL and the down 
cursor key deletes all text to the right, including the character under 
the cursor. 

You can use the line editor on the text of a command you have just 
typed in, before you press ENTER This allows you to correct any typing 
mistakes you make, without having to type in the whole line again. 

Suppose you do not notice a mistake before you press ENTER. 
ARCHIVE will detect it when it tries to carry out your instructions and 
give you an error message. Even at this stage all is not lost You can 
press F5 which will put the last line of text you typed in back into the 
input line. You can then use the line editor to correct the mistake and 
press ENTER to try again. 

You can also use the line editor from within the program editor to change 
a line of one of your procedures. 

You enter the main level of the edit command from the main command level by typing: 

edit ENTER 

You can leave edit at any time by pressing ESC 

CHAPTER 9 
EDITING 
9.1 INTRODUCTION 

9.2 THE LINE EDITOR 

9.3 THE PROGRAM 
EDITOR 

25 



9.3.1 Select a 
Procedure 

9.3.2 Select a Line 

9.3.3 Editing 
Commands 

26 

PROV J.SlONA L 
When you enter the edit command the display area changes to show, on the left, a 
list of the names of any procedures that are in memory They are always listed in alphabetic 
order. The first procedure in the list is shown in full on the right hand side of the display 
area You are in the main level of the edit command. 

You will notice that the name of this first procedure is highlighted, as is the first line 
of its listing. At all stages during the use of the editor highlighting marks the current 
procedure and the current line within it This is the line that will be affected by any changes 
vou make. 

If there are no procedures in the computer's memory at the time you select the edit 
command, the display area will be blank and you are automatically given the opportunity 
to create a procedure (as described in the previous chapter) Otherwise the control area 
changes to show the list of the main options available to you These are to 

select a procedure 
select a line within a procedure 
select an editing command 
insert text into a procedure 
edit a line of a procedure 

We shall examine each of these in rnoro rletail 

You can select a different current procedure by pressing TABULA TE to move down 
the list of procedures, or by pressing SHIFT and TABULATE together to move up the 
list. Each time you change the current procedure the listing at the right will change so 
that it always shows the current procedure 

You can use the up and down cu. soi keys to select a difte1u11t current line within the 
current procedure. The current (selected) line rs marked by highlighting Insertions, for 
example, will be added irnmediatelv after the current line. 

There are four separate editing commands within the edit command itselt. They are 

Delete procedure 
New procedure 
Cut 
Paste 

When you are at the main level of edit you can selo: 1 one of them by pressing F3 and 
then typing the first letter of its name. At the end of the action of each of these commands 
ARCHIVE will go back to the main level of edit. 

Delete 
Procedure 

This command deletes the current procedure from your program You 
must first select the procedure you want to delete by using the SHIFT 
and TABULATE keys, as described earlier, to make it the current 
procedure You then select the command by pressing F3 and then the 
D key. 

You must then press ENTER to confirm that you really do want to delete 
the procedure If you change your mind at this stage you can, instead 
of pressing ENTER, press any other key to leave the command and 
go back to the main level of edit without deleting the procedure. 

Be careful when you use this command since there is no way to 
restore a deleted procedure, except by typing it in again. 

New 
Procedure 

You will need to use this option whenever you want to start writing 
a new procedure. As was mentioned earlier you are automaticallygiven 
this option if you select the edit command when there are no procedures 
in the computer's memory. Otherwise you select it pressing F3 and 
then the N key. 

As indicated by the prompt, all you have to do is to type in the name 
of the procedure you want to create. If you type in the name of an 
existing procedure you will not be allowed to create a second procedure 
with the same name In this case you will be offered the option of editing 
the existing procedure of that name. 



When you press ENTER at the end of the name the new procedure 
becomes the current one, listed at the right of the screen. You are 
presented with an empty procedure - that is, one containing only the 
proc and endproc statements - ready for you to add its body. 

Cut 

For example, if you select the new procedure command, by pressing 
(from within edit) F3 and then N, and then type in the name test, you 
will find that the display area contains: 

test proc test 
endproc 

This command removes one or more lines of text frorn the current 
procedure The text that is removed can be inserted in another position. 
or even in another procedure, by means of the paste command. 

Before you select the command you should use the up and down cursor 
keys to make the current line be either the first or the last line of the 
section you want to remove You can then select the command by 
pressing F3 and then the C key. 

If you then press ENTER the current line will be rmoved horn the 
procedure. Alternatively you can use the up or the down cursor key 
to move the cursor to the other end of a section of text that you want 
to remove. The region of text that will be removed is marked by 
highlighting. When you have marked the text you want to remove you 
should press ENTER 

ARCHIVE will immediately delete the marked text. The text that is 
removed replaces any text removed by a previous use ot cut. If you 
want to insert the text elsewhere you must therefore use the paste 
command before you use cut again. 

Paste This command inserts the text removed by the last use of the cut 
command into the current procedure, below the current line. The text 
can be inserted in another position, or even in another procedure 

Before you select the command you should, if necessary, use the SHIFT 
and TABULATE keys to select the procedure in which you want to 
insert the text. You should also use the up and down cursor keys to 
make the cur-rent line be the line immediately above the position where 
you want to insert the text. You can then select the command by 
pressing F3 and then the P key. 

ARCHIVE immediately inserts the text, underneath the current line. 

You can select the option to insert lines of text below the current line by pressing F4. 
Anything you type, up to the next time you press ENTER, is inserted as a new line of 
text. This new line then becomes the current line. 

ARCHIVE stays in the insert option so that you can type in several lines; you mark the 
end of each line by pressing ENTER When you have finished inserting new text you 
should leave the option by pressing ENTER without first typing any text into the input line. 

;i As an example we can add a couple of statements to the test procedure which we 
created earlier in this chapter Remember that, from the main level of edit, we left the 
procedure with just its proc and endproc statements. Make sure that you are at the 
main level of the editor and that the screen shows: 

test proc test 
endproc 

The highlighting marks the line including proc, so any inserted text will go under this line. 

Now press F4 and then type: 

print "this is a test" ENTER · 
print "there are two statements" ENTER 
ENTER 

9.3.4 Inserting Text 

27 



PROV l<'P1~J ~ ~ ·I·~)· I •, '.' : :: . 

When you have finished the screen will look like 

test proc test 
print "this is a test" ENTER 
print "it has two statements" ENTER 

endproc 

The highlighting marks the line containing the second print statement. 

If you make a mistake you can correct it, provided you notice it before you have pressed 
ENTER. bv using the line editor, described earlier Remember that you can use this editor 
at any t1r11c that you have typed some text into the input line, before you press ENTER. 

Once you have pressed ENTER the line of text is inserted into the procedure and you 
will have to use the line editing option. described in the next section, to make any 
corrections. 

9.3. 5 Edit a Line From the main level of edit, press F5 to edit ti 1e c1 rrrent line. The contents of this line 
are copied into the input line and you can then edit the text with the line editor, described 
earlier. When you press ENTER ARCHIV!:: will replace the old line in the procedure with 
the contents of the input line. 

You are not allowed to edit the endproc statement at the end of the procedure. You 
are also not allowed to edit the word proc in the first line of the procedure, but you 
may edit the rest of the contents of this line Yuu can, therefore, rename a procedure 
by using the line editor to delete the old name and replace it with a new one The list 
of procedures at the left of the screen ts rearranged automatically to keep the procedures 
in alphabetical order 

...__,. 

28 



PROVISIONAL 
CHAPTER 10 
PROGRAMMING 
IN ARCHIVE 

This chapter is about writing programs in the ARCHIVE database language In addition 10.1 INTRODUCTION 
to explaining the main features of the language, it will describe the development of an 
actual working example The example will be developed as we go along, and each new 
technique will be described as it is needed. 

Suppose you are involved in running a club or society which charges a subscription and 
produces a newsletter. You will need to send a copy of each issue to every paid-up 
member. You will also need to send a reminder to each member when his or her 
subscription falls due. 

This example allows you to construct a rnailing list and will then print a set of address 
labels on request The address label includes a reminder when a subscription is due. 
The example assumes that you send out six issues of the newsletter per year and that 
a person's subscription falls due when he or she has received six issues. It could easily 
be adapted to any situation where you regularly send out some form of circular· letter 
to a number of people on a mailing list 

In this example we shall make as much use as possible of the existing facilities in the 10.2 BASIC DESIGN 
database language. We can, for example, use the insert and alter commands for all 
additions and changes to the file records We shall, however, need to write special routines 
to print out the address labels 

We shall have to cater for the following set of requirements: 

11 Add a new record to the file. 
21 Delete a record. 
31 Modify a record. 
41 Record subscription payments 
51 Produce the address labels 
61 Leave the program. 

We shall write a procedure to handle each of these tasks and link them together by another 
procedure which will allow you to select any of the options. 

In this application it is quite clear what fields each record must contain There will have 
to be the name and address plus one field to record the number of issues the person 
has received. We can create the necessary file immediately, as shown below. 

create "mail" 
title$ 
fname$ 
surname$ 
street$ 
town$ 
county$ 
postcode$ 
issues 
end create 

We have used three string fields for the person's name; to hold the title (Or, Mr, Mrs 
etc), the first name and the surname respectively. We could probably have managed 
with just a single field but, as you will no doubt discover, you can never have too many 
fields in a record - the normal problem is that you have too [evvl 

There are four string fields for the address, nominally reserved for the street address, 
the town, county and postcode. You do not alwats have to use them in this way, but 
can treat them as four general fields to hold the address. Four fields should normally 
be quite sufficient. 

There is only one numeric field, to hold the information about how many issues have 
been sent 

Now that we have the file, we can use it to test the various procedures as we write 
them. It is a good idea to test each procedure as far as possible as you go along. You 

29 



PROVJSIONAI 
can then spot each mistake as it occurs and correct it immediately If you leave all the 
testing to the end it will be much more complicated as several things may be going wrong 
at the same time. Keep things as simple as possible while you are still testing your 
procedures - try to make sure that each procedure works correctly before you move 
on to the next one. That way you will find that your final program will usually work as 
soon as you have written the last procedure. 

10.3 THE MAIN TASKS 

10.3.1 Insertion We can write the procedure to add a record very simply 

proc add 
sprint 
insert 
endproc 

This procedure uses commands described before and should be easy to follow. 
Remember that you must use sprint to force the display of the contents of the record 
since they are not normally displayed until control returns to the keyboard interpreter. 

You can use this procedure immediately to add a few records to the file so that you 
can test the other procedures or I a real file 

10.3.2 Deletions At some time you will want to remove the records of people who have not renewed 
their subscriptions We shall write a procedure, kill, which allows you to scan through 
the file, examining the records of all people who have not renewed, and to decide whether 
each one should be deleted 

We shall use the field variable issues to hold the ru irnber of issues that a person is entitled 
to receive All records for which the: valt lf: of issues is Lero are therefore candidates for 
deletion. 

proc kill 
els 
select issues = 0 
all 

sprint 
print at 10,0; "DELETE (y/n)? " 
let ok$ = lower(getkey()) 
print ok$ 
if ok$ = "v" 

delete 
print "DELETED" 
endif 

end all 
endproc 

Since a deleted record can not be recovered, the full contents of the record are displayed 
and you are asked to confirm that you really want to delete it. We use the getkey() function 
which waits for a key to be pressed and then returns the ASCII code ot that key. Note 
that lower() converts the code to the lower case character so that you can type the letter 
in either upper or lower case. 

10.3.3 Payments You will normally want to record subscription payments from a list of names and addresses 
of those people who have sent in their subscriptions You will therefore need to locate 
the record of a particular person. The best approach is to write a separate procedure, 
getrec, to locate a particular record and then incorporate it in the pay procedure. 

This procedure asks for a text string and then locates the first record in the file which 
contains that text. If you reply by just pressing ENTER, n$ is set to the empty string 
("") and no search is made. You should use this method to indicate that you have finished 
recording payments. 

30 



PROVISION At 

proc getrec 
rem * * * * * locate a particular record * * * * * 
let ok$ = "n" 
input "who? ": n$ 
if n$ 

find ns 
while ok$ "v" and found() 

print title$ " ": fname $ ( 1); " " surname$ 
print street$ 
print "OK (y/n)? ": 
let ok$ = lower(getkey()) 
els 
if ok$ "y" 

continue 
endif 

end if 
end while 

if not found() 
print n$ " not found" 
end if 

endproc 

The search uses the find command, so that tho text is found in any string field You 
can therefore identify a record by name or by address. Ot course, the first record which 
matches may not be the one you want, so we have to be able to continue the search 
This is the purpose of the while endwhile loop This prints out the name and first lino 
of the address, to identify the record, and asks you it that is tho nqt 1t record. If you do 
riot respond by pressing the Y key, it continues the search. The loop ends either when 
you answer by pressing the Y k('JV or when the text is not found in any of the remaining 
records. lr\Jote that the function found() returns a non-zero value it the search is 
successful ) 

Now that, since ok$ could initially be "y" (from a previous successful search) we must 
give it some other value at the beginning of the procedure, before entering the loop, 
to make sure that the loop will be used at least once 

We cm, now write the pay procedure: 

..--.,,. proc pay 
els 
let n$ = "x" 
while n$ 

get rec 
if ok$ = "y" 

let issues = issues + 6 
update 
end if 

endwhile 
endproc 

The loop in this procedure continues until n$ is an empty string This allows you to record 
several payments without having to select the pay option for each one. When you have 
finished, just press ENTER in response to the "who?" prompt. If the value of ok$ is 
"y" after the call to getrec then the payment is recorded by marking it as valid for a 
further six issues. 

Again we have to set the initial value of n$ to some appropriate value (anything except 
"") to make sure that the procedure is not affected by a previous operation. 



rltUVl~IUi'tf\l 

10.3.4 Changes The procedure to-allow you to change the contents of a record is now very easy Aqain 
you must be able to select a particular record to change, so the general structure can 
be identical to pay. 

proc change 
let n$ = "x" 
els 
while n$ 

get rec 
if ok$ = "v" 

sprint 
alter 
els 
end if 

end while 
endproc 

10. 3. 5 Parameters We shall now take a silo rt break trorn the development of the program to describe the 
use of parameters with procedures. You can use a parameter to pass a value to a 
procedure, rather than using the value of a variable Rather than giving a long description 
of the theory of parameters, we shall show you a few examples of how they ran be used. 

Try the following simple example You add the paramt1ler to the line contairunq the 
procedure name by using the line editor (press F51 option of the edit command 

proc test; a 
print 5*a 

endproc 

This defines a procedure called "test" which reljurres 0118 parameter. "a': Notice, H1,1t 
the parameter is separated from the name of the procedure by a semicolon 

Whenever you use the procedure you must always supply a value for the parameter. 
For example, you could type 

test; 3 ENTER 

which will print the value 15 · the number (3) has been passed to the procedure cl S 
the value of the variable a 

You may specify any number of parameters for a procedure, provided you separate them 
by commas. For example: 

proc trial; a.b.c 
print a * b * c 

endproc 

which you can call by 

trial; 3,4,5 ENTER 

The values you supply do not have to be literal values, but could be variables, as shown 
below 

let x = 2 ENTER 
let y = 5 ENTER 
let z = 7 ENTER 
trial; x,y,z ENTER 

Note that the names of the variables do not have to be the same as the names used 
within the procedure. We can distinguish between the formal parameters (eg a,b,c) in 
the definition of the procedure, and the actual parameters which are the actual values 
that are passed to the procedure. 

You can also pass the results of expressions: 

trial; x*2,z/y,(z-y)*x ENTER 

You are not restricted to using numeric variables but can also pass strings (or string 
expressions) as parameters. provided you specify string variables in the definition of the 
procedure. For example: 

32 



PRUVISIONAL 
proc try; a$ 

print a$ 
endproc 
let t$ = "message" ENTER 
try t$ ENTER 

The only requirement is that the number and types of parameters supplied must match 
the list of formal parameters in the definition of the procedure. 

The reason for the brief interlude about procedures is that they give a neat way of writing 10.3.6 Address Labels 
the procedure to print an address label. For the purposes of testing we shall first write 
the procedure to show the addresses on the display and later convert it to send the output 
to the printer We shall assume that the labels are eight lines of print-out m length If 
this is not right for your printer and label combination you will have to change the number 
of lines of space in the procedure so that it matches your needs. 

First we shall write a procedure that displays a single line, the contents of which are 
passed via a parameter. 

proc doline; x$ 
print x$ 
endproc 

We can now use this procedure to display eight lines of text for the address label. 

proc dolabel 
if issues 

if issues = 1 
doline; "REMINDER - Subscription Now Due" 
else 
doline; 
end if 

doline: "" 
doline; title$ +" "+ fname$ ( 1) + ", "+ surname$ 
doline; street$ 
doline; town$ 
doline; county$ 
doline; postcode$ 
doline; "" 
let issues = issues -1 
update 
end if 

endproc 

The procedure includes a reminder in the address label if the person is about to receive 
his or her last issue. Each time a label is printed, that person's issue count is reduced 
by one. If this number has reached zero then the label is not printed. 

You can begin to see how useful parameters can be - without them this procedure would 
be much longer Look how easy it is to combine the title, initial and surname for the 
first line of the address. 

Perhaps you are wondering why we went to the trouble of defining doline when we 
could have just used print statements throughout dolabel. The reason is that, as we 
mentioned earlier, the routine in its present form shows the addresses on the display 
screen. We can convert it to send its output to the printer merely by changing one line 
in doline, instead of having to change every print statement in dolabel. All we need to 
do is change doline to read: 

proc doline; x$ 
lprint x$ 
endproc 

Finally we can write the procedure to print all the address labels: 

proc dispatch 
els 
all 
dolabel 
end all 

endproc 

33 



10.3. 7 Leaving the 
Program 

10.3.8 Putting it 
Together 

rKU.Vl~.IUNA! 
The final option is to leave the program when you have finished. This procedure can 
be very simple - all it has to do is to make sure that the file is closed properly before 
returning control to the keyboard interpreter. We have also added a short sign-off message 
to make it clear that the program has ended 

proc bye 
close 
print "bye" 
stop 
endproc 

W" can now write a procedure which will allow you to select any one ot the six options 
with a sin81t; key press It is sufficiently simple that no explanation is necessary 

proc choose 
els 
print 
print " Add Dispatch Pay Change Kill Quit" 
print "? "; 
let c$ = lower(getkey()) 
print c$ 
if c$ = "a": add : endif 
if c$ = "d": dispatch : endif 
if c$ = "p": pay : endif 
if c$ = "c": change : endif 
if c$ = "k ": kill : endif 
if c$ 0-= "q": bye : endif 
endproc 

10.3.9 Errors It is quite likely that sooner or later you will make an error while using this or some other 
program You may, for example, accidentally press the ESC key or you may type 1r1 
some text when a number 1s expected. This type of mistake is detected by ARCHIVE 
and normally results in the display ot an error message and a return from your proqrarn 
to the keyboard interpreter. This could be annoying, to say the leastl Fortunately, ARCHIVE 
has a method by which you can handle all such errors from withm the program. 

34 

You can use the error command to mark a procedure to be treated specially if any error 
is detected. Any error occurring in the marked procedure, or any procedure that it calls, 
results in an immediate, premature, return from the marked procedure 

The normal method of handling errors is switched off for the marked procedure and it 
is left to you to decide how to deal with n. You can find out the number of the last 
error that occurred by using the errnum() function. You can use it to read the error number 
more than once as the value is only cleared to zero by the next use of the error command. 
If no errors have occurred since the start of the program, or since the last time error 
was executed, then errnum(} will return a value of zero. 

This method, although not easy to understand at first, gives you a very powerful and 
flexible control of how to deal with errors. The following example shows a typical way 
of using error. It gives you an error-resistant method of inputting a number. 

proc dotest 
input x 
endproc 

proc test 
let n = 1 
while n 

error dotest 
let n = errnum() 
if n 

print "You made error number " ;n .". try again" 
end if 

end while 
endproc 

The first procedure simply waits for your input to the variable x The second procedure 
handles any error during the execution of the input procedure If any error occurs within 
dotest it will be terminated prematurely and the error number will be set. This number 



PROVISIONAL 
is then read by errnum() and, if it is non-zero, the error message is printed (this error 
message could, of course, be anything you like) Since these statements are enclosed 
in a while endwhile loop, any error will cause them to be executed again. The error 
number is cleared by error, ready for the next try. You can not leave test until you have 
typed in a valid number. 

This example reports the number of the error that was detected. On most occasions 
you will not be concerned about which error occurred. The main use of errnum() is to 
differentiate between there being no error - errnum() returns zero - and there being a 
detected error of any type - errnum() returns a non-zero value 

All that remains to be done to complete our program is to write a start-up procedure 10.3.10 The Final 
which opens the file and calls choose. We must include choose in a loop so that you Program 
are offered the options again, each time you complete your previous selection. 

You will see that the while endwhile loop in the following procedure will never end. 
Such a loop will only come to an end when the expression following while has a zero 
value In the above procedure the expression (ie 1 I is never zero, so the loop will continue 
indefinitely. The only way of leaving this loop is to choose the Ouit option The stop 
command in bye immediately returns control to the keyboard interpreter. 

proc start 
els 
open "newmail.dbf" 
while 1 

error choose 
let n == errnum() 
if n 

print "Mistake - Press any key to continue" 
let m == getkey() 
endif 

endwhile 
endproc 

Within this loop is a sequence of statements which handles any errors, using a similar 
method to that described in the previous section. If you make a mistake the program 
will not continue until you press a key. This allows you to look at what you have Just 
done so that you can find out how you made the error. 

The main procedure is named "start". This is so that you can use the run command 
when using the program. Suppose that, when we have written all the procedures of 
the program, we save them under the name "rnaillist". When you want to run the 
program you will need to load the procedures into the computer's memory and then 
execute the main procedure, which will call all the others. One way is to use the load 
command and then type in the name of the main procedure, for example: 

load"maillist" ENTER 
start ENTER 

The run command will load a named program and then execute the procedure named 
"start" (if it exists) You can run the program exactly as in the previous example just 
by typing 

10.4 THE RUN 
COMMAND 

run"maillist" ENTER 

35 





PROVi~1u1,it1. 
CHAPTER 11 
FURTHER 
PROGRAMMING 

This chapter describes more of the techniques of writing programs in ARCHIVL. Again 11.1 INTRODUCTION 
it uses a running example which is both longer and more complex than the example 
in the previous chapter It shows some alternatives to the methods of Chapter 10 and 
extends the description of procedures, parameters and error-handling. In addition il explains 
how to use local variables in procedures. 

The example that we have chosen is a cheque book reconciliation which vou can use 
to keep an eye on your expenditure, or to check on your bank statements. None of the 
input and output procedures use the special commands, so that they can b,1 exactly 
tailored to the application 

The idea rs that you can type in the details of all your bank account debits and credits, 
either clay by clay or at the end of the month. You can then ask for a report of the current 
state of your account. In orcler to make it easy to use, we shall use a comprehensive 
set ot prompts for your input In addition it will be flexible enough to allow you TO modify 
c1 previous month's account, and to ask for a report for any month about which you 
have records. 

The example is provided on the ARCHIVE Microdrive cartridge Yo11 can use rt by typin\d in 

run "chequebook" ENTER 

Before Wf:.: get uivolved in the details of the program it is worth thir1king about the Qf,neral 11.2 BASIC DESIGN 
structure as implied by the brief specification in the previous paragraph. We shall use 
a basic menu-driven approach, where at each stage you are presented with a list of tho 
options you have (rather like ARCHIVE itself) At the highest level we can idfir .ulv tlirne 
main opnons 

1) add an entry, 
2) obtain a monthly report, 
3) leave the program. 

Each of these main options may have subsidiary menus, and you should be able lo choose 
any optron by pressing a single key, throughout the whole program 

We can now st-u t wntinq the shell of the program It must open the chequebook data 
file and display the initial menu The program must return to this menu whenever ,1 selected 
option has been completed This implies that the menu selection should be placed in 
an endless loop 

proc start 
rem * * * * * run the whole thing * * * * * 
mode 0,8 
els 
print at 7, 10; "CHEQUE BOOK RECONCILIATION" 
open'' cheque'' 
pause 
let x$ = lower(getkey()) 
while 1 

error menu 
if errnum() 

print "Mistake" 
pause 
end if 

end while 
endproc 

This procedure starts by clearing the display area and printing the program title at line 
7, column 10 We have included the mode command to remove the display of the 
prompts, since none of the standard commands will be used. The procedure then opens 
a file called "cheque" and uses pause, which waits for you to press any key before 
continuing. The pause procedure is described later, in Section 114. 

37 



11.3 LOCAL 
VARIABLES 

38 

PROV .1 S·I ON Al 
You will note that we have made no decisions about the contents of the file records 
· the only decision about the file is that it is to be called "cheque" As yet we are not 
sure about what fields will be necessary The actual structure of the file will be decided 
much later when we have found out what is needed. 

We have, as in the example of the previous chapter, again used an endless while 
endwhile loop tu keep the program going We have also used the error command to 
make sum that anv error causes a return to this loop, rather than giving an error message 
and leaving thu proqrarn The method is similar to that used in Section 10.3 10, but 
is a litter shorter 

Most variables that appear in procedures are global This means that they are defined 
for the whole of the program They may be used or changed ir I anv procedure, and 
not Just the procedure in which they are first assigned a value. 

The variables used as formal parameters in a procedure are local variables rn that thev 
are not defined outside the procedure in which thev appear 

The following example mav help to make Hie distinction clear 

proc demo; a,b$ 
print x,y$ 
print a,b$ 

endproc 

let u = 3 ENTER 
let v$ = "text" ENTER 

demo; u,v$ ENTER 

print u v $ ENTER 

In this example u and v$ are normal l!JIObdl) Vd! iables They were assigned values outside 
the procedure "demo" but their values are defined inside the procedure as well as outside 
i1 There is r10 problem with printing their values lrurn inside or outside the procedure 

The variables a and b$, however. a1 e local to the procedure. The example shows that 
they are recognised inside '' demo'. but if vou now try 

print a,b$ ENTER 

vou will see that their values me not defined outside the procedure 

All forrnal parameters are local Vi'lr rablcs, but you can also doclai e other variables to be 
local, as in the following example 

proc dumbo 
print "inside dumbo" 
print p,q,r 

endproc 

proc dummy 
local q.r 
let p = 2 
let q = 3 
let r = 4 
print "inside dummy" 
print p,q,r 
dumbo 

endproc 

dummy ENTER 

This example shows that the values of p, q and r are all defined in "dummy", but 
"dumbo" does not know the values of q and r, which are local to "dummy" The values 
of local variables are not defined anywhere except in the procedure in which they are 
declared - not even in procedures called from the declaring procedure. The variable p 
is global and is recognised everywhere 



PROVISION Al 
If the program does not contain a procedure with the name "start" then the run command 
has the same effect as load. The menu procedure will need to display the list of available 
options together with a prompt message, and then wait tor you to press a key. Displaying 
a prompt and waiting tor a key to be pressed is one of the most commonly-needed actions, 
so it is worth writing a general-purpose procedure. The procedure must be able to display 
:i wide range of messages A simple way of allowing the procedure to print any message 
is to pass the message to the procedure in the form of a parameter 

We can now continue with our cheque book program, by defining a general purpose 
prompt routine. 

proc prompt; ms 
print m$ ; " ": 
let x$ = lower(getkey()) 
print x$ 
endproc 

The message to be displayed is passed to the procedure as a parameter in the local 
variable m$ The function getkey() waits for a key to be pressed and returns the ASCII 
code for the key In this procedure the ASCII code is converted to lower case by the 
function lower(), so that the result is independent of upper or lower case. Finally the 
resulting value is assigned to the variable x$. This is a global variable, so that the key 

~ that was actually pressed is available to any other procedure in the program. 

A useful routine, which has already been used and will be used in many places in the 
program is pause. It uses "prompt" to print a message and then simply waits until a 
key is pressed. Since you are not usually interested in knowing which key was actually 
pressed, it uses a local variable, y$, to preserve the original contents of x$. We can 
then use it to write the menu routine, to display the main menu of our program. 

proc pause 
rem * * * * * wait for any key * * * * * 
local y$ 
let y$ =x$ 
print 
prompt; "press any key to continue" 
let x$ =y$ 
endproc 

proc menu 
rem * * * * * display the menu of options 
els 
print tab 15; "OPTIONS" 
print tab 1 O; "a - add entry" 
print tab 1 O; "r - monthly report" 
print tab 10; "s - stop" 
let x$ = "" 
while not (x$ = "a" or x$ = "r" or x$ 

print 
prompt; "Choose (a/r/s):" 
end while 

if x$ = "a": entry 
else : if x $ = "r": report 

else : if x$ = "s": bye : endif 
end if 

end if 
endproc 

After clearing the display area, menu lists the options and then uses prompt to wait 
for your selection. Note that prompt is used within a loop which continues until one of 
the valid keys is pressed. (Remember that prompt returns the key value in x$.) 

***** 

= "s") 

The last few lines, where the selected procedure is called, seem to be a bit more complex 
than you might expect. It would seem reasonable to use the following test. 

~ if x$ = "a": entry: endif 
if x$ = "r": report: endif 
if x$ = "s": bye: endif 

This contains a hidden danger. Suppose you had selected the first option and that this 
procedure changed the value of x$ to either "r" or "s". You would then find that, on 

11 .4 PROMPTS AND 
MENUS 

":IQ 



11 . 5 DISPLAYING 
RECORDS 

11 . 5. 1 Introduction 

11.5.2 The Record 
Structure 

PROVISIONAi. 
return from entry, one of the other two tests would succeed and another ot the options 
would be called This is one of the dangers of using a unive: sal prompt routine. alv, a\ s 
returning the key that was pressed in the same global variable Y Ol1 should alwavs be 
aware of this type of interaction between ditferent procedures in your programs In the 
present program the various options have been chosen so that trus problem can not occur 

Once a val.d key has been pressed the appropriate pro,;ed111;; ,--, , ailed - 

"entry" for entering a credit or debit, 
"report" for producing a monthly report, or 
"bye" to leave the program. 

Ihe last of these procedures rs t::dS',' lu vv111e 

proc bye 
rem * * * * * exit gracefully • • • * • 
close 
print 
print "bye" 
mode 1,8 
stop 
endproc 

Don't forget that vou l,civ,, tu ,Jcse the f:lt, dr11.1 ·1St; mode d:Jd'• liJ 1,,sl.:.rt: J,., .1.~, :.,. 
of the prorru.ts betore it.:,a\ ,ng th,- r,1-c,91 ar n 

::,O far could be used ,,1th ::11•) 1rn:1:11 dnven p1ugram fie,.". fk·-:·.c'\·.~:. 
considennq thE: part.cular I uqu,1 ~·' n"111S d tl·,0 c'·t,t;C11 it: t ,cx,f ~;1og,ar1, 

I" ir..s section we shall develop ti"~ 1 <,, 1t111e:., r 1t:1,c::,.,,dr\· tu d1:opld\ a recor,1 ,r·,,1 :1 rr ,c>r,rr ,r. 
report Before we can decide how the display will vvon .. ,\·t· ha .e to rriake sc,r 11t: c:1,:;c :s,,)r ,'· 
about the structur c: c,f a record 

Al:nougr, you coul., use the display cornrnand to sno.v a Iii,: record. 11 ,:, 11<. i1 p2,n,cuie1r1 
su,table for trns application We shall want to cJ1spldv 1l 1e report for a vvr1ok: month ar,··1 
trus imphes that each record should take up onl; one l111e Furthermore:, 1t -vould be: useful 
ii we could drsplav the results 1n columns. with credus and d1:,b1ts separated into d1iiel'tcr,, 
,:olurnns 

Tr1e credu ind debit records must therefore be 1r,,,1t,:,I SL0paratelv, and we must first dL"cicL 
now to do thrs One idea vvould be to use p,is1r1 :e ,ind negative values lor credits anc1 
clF,b1ts respecuvelv 

v\'~· shall ::ilso need A rl11rd tvpe 01 record to hotel 1nt01 r-1e1i t,,HJSE:keep1rig Oc:1ta Tnt:'Sl: 
·,,cc;rds c,r; be used to tr;w,..,tr,r tt,f~ :1mn,1H_J balance tror-:1 c,r·,,, mor.rr, te: rr11:: ne-r Y:L: 
,:, ill never s1:,t:: these rE,1~01ds when vou use thr. proqrarn 

II ,cve use a separate f1E~!d 1n er1ch record to ,mj;catc· .ts tvpe. '.J'/'c can use 1t IG o.sunqu.sn 
between credit, debit and housekeeping records It will also allow us to use c,rr ;E;r IV pes 
ot records ,f we fincJ \\ e need trier n 

W,~ are now close tc a soecuicauon oi the form of a record rn our program. It must 
rave fields tor the date «iav, month, year!, tne amount and the record type In addmon 
1/ve might \\',,r1! to include a cheque number for ear.h cheque vou draw and some space 
for a note of what the amount was tor 

V\/•'o choose to store the date m three separate fields of the record so that we have 
rna-rmum flt:,1bilrty .n selecting and ordering the records of the file Let us therefore make 
the follow,ng tentai. 1e definition of the fields of a record 



PROVISIONAi 
Variable Type 

day Numeric 
month Numeric 
year Numeric 

amount Numeric 

chqno Numeric 

detail$ String 

type$ String 

Purpose 

the date 

cash amount 

the cheque number 
(0 if no number) 

any details you want to record 

the record type 
c = credit 
d = debit 
b = balance to carry forward 

Now that we have a good idea of the basic structure of the records we can write the 
routines to display them, and to add new ones 

We shall start by writing the procedures to display a single record, and then a whole 
series of records in date order. They make extensive use of the tab print item to put 
the various values in columns. The debit and credit figures are displayed in different 
columns by showrec. Note that this procedure regards all types of records, except type 
"d": are regarded as credits. 

proc showrec 
rem * * * * * display a record * * * * * 
print day ; "I": month ; "I"; year ; 
if type$ = "d" 

print tab 22; amount ; tab 32; endbal ; 
if chqno O 

print tab 44; chqno ; 
end if 

else 
print tab 12; amount ; tab 32; endbal ; 
end if 

print tab 55; detail$ 
endproc 

The next procedure displays the body of the report, displaying all the records in date 
order. It also keeps a running balance and displays it at the end of the list. 

proc doreport 
rem * * * * * show a set of records totals 
local n 

***** 

print "Date"; tab 12; "Credit"; 
print tab 22; "Debit"; tab 32; "Balance"; 
print tab 44; "Cheque no"; tab 55; "Details" 
print 
order day ; a ,type$ ; a 
let endbal == 0 
first 
let n = count() 
while n O 

if type$ == "d" 
let endbal == endbal -amount 
else 
let endbal == endbal + amount 
end if 

show rec 
next 
let n = n -1 
endwhile 

print 
print tab 20; endbal ; " Carried Forward" 
endproc 

11.5.3 The Display 
Procedures 

41 



P RU. V I S 10 N A l 
Note that we do not use an all endall loop to display the records. This type of loop is 
very efficient way to scan through all the records of a file, but will not proceed in any 
particular order. Instead we use the less efficient loop that is highlighted in the procedure. 
It quar,n itees that the records will appear in their sorted order. 

This procedure displays every record in the file. You mus! make sure that you have selected 
only those records that you want to see before calling it 

11.6 DATA ENTRY 

11.6.1 INTRODUCTION In our cheque book program we shall have to type in text and numbers when adding 
new details to the file. In addition we shall need to type in dates. These usually have 
a special format and could be treated either as numbers or as text. 

First we shall look at some methods for entering text, numbers and dates Obviouslv 
we shall make use of the input command, but we shall need to consider how to detect 
and deal with errors in the typed input 

11.6.2 Entering Text Accepting text as typed input is quite simple Any collection ot characters is a valid text 
string (even if it does not make sense) and will not cause a systern error You will not 
normally need to take any special precautions when accepting text input It will usually 
be sufficient to use a line such as the following, which asks you to type m your name 

input "Please type your name: ";name$ 

Note that a space is included as the last character of ti ui prompt text; This small point 
makes a lot of difference to the appearance of vo. rr program when you use it 

You can input several items with one input statement All you have to do is to include 
all the prompts and variable names, separated by semicolons 

input "Your first name! ";fname$; "Your surname? "sname$; 

This last input statement also ends with a semicolon 
to the following line after you have typed your input 

thrs stops the cursor moving 

You may want to perform additional checks on tho mput text. tor exarnple to see it rt 
1s a particular number of characters long You will t1nd cin example of this typo of techruquo 
in the date entry routine given in Sect1or1 1 l .li4 

11.6.3 Numbers When you use the input command to enter text to a stnnq variable the computer will 
accept anything that you type, without complaint. If, however. you try the same thing 
wrth input to a numeric variable you will get an error message if you type anything except 
a valid number. Assuming that you do not want to leave your program ENerv time your 
finger slips while you are typing in a number, you must make suro that your program 
can cope with such errors. 

One possibility is to. make all input use string variables, even for inputtinq numbers Yu1 rr 
program can then convert the text string to a number, and ask you to trv again if anything 
goes wrong. Suppose you want to input a value for the variable nurn You could write 
a procedure such as the following one, which will only accept the input of a valid number 
with two places of decimals. 

proc getval 
local ok,num$,test$ 
let ok = 0 
while not ok 

input num$ :rem * * * input string * * * 
let num =val(num$) :rem *** convert to number*"·* 
let test$ = str(num,0,2) :rem * * * & back to a string ** * 
if test$ = num$ :rem * * * then the number is valid * * * 

let ok = 1 
else 
print "Try again" 
end if 

endwhile 
endproc 

42 



PROVISIONAL 
You can control the exact format of the number to be accepted by means of the str() 
function. In this case strt) converts the number to decimal format, with two decimal places 
The number is accepted only if the original string (num$) and the processed string (test$) 
match exactly. 

You can not use this technique to input a number in any format, since it only accepts 
the format specified by the str() function. If you want to accept a number in any format 
you must use a different method The most useful way is to make use of the error 
command, which was described in the last chapter The following procedures, for 
example, will accept any valid number within a specified range. They even provide the 
display of any prompt message you want to appear. 

proc getnum; ms ,min ,max 
local wrong 
let wrong = 1 
while wrong 

print m$ ; "? ": 
error readnum 
let wrong = errnum() 
if not wrong 

if (num min ) or (num max ) 
let wrong = 1 
print "Allowed range is "; min ; " to ": max 
end if 

end if 
if wrong 

print "Try again" 
end if 

endwhile 
endproc 

proc readnum 
input num 
endproc 

We shall use this form for numeric input in our example. Note that we now have two 
levels of error-handling. Any error during numeric input will use the error treatment in 
getnum, but any other error will result in a return to the main menu, using the overall 
error-handling in start. 

In the cheque book program we shall certainly need to sort the records of the file into 11.6.4 Dates 
date order and to be able to select all the records for a particular month. These processes 
will be kept simple if we store the date as the day, the month and the year, in three 
separate variables. 

As was mentioned in Section 11 .6.1, dates are usually written in a special format. When 
you want to type in a date you must choose how you are going to deal with it. You 
could, for example, input the day, month and year as separate numeric values: 

input "day? ";day 
input "month? ";month 
input "year? ";year 

The following procedure accepts date in the format dd/mm/yyyy. It checks that all three 
parts are present, and that they are separated by "l'' symbols You are allowed to type 
in single-digit day or month figures with either one or two characters, eg you can use 
either "3" or "03". You must, however, type the year with all four digits. The procedure 
does not otherwise check the date for validity so, for example, the date 31 /2/ 1996 is 
accepted. You could add a check for a valid calendar date once you have used getdate 
to separate out the day, month and year. 



11.6.5 Adding New 
Records 

44 

PROVlS,tONAl 
proc getdate 

rem * * * * * accept date as DD/MM/YYYY 
local a ,b .c ,date$ ,separator 
let a =0 
while a 4 

let b =0 
while b = 0 

let separator = 0 
while separator = 0 

input "date: "; date$ 
let c = 1 
let separator = instr(date$ , "/") 
if separator = 0 

print " use '/' to separate day and month" 
end if 

***** 

endwhile 
let day =val(date$ (c to separator -1 )) 
let c = separator + 1 
let b = instr(date$ (c to ),"/") 
if b =0 

print " use '!' to separate month and year" 
end if 

endwhile 
let separator = separator + b 
let month = val(date$ (c to separator - 1 )) 
let year =val(date$· (separator + 1 to )) 
let a = len(date$ (separator + 1 to )) 
if a 4 

print " year should be four figures -- eg 1984" 
endif 

endwhile 
endproc 

The day, month and year values are left in the variables day, month and year respectively. 
the values of the variables a, b, c, date$ and separator are not needed outside the 
procedure and so can be declared as local. This does mean that the procedure, which 
is somewhat longer than most, can not easily be split into smaller procedures. 

Now that we have the structure of a record we can write the procedures to accept new 
data. 

proc entry 
rem * * * * * add an entry * * * * * 
let type$ = " " 
while type$ "e" 

els 
let type$ 
while not (type$ = "c" or type$ = "d" or type$ = "e") 

prompt; "debit, credit or end (d/c/e):" 
let type$ = x$ 
endwhile 

if type$ "e" 
let x$ =" " 
while not (x$ = "a" or .x$ = "r") 

getflds 
prompt; "accept or reject data (a/r):" 
endwhile 

if x$ = "a" 
append 
else 
print "data rejected" 
pause 
end if 

end if 
endwhile 

endproc 



PROVISIONAi. 
This procedure allows you the option of cancelling your input to the new record, in case 
you make a mistake while typing it in. The actual task of requesting the input is done 
by getflds which is listed below. 

proc getflds 
rem * * * * * input field variable values 
if type$ = "d" 

ischq 
end if 

get date 
getnum; "amount",O, 1000000 
let amount = num 
input "other details: "; detail$ 

endproc 

***** 

This procedure uses the error-protected numeric input (getnum) that was described in 
Section 11.6.3. 

We have included a further procedure. ischq, which asks for you to type in a cheque 
number only if the debit is a cheque. You may want to include other types of debit - 
standing orders, for example. For these debits the cheque number is set to zero so that 
will not display them. 

proc ischq 
rem *· * * * get cheque no if necessary 
let chqno =0 
let x$ =" " 
while not (x$ = "c" or x$ = "o") 

prompt; "cheque or other (c/o):" 
end while 

if x$ = "c" 
getnum; "cheque number" ,0,999999 
end if 

let chqno = num 
endproc 

***** 

The doreport procedure of Section 11 . 5. 3 will display all the records in the file in the 
format that we want. The report option of the main menu must select the appropriate 
records to be displayed. We shall write the procedure so that you can select a particular 
month, or just display the report for the last month in the file. 

We can write the report procedure to accept all the input information, leaving the main 
work of selecting the records to another procedure. We have again used the error-resistant 
getnum to accept input of the month and year For the year, we have arbitrarily restricted 
the range to lie between 1950 and 2100. You can, of course, use the editor to change 
this to match your own needs. 

proc report 
rem * * * * * display a monthly report * * * * * 
while not (x$ = "1" or x$ = "p") 

prompt; "latest, or a particular month (1/p):" 
endwhile 

if x$ = "p" 
getnum; "which month", 1, 12 
let rmonth = num 
getnum; "which year",1950,2100 
let ryear = num 
end if 

month rep 
endproc 

The following procedure actually produces the report for one month's data. We now 
have to start considering how we are going to use the additional records, first mentioned 
in Section 11.5.2, which are to hold the running balance from month to month. These 
are to be of type "b" and, in general, there will be one of these records per month. 
When we first ask for the report for a month we shall have to create one of these records 
to carry the balance to the following month. Each subsequent time we ask for the report 
for this month we shall not have to create a new record, but will have to check if there 
have been any changes and modify it if necessary. We shall therefore have to know 
if the record exists in order to know what to do. 

11 . 7 GENERA TING A 
MONTHLY REPORT 



PROV.l.SIONAl 
So that we do not have to think of too many things at once, we sha] use several further 
procedures, as shown below. 

proc monthrep 
rem * * * * * produce the report * * * * * 
getrecs 
let c- = count(): rem * * * including closing balance(s) 
if c1 

select month = maxmth and year = maxyr 
end if 

let c2 = count(): rem * * * without closing balance(s) 
if c2 

*** 

*** 

rephead 
doreport 
reset 
dobalancerec 
else 
print "NO RECORDS FOR THIS MONTH" 
reset 
end if 

pause 
endproc 

In this procedure we assume that getrecs selects the records we want, including any 
following balance records. (Remember that if we have not asked for the last month in 
the file there will be several balance records, one for each following month ) We also 
assume that the month and year in question are contained in the variables maxmnth 
and rriaxvr respectively. 

The variables cl and c2 are used to hold the number of records in the selected file, 
with and without the balance records respectively. Note that the select command to 
remove the balance records can not be: 

select type$ "b" 

since we need to keep the one that holds the balance brought forward from the previous 
month. 

Provided the value of c2 is non-zero we can go ahead with the report. We shall use 
title to display the report title and then we can leave the rest of the display to doreport, 
which we have already written. The task of sorting out what to do about the balance 
records is left for later, when we decide how to write dobalancerec. 

The next task is to make the selection of the records, bearing in mind that it must be 
able to select the last month automatically or any particular month, together with any 
following balance records. Botti options can use the same basic method. The main task 
can be just to select the records of the last month in the file. If we want the report for 
a particular month we can first discard all unwanted records and then select the last month. 

proc getrecs 
rem * * * * * select all records for the month * * * * * 
els 
print "selecting the records" 
if xs = "p" 

select type$ = "b" or (month = rmonth and year = ryear) 
let maxmth = rmonth 
let maxyr = ryear 
else 
rem * * * then find the last month in this year 
let maxyr =0 
all 

*** 

if year maxyr and type$ "b" 
let maxyr = year 
endif 

end all 
select year = maxyr 
let rnaxmth = 0 
all 

if month maxmth and type$ "b" 
let maxmth = month 
end if 

46 



PROVISIONAL 
.. '' 

endall 
end if 

select 1 OO*year + month = 1 OO*maxyr + maxmth 
endproc 

Note that the final selection is based on the value of the expression 100 *year+ month. 
This is guaranteed to increase with the (monthly) date of the record, ie January 1985 
will give a larger value than for December 1984. 

The next procedure just displays the header for the monthly report. 

proc rephead 
rem * * * * * display report header * * * * * 
els 
print tab 20; "Report for ": month : "I": year 
print 
print 
endproc 

We are now left with the task of dealing with the balance records. There are two main 
cases; 

1 ) The first time a report for a particular month is requested there will be no balance 
record, so one will have to be created. 

2) On subsequent occasions the record will exist and it (together with any following 
balance records) must be updated if there have been any changes to the contents 
of the report. 

The overall task of selecting one of these two cases is done by the following procedure. 

proc dobalancerec 
rem * * * * * create a closing balance record * * * * * 
rem * * * * * or update it if it exists * * * * * 
if c 1 = c2 : rem * * * no closing balance exists * * * 

addbal 
else 
modbal 
end if 

reset 
endproc 

The first option - adding a new record ~ is quite straightforward. All we have to do 
is to append a new record, of type "b" and containing the closing balance from the 
report, to be the first record for the following month. 

proc addbal 
rem * * * * * create a new balance record 
let day = 1 
let year = maxyr 
let month = maxmth + 1 
if month = 13 

let month = 1 
let year == year + 1 
end if 

let type$ = "b" 
let amount = endbal 
let detail$ = "Brought Forward" 
let chqno =0 
append 

endproc 

The task of modifying an existing balance record is slightly more complicated. Remember 
that you may have changed the records for any month, and that any such change will 
affect the balance records for all subsequent months. The modbal procedure locates 
the record containing the closing balance for the month and checks if it needs modifying. 
If 1t does then the correction is applied to all following balance records. 

***** 

,,-, 



11.8 CHANGING A 
RECORD 

48 

PR.OVl.SlONAl. 
proc modbal 

rem * * * * * update existing closing balance(s) 
order year ; a ,month ; a 
getbalancerec 
let difference = endbal - amount 
if difference 

while found() 
let amount = amount + difference 
update 
continue 
end while 

end if 
endproc 

The records are sorted into month and year date order and the main work is done by 
getbalancerec, which searches for the first balance record following the reported month 
this is the search that is continued by modbal, until no more balance records are found. 

***** 

proc getbalancerec 
rem * * * * * locate the closing balance record(s) 
if maxmth = 1 2 

let maxmth = 0 
let maxyr = maxyr + 1 
endif 

search type$ = "b" and 1 OO*year + month 
endproc 

***** 

100 * max yr + maxmth 

This example does not include any means of correcting an individual record that has 
been typed in wrongly. You should not need such a facility very often since the data 
entry procedures allow you to check the record before accepting it into the file. You 
could add this facility as a fourth option in the menu - the modular design allows you 
to do this without affecting any of the other options. Alternatively, you could make such 
modifications directly on the file, using the alter command. 

Remember that if you make any change (adding, deleting or altering a record) to an 
earlier month, it will change the reports for that month and all following months. Any 
reports that you have previously produced will then be incorrect and you will have to 
produce them again. 



PROVISION Al 

This chapter extends the explanation of how to use the ARCHIVE programming language 
by describing how to work with two or more open files. When you have more than one 
tile open at the same time you must be able to identify which file you want to use for 
any particular· operation. You must give each file a unique logical file name when you 
open or create it and then refer to it by that name in all commands that refer to the file. 

Our first example will show you how to add, delete or rename fields within an existing file. 

Suppose that you want to make some changes to the card index file, described in Chapter 
3. This file has fields to hold a person's name, address, home and work telephone 
numbers, company, birthday and some general notes. If you want to construct a card 
index solely for personal use you may want to delete the fields containing business 
information. To cater for friends who live abroad you may want to add a field to contain 
the country. If you are discarding the work telephone number you can also rename the 
home telephone number field as Just "tols". 

The most convenient way of changing the file is to create a second file containing the 
fields you want and then to copy the required records from the old file to the new one. 
Lot us call the new file "friends" The following procedure will do the rest of the work. 

proc start 
create "friends" as "I" 

fname$ 
surname$ 
street$ 
town$ 
county$ 
country$ 
postcode$ 
tel$ 
endcreate 

look "index" as "i" 
all "i" 

print at O,O;i.fname$;" ";i.surname$ 
let f.fname$ = i.fname$ 
let f.surname$ = i.surname$ 
let f .street$= i.street$ 
let f. town$ = i.town $ 
let f.county$ = i.county$ 
let f.postcode = i.postcode 
let f.note$ = i.note$ 
let f.tel$ = i.homete1$ 
let f.country$ =" " 
append "f" 
endall 

close "f" 
close "i" 
print 
print "DONE" 
endproc 

CHAPTER 12 
USING 
MULTIPLE 
FILES 
12.1 INTRODUCTION 

12.2 CHANGING THE 
RECORDS OF A FILE 

You can see, from the previous example, that you can use the same name for a field 12.3 THE CURRENT 
in both files ·- they can be distinguished by including the logical file name. If you do FILE 
not include the logical file name then it will be assumed that the current file is to be 
used. The last file to be opened automatically becomes the logical file. In this example 
the current file will be "index" (with logical file name "i") so we could make use of 
this by writing the procedure as: 

49 



PROVl.SIUNAL 
proc start 

create "friends" as "f" 
fname$ 
surname$ 
street$ 
town$ 
county$ 
country$ 
postcode$ 
tel$ 
end create 

look "index" as "i" 
all 

print at O,O;fname$;" ";surname$ 
let f.fname$ =fname$ 
let f.surname$ =surname$ 
let f. street$ = street$ 
let f.town$ =town$ 
let f.county$ = county$ 
let f.postcode = postcode 
let f.note$ = note$ 
let f. tel$ = hometel $ 
let f.country$ =" " 
append "f" 
end all 

close "t" 
close 
print 
print "DONE" 
endproc 

If you do not include the logical file name in any case where it is optional, ARCHIVE 
will assume that the command refers to the current file. It is usually safer to include the 
logical file name explicitly, to avoid any possibility of confusion. 

You can, at any time, specify the current file by means of the use command. If you 
included the command: 

use "f" 

in the above example, then "friends" would be the current file until you changed it again, 
either by opening another file or by means of the use command. 

12.4 STOCK CONTROL 

12.4.1 Introduction In a stock control system you will need to: 

1) Find information on a particular stock item. 
2) Obtain a report on the current stock levels of all items. 
3) Record sales and modify the stock records accordingly. 
4) Order new supplies, to maintain adequate stock levels. 
5) Record deliveries of stock. 

You will obviously need a file to hold the details of all items held in stock and it is 
convenient to have a second file to hold details of all your suppliers. You will need to 
be able to access either file from the other - for example you may want to know all 
the possible suppliers of a particular item, or to find out what items are supplied by a 
particular company. 

In order to keep the application as simple as possible we shall not use the menu-driven 
approach of the examples in the previous two chapters. We shall write it as a series 
of separate commands which can be used - like the standard commands - by typing 
their names. 

Since the procedures will be strongly dependent on the file structure we use, we must 
first give some thought to their appearance. 

12.4.2 The Stock File The stock file must contain full details of the stock situation for each item. The following 
list explains all the f,elds we shall use. 

50 



PR OVl'SIO NAL 
~ Field Name Use 

code$ The internal stock code 

description$ Item description 

qty Number in stock 

sell pr Selling price 

reorderlev Reorder when stock level falls 
below this value 

buy qty How many to order 

supplier$ Internal supplier code(s) 

Example 

A101 

Widget, large 

500 

1.25 

200 

400 

a,b,c 

We can create the file by 

create "stock" as "sto" 
code$ 
description$ 
qty 
reorderlev 
sell pr 
buy qty 
supplier$ 
endcreate 

In addition to the items supplied we shall need to include the company's name, address 
and telephone number It will be useful also to include the name ot a contact person 
in the company. We shall use the following fields 

Field Name Use Example 

coname$ The company's name Large Widgets pie 

street$ First line of address 

town$ Second line of address 

county$ Third line of address 

postcode$ Last line of address 

contact$ Name of a contact 

tel$ Telephone number 021 -356 1234 ext 212 

~ code$ Your code for the company a 

item$ List of your stock codes for the 
items supplied A 101,B236,C659 

scode$ List of the supplier's codes 11-30X,55147Z,33-280 

price$ List of the supplier's prices O 85, 1 37,5 22 

delay$ List of delivery times in days10,28, 14 

The last four fields contain lists of items, separated by commas. There must be the same 
number of items in each list and the order of the items should correspond. For example, 
the item which you refer to as 8236 has a supplier's code 55-47Z, the cost to you is 
1 37 and the delivery time is twenty eight days 

We can create the file by: 

create supplier" as "sup" 
coname$ 
street$ 
town$ 
county$ 
postcode$ 
contact$ 
tel$ 

12.4.3 The Supplier 
File 

'" 



code$ 
item$ 
scode$ 
price$ 
delay$ 
endcreate 

PROVISIONAL 

12.4.4 Enquiries You will find that the most frequently-needed facility is to find information about a particular 
stock item, in response to customer enquiries. You will need to find the information as 
quickly as possible, so we must use the locate command. Remember that the command 
will not work unless the file has been sorted on the field(s) used with locate. In this 
case the stock file must have been sorted by means of: 

use "sto" 
order code$;a 

The procedure can be quite simple: 

proc query 
input "Stock code? " ; st code$ 
use "sto" 
locate stcode$ 
if found() 

display 
sprint 
else 
print scode$ " does not exist" 
end if 

endproc 

We could use the findcommand to search for the name of the item In a large tile this 
would be much slower since it examines all string fields in each record of the file, until 
a match is found. 

12.4. 5 Stock Report We can also write a simple procedure to produce a general stock report 

proc report 
print chr(12) : rem * * * form-feed for a new page 
print tab 2 ; "ITEM" ; tab 11 ; CODE ; 
print tab 15 ; "QUANTITY" ; tab 20 ; "PRICE" 
print tab 28 ; "STOCK VALUE" 

*** 

print 
let total = 0 
use "sto" 
all 

print description$ ( to 10); " ": code$ ; tab 15; qty ; 
print tab 20; sellpr ; tab 30; sellpr *qty 
let total = total + sellpr *qty 
endall 

print 
print "Total stock value 
endproc 

total 

12.4.6 Recording Sales All we need to do to record a sale is to subtract the number of items sold from the relevant 
stock record. It is advisable to include some form of confirmation that we are dealing 
with the right stock item and that the stock is sufficient to meet the order. 

proc sale 
query 
print "how many? " ; num 
if num = sto.qty 

print num ; " * " ; sto.code$ "(" ; sto.description$ 
'')'' 

52 

print "Order value:- " ; num*sto.sellpr 
print "Confirm ((y/n)" ; 
if lower(getkey()) = "y" 

let sto.qty = sto.qty - num 
update 
end if 

else 
print "Not enough stock" 
end if 

endproc 



PROVISION i- 

----The following procedure allows you to record the delivery of stock. Again it requests 
confirmation of the details you type in before accepting them and updating the relevant 
stock record. 

proc delivery 
query 
input "Number of items? " ; num 
print num ; " * " ; sto.code$ ; "I" ; sto.description$ 

''('' 
print "Confirm (y/n) " ; 
if lower(getkey()) = "v" 

print "Accepted" 
let sto.qtv = sto.qtv + num 
end if 

endproc 

So far our procedures have only referred to the stock file. When we want to order more 
stock we shall have to refer to the supplier file for the name and address of the company, 
the price, and so on. 

Our first task will be to identify those companies that sell a particular item 

proc supplier 
use "sup" 
select instr(sto.supplier$ .sup.codes ) 
endproc 

This procedure simply selects the records from the supplier file whose codes are included 
in the string of codes in the supplier$ field of the current stock record. 

We shall now want to find the details of the price, delivery time and manufacturer's 
reference code from the lists in the supplier records. What we need is a table-lookup 
procedure which will locate a specific item in one list and give you the corresponding 
item from one of the other lists. 

proc lookup; seek$ ,within$ ,from$ 
local index ,num ,offset 
rem * * * find the character count to the start of *** 
rem *** seek$, in within$ *** 
let offset = instr(within$ ,seek$ ) - 1 
rem * * * now count the commas up to that point * * * 
let num =0 
let index =0 
while num offset 

let num =num +instr(within$ (num + 1 to),",") 
let index = index + 1 
endwhile 

rem * * * step over that many commas in from$ * * * 
let offset = 0 
while index O 

let offset =offset +instr(from$ (offset + 1 to),",") 
let index = index - 1 
endwhile 

rem * * * take the rest of the string 
let result$ = from$ (offset + 1 to ) 

*** 

rem * * * check for any comma 
let offset = instr(result$,", ") 
if offset 

rem * * * throw away the comma and all 
rem * * * following text * * * 
let result$ = result$ ( to offset - 1 ) 
end if 

*** 

*** 

endproc 

,.--..., This procedure takes three parameters: 

seek$ - the text to be located, 
within$ - the text string to be searched for seek$ 
from - the text from which the corresponding item is to be extracted. 

' '. j 

12.4. 7 Recording 
Incoming Stock 

12.4.8 Ordering New 
Stock 



PROV·ISIO NA l 
and leaves the found text in the string variable result$ If, for example, we define the 
following three string variables: 

let a$ = "8236" 
let b$ = "A 101,8236,C659" 
let c$ = "10,28, 14" 

and then call lookup as: 

lookup; a$,b$,c$ 

we shall find that result$ has the value "28" You can recover the numeric value by 
using val(result$) 

Let us use this procedure to find the supplier with the cheapest price 

proc cheap 
use "sup" 
lookup; sto.code$,sup.item$ ,sup.price$ 
let lowest = val(result$) 
let name$ = sup.coname$ 
all "sup" 

lookup; sto.code$,sup.item$ ,sup.price$ 
if val(result$) lowest 

let lowest = val(result$) 
let name$ = sup.coname$ 
end if 

end all 
locate name$ 
endproc 

And how about the one with the fastest delivery? 

proc fast 
use "sup" 
lookup; sto.code$,sup.item$ ,sup.delay$ 
let lowest = val(result$) 
let name$ = sup.coname$ 

all "sup" 
lookup; sto.code$,sup.item$ ,sup.delay$ 
if val(result$) lowest 

let lowest = val(result$) 
let name$ = sup.coname$ 
end if 

end all 
locate name$ 
endproc 

We can now write the procedure to order an item. 

proc doorder 
query 
supplier 
print "fast or cheap (f/c)"; 
let reply$ = lower(getkey()) 
if reply$ = "I" 

fast 
else 
cheap 
end if 

do form 
reset 
endproc 

The procedure doform produces the actual order form You should modify it to your 
own requirements. We shall use a simple version which shows the order details on the 
display. 



PRUVl~IUNAL 
''II 

proc doform 
print 

print sup.coname$ 
print sup.street$ 
print sup.town$ 
print sup.county$ 
print sup.postcode$ 
print 
print "Please supply " ; sto.buyqty ; 
print " * part number " ; 
lookup; sto.code$ ,sup.item$ ,sup.scode$ 
print result$ 
lookup; sto.code$,sup.item$,sup.price$ 
let pri = val(result$) 
print " at " ; pri ; " each." 
print 
print "Total value: " ; sto.buyqty * pri 
endproc 

Finally we can write a short procedure to run the application. It must open both files 
with the correct logical file names, clear the displav and show you the additional 
commands that you have. 

proc start 
open "stock.dbf"as "sto" 
open "suppliers.dbf"as "sup" 
clear 
endproc 

The clear procedure simply clears the screen and shows a list of the extra commands 
available 

proc clear 
els 
print "QUERY REPORT DELIVERY DOORDER SALE" 
endproc 

r::r:: 





PROVISIONAL CHAPTER 13 
ARCHIVE 
REFERENCE 

The five function keys are used in ARCHIVE for the following purposes: 
1 3. 1 THE FUNCTION 
KEYS - 

Key Use 

Fl Help 

F2 turn the promps on and off 

F3 call a command menu 
edit command - call command menu 
sedit command - select colour 

F4 edit command - insert text 
sedit command - reserve space 

F5 edit last line of input 
edit command - edit current line 
sedit command - leave sedit 

Pressing Fl displays a Help screen, containing infmmation relevant to your current action 1 3. 2 HELP 
and your possible options. You can ask tor further information on any of the topics listed 
at the bottom of the display by typing in its name. Just pressing ENTER goes back one 
level in Help, until you reach the level at which you entered Help, when you will be 
returned to the exact point from which you left. You can return immediately from any 
level of Help by pressing ESC. 

You can turn off the display of the control area and the prompts that it contains by 1 3.3 THE PROMPTS 
pressing F2. This allows you to see more of your work on the display You can restore 
the display of the control area by pressing F2 again - each press changes the state of the 
control area displav between on and off. 

Variable names may be up to thirteen characters in length, and must not start with a digit 13.4 VARIABLES 
IO TO 9) They may contain any combination of characters, except that '$' and ' ' have 
special meanings. 

If a variable name ends with a '$' it is a string variable. Strings may be up to 2 5 6 
characters in length. If the name does not end with a $ the variable is numeric. A variable 
name may refer to the contents of a record in a file an is then known as a field variable. 
Field variables are normally assumed to refer to the current file but may be made to refer 
to another open file by including a logical file name, separated by a' 'from the variable's 
name. Such a field variable is written as 

logical-file-name. field name 

e.g main surname$ 

If a variable name includes a dot then it must refer to a field in an open file. If there is no 
dot an attempt is made to match the name to an existing variable in the following 
sequence: 

1 l a field of the current file 
2i a local variable (a parameter in the current procedure, if any) 
3) a global variable 

An error message is given if no match is found 

57 



r K U Y I ~ I U tl f\ t 
13.5 FILES There are two aspects of files in ARCHIVE. The first concerns the structure of the files 

you use to hold your information. The second is the way in which Microdrive files are 
named. The method of naming files applies to all files, including procedure files, screen 
format files and to the ARCHIVE program itself. 

13.5.1 ARCHIVE 
Data Files 

13.5.1.1 A Field A field is the space reserved to hold either a string or a number. 

In ARCHIVE, each field is identified by a field variable name, as described in Section 
12.4. Whether a particular field can hold a string or a number is dependent on the name 
given to the field at the time it was created - string fields have a name ending with a $. 

13.5.1.2 A Record A record is a collection of fields, whose contents are related in some way. The fields 
of a record might, for example, be used to hold the name, the address and the telephone 
number of a particular person. 

In ARCHIVE the records are of vetieble length so that each record only takes up as much 
room as is necessary to hold the information contained in its fields 

13.5.1.3 A File · A file is made up from a number of related records. To continue the example of Section 
12.5.2, a file could consist of a collection of name, address and telephone number records 
for many different people 

A file is the basic unit that you can save to or load from a Microdrive cartridge. 

Each file has a name to identify it. In ARCHIVE you give a name to the file when it is 
created, but you can change the name at any time. 

13.5.1.4 Opening and 
Closing Files 

When you want to read from or write to a file you must first open it. Generally speaking, 
opening a file transfers a copy of the file from the Microdrive cartridge into memory 
although, in the case of a long file, it is possible that only part of the file will be present 
in memory at any one time. 

You can open a file in read only mode which, as its name suggests, means that you 
can not change its contents. You also have the option of opening a file in update mode, 
when you are allowed both to read and to change its contents. 

Every time you open a file, ARCHIVE reserves space for the field variables needed by 
a record of the file. The field variables always contain the values of the current record 
within the file. 

When you close a file any changes that you have made are copied into the file stored 
on the Microdrive cartridge and then the copy held in memory is discarded. Closing a 
file is the only way of ensuring that the copy on the Microdrive cartridge contains your 
latest version. 

When you leave ARCHIVE by means of the quit command all open files are closed 
automatically. 

13.5.1.5 Logical File 
Names 

Each open file has an associated logical file name, given to it when the file is opened 
If you do not specify a logical file name when you open the file, it is given the default 
name "main". 

The logical file name is used to identify a particular file when you are using several files 
at once. 

13.5.2 Microdrive Files 
13.5.2.1 File Names A full file name consists of three sections, separated by underscores. The three 

components are: 

an optional drive specifier 
a file name of up to x characters 
an optional three-letter extension 

A full file name for an ARCHIVE file could therefore be: 

eg MDV1 
eg FRED 
eg DBF 

MDV2_FRED_DBF 

58. 



PROVISIONAL 
If you do not include a drive specifier in a file name then ARCHIVE assumes that you 
are referring to the current drive, that is, the drive that was last used. The one exception 
is when you are loading ARCHIVE itself from SuperBASIC, as described in Section 2.1. 
In this case you must include the drive specifier in the file name. 

You do not normally need to specify an extension since ARCHIVE supplies a default 
extension for every file access. The look, open, close and create commands work on 
data files with an assumed extension of _DBF. The load and save commands supply 
a default extension of _DBL to the program files. The default extension for Import and 
Export files is _EXP, and when you Print to a file the default extension is _LIS. Screen 
format files, are loaded and saved by the sload and ssave commands, which assume 
an extension of _DBS. 

If you include an extension in any file name you type in then it will be used in preference 
to the default extension normally provided by ARCHIVE. 

Every time that an ARCHIVE command asks you to type in a file name you have the 
option of pressing the ? key to obtain a list of the names of files on the current drive. 
The file name "• _ *" (file name and extension) will appear in the input line and, if you 
accept this by pressing ENTER, you will be given a list of all files on the current drive. 

In this context the "•" character is a wild card which stands for any sequence of 13.5.2.2 Wild Cards 
characters. You may also use the character "]" to represent any single character in 
a file name. 

You have the option of using the line editor to modify the suggested file name, in order 
to obtain a list of the names of a paricular group of files. 

If, for example, you edit the file name to read "• _ TST" and then press ENTER you 
will be given a list of the names of all files with an extension of _ TST. Changing the 
file name to "X • _ ·" would result in a listing of all files, with any extension, whose 
names begin with x 
You could use the single character wild card "]" as, for example, 

MYFILE?_* 
which would result in a listing of all files with names such as: 

MYFILE1 MYFILE2 MYFILE3 
and so on, with any extension. 

Note that this facility is only available when you are requesting a list of file names 
before typing in a file name for any of the file-based commands (files, load, save, 
print and so on). 

Any file (of any type - eg a data file, a program file or a screen format file) whose name 13.5.3 Memory Files 
starts with a dollar sign($) is a memory file. Such files are always stored in the computer's 
memory and never on a Microdrive cartridge. Otherwise they work in exactly the same 
way as any other file of the same type. 

You may want to use a memory file for information that you are frequently loading, such 
as a designed screen format. Each time you use the display command ARCHIVE will 
replace your design with its own layout and you will have to use sload to recover your 
own. 

If you ssave your design as a memory file - for example: 

ssave "$scr" 

it will be saved in memory instead of on a Microdrive cartridge. It will then load almost 
instantaneously each time you load it with: 

sload "$scr" 

Memory files do, of course, use part of the computer's memory for their storage so you 
should not save long files as memory files. 

Also, remember that they are never transferred to a Microdrive cartridge and will be 
destroyed when you leave ARCHIVE. If you want to keep a permanent copy you should 

59 



PROVISIONAL 
use the backup command to copy the memory file to a new file whose name does not 
start with a dollar sign. For example: 

backup "$scr" ENTER "scr" ENTER 
The file named "scr" is saved on the current Microdrive cartridge. 

If, on a later occasion, you want to load the file as a memory file you can again use 
the backup command: 

backup "scr" ENTER "sscr" ENTER 

The file "sscr" is created as a memory file, but must still be loaded with (since it is 
a screen format) the sload command. 

13.6 FORMULAE A formula is any allowed combination of functions, cell references, labels and arithmetic 
operators. Examples are 

A1 *83 
rnonth(col()-1) 
if(instr(B6, "is"), 1,0) 
rept(" = ",len(G23)) + ":" 

13. 7 ARITHMETIC The arithmetic operations in ARCHIVE follow the same rules as for the arithmetic in 
SuperBASIC The valid range for numbers is from +-2.9E-39 to +-1.7E+38 Al! 
calculations are accurate to 17 significant digits but only a maximum of 16 significam 
digits may be displayed. 

The following arithmetic operations are provided: 

+ Addition (on numbers), or concatenation (on strings) 
- Subtraction 
* Multiplication 
I Division 
~Raising to a power 
= Equal 
:;, Greater than 
< Less than 
)= Less than or equal to 
(=Greater than or equal to 
o Not equal to 

Both operands must be of the 
same type. The result is a 
number, 1 if the comparison 
is true and O if it is not. 

Functions and operations have the following priorities: 

Operation 

Subscripting and slicing 
All functions 

Priority 

Unary minus (ie, minus just used to negate something) 
* ,I 
+ .: (rninus used to subtract one number from another) 
=,),<,C=,>=,<> 
not 
and 
or 

12 
11 
10 
9 
8 
6 
5 
4 
3 
2 

In addition, string slicing is provided, again in a form similar to that of SuperBASIC. 
The slicing operations provided are: 

(n) select the nth character. 

(n to m) seiect all characters from the nth to mth character inclusive. 

(n to) select from character n to end. 

(to m) select from the beginning to the mth character. 

13. 7.1 THE SCREEN This section will document the screen format, as implied by the SLOAD, SSA VE, SPRINT 
and SCREEN commands. 

13.8 SYNTAX Each command in Section 12 .8 is accompanied by a statement of its syntax (the exact 
structure of the command). This section describes the notation used to express the syntax. 

60 



PROVI ~ Ir,-::.~ ; · j J f'ii\ L 
Symbol 
< > 
I I 
() 

I 

(var) 
(exp;, 
(n exp) 
(s exp) 
<lfn) 
(fnm> 
<pnm) 
(slit) 
(ptm) 

Meaning 
syntactic entity 
optional item 
any number of 
or 

13.8.1 SYNTAX 
CONVENTIONS 

variable name, either string 01 numeric 
expression, either string or numer«. 
numeric expression 
string expression 
logical file name 
physical file name 
procedure name 
string literal 
print item 

A print item is one of four possibilities: at, tab, ink or paper. A full description of a print 13.8.2 Syntactic Entities 
item is, in our syntax notation, 

at(n.exp), (n.exp> I tab(n.exp) I ink (n.exp) I paper Cn.exp > 
As an example, consider the syntax of the order command. In our notation it appears as: 

order ( var) .ald (, (var) ;ajd) 

Order therefore needs to be followed by at least one variable name, separated by a 
semicolon from a letter which must be either 'a' or 'd'. In addition you may optionally 
include any number of pairs of a variable name and a letter, provided each pair is separated 
by commas. Clearly, the syntax notation provides a much more compact description. 

Note that the syntax notation does not tell you the meaning or purpose of the symbols 
- you will have to read the rest of the description for each command. The syntax only 
gives you a formal description of the number and kind of items that go to make up a 
valid command. 

ALL 

The following commands are available 13.9 THE COMMANDS 

ALTER 

APPEND 

BACK 

Syntax: all \ < lfn) : ... endall 

It scans through \ I logically present records of the file in the fastest 
possible time. This scan will not, in general, be in any particular 
sequence. The optional logical file name will force it to refer to a specified 
open file. If the logical file is not given it will scan on the current file. 

Syntax: alter 

Displays a list of the field variable names in the current file, together 
with their values in the current record. You can change the contents 
of any one or more fields. First select the field to change by pressing 
TABULATE until the cursor is at the correct field. You can then use 
the line editor to modify the value. Press TABULATE to mark the end 
of your changes to the field and move on to the next (SHIFT and 
TABULATE moves back to the previous field.) 

When you have made all the changes you want you should press 
ENTER to replace the old record with the new one. If the file is ordered 
the new version of the record is inserted in sequence, otherwise the 
insertion takes place at an unspecified position. 

Syntax: append I <lfn> / 

Adds a record to the specified file, or to to the current file if the logical 
file name is not given. The fields of the record are given the current 
values of the field variables. If the file is ordered the insertion is in 
sequence, otherwise the insertion takes place at an unspecified position. 

Syntax: bad I (lfn) I 
Moves backwards one record in the specified file, or in the current file 
if the logical file name is not given. 

61 



BACKUP 

CAT 

CLOSE 

CLS 

CONTINUE 

CREATE 

DELETE 

DISPLAY 

EDIT 

Syntax backup < fnm > 
Makes a copy of the specified file. You should make copies of all your 
files, to protect against accidental damage or erasure. 

Syntax: cat 

Displays a list of all files on the current Microdrive cartridge. 

Syntax: close i <' lfn) I 
Closes the specified file, or the current file if no logical file name is 
specified. 

Syntax: els 

Clears the display area and switches off any display screen See screen, 
sload, sprint 

Syntax continue 

Continues the previous' earch or find, from the record following the 
current record in the current file. 

Syntax: 
create (fnm) I as(lfn) I:()') ( <:var)) :endcreate 

It creates a named open file whose records contain the fields given by 
the list of variables specified in the command. You have the option of 
specifying a logical file name - if you do not the file is created with 
the logical file name "main". 

Syntax: delete I (lfn) I 
Deletes the current record from the specified file, or from the current 
file if no logical file name is given. 

Use this command with care since you can not recover the deleted 
record. 

Syntax: display 

Shows the logical file name of the current file and a list of the field 
names and the values of the field variables for the current record. If 
the file is sorted it also shows the sort fields and their sort priority. 

The command replaces any existing user-defined screen format with 
this list, which becomes the active screen format. 

Syntax: edit 

Calls the procedure editor to create a new procedure or to edit an 
existing procedure. 

ENDALL See ALL. 

ENDCREATE See CREA TE 

ERASE Syntax: erase ( fnm) 

Erases the specified file from the Microdrive cartridge. 

ERROR 

62 . 

Use this command with care since you can not recover the erased 
file. 

Syntax: error (pnm) < exp) , (exp) 

Marks a procedure for the purposes of error-handling. Any error which 
occurs during the execution of this procedure, or any other procedure 
which it calls, causes a premature return from the marked procedure. 
The procedure can determine the nature of the error by using the 
errnum() function to read the error number. This error number is cleared 
each time that error is executed. 



PROVISIONAL 
"- EXPORT 

FIND 

FIRST 

IF 

IMPORT 

INK 

INPUT 

Syntax: export <fnm) 

Saves the specified ARCHIVE file on a Microdrive cartridge in a form 
suitable for use by the other packages. 

Syntax: find (s.exp) 

Rewinds the file to the beginning and searches for the first record 
containing a match to the specified string in any string field. The match 
is independent of upper or lower case text. 

You can continue the search with the CONTINUE command, and 
determine whether the search was successful by examining the value 
returned by the found() function 

Syntax: first r < lfn > I 
Sets the file pointer to the first record of the specified file, or the current 
file if no logical file name is specified. 

Syntax: if ( n exp> : I : else : I : endif 
1) Without the optional ELSE. If the expression is non-zero the following 
statements are executed. If the expression is zero execution transfers 
to the statement following ENDIF. 

2) With the optional ELSE. If the numeric expression is non-zero the 
statements between IF and ELSE are executed. Otherwise the 
statements between ELSE and ENDIF are executed. In either case 
execution continues with the statements following ENDIF. 

Syntax: import ( fnm) create ( fnm) I as (lfn) I 
Reads a file produced by one of the other packages and produces a 
file suitable for use with ARCHIVE. 

Syntax: ink ( n exp) 

Sets the foreground colour for all following text to the colour specified 
by the value of the expression. The colours are: 

O and 1 black 
2 and 3 red 
4 and 5 green 
6 and 7 white 

If the expression evaluates to more than 7, the value taken is the 
remainder after division by 8, i.e. ink 9 is equivalent to ink I, both setting 
the print colour to black. If ink is used within a print command it will 
only change the print colour for the duration of that command. 

Syntax: 
input I (var) l(s.lit)l(ptm) I(; (var) l(s.lit)l(ptm)) 11 ; I 
Requests input from the keyboard to one or more variables. Each 
variable in an input list may be preceded by a initial string which will 
displayed as a prompt for the input. All input items must be separated 
from each other by semicolons. If the list has a final semicolon the cursor 
will not move to a new line after the input. 

The list of input items may include the cursor-positioning items 

at line.column 
tab column 

The first of these positions the cursor at the specified line and column 
position, and tab moves the cursor to the specified column within the 
current line. If the csursor is already to the right of the specified column, 
tab will have no effect. 

These two items may not be used outside an input or a print command. 

63 



'--' 



INSERT 

LAST 

LET 

LUST 

LOCAL 

LOCATE 

LOAD 

LOOK 

LPRINT 

64 

PROVISIONAL 
You may also use ink and paper as input items. If used within an input 
command they will only affect the ink and paper colours to the end 
of the input, when the colours will return to their original settings. 

Syntax: insert 

Displays a list of the field variable names in the current file and requests 
you to type in a value for each field variable. You should end the input 
to each variable by pressing TABULA TE which also moves on to the 
next field. (SHIFT and TABULATE moves back to the previous field ) 

When you have given values to all the field variables you should press 
ENTER to insert the new record into the current file. If the file is ordered 
the record is inserted in sequence, otherwise the insertion takes place 
at an unspecified position. 

Syntax: last I < lfn) I 
Sets the file pointer to the last record of the specified file, or the current 
file if you do not specify a logical file name. 

Syntax let (var) = (exp) 

Used to assign a value to a variable (as in SuperBASIC) 

Syntax llist 

Lists all the procedures currently in memory on a printer. 

Syntax: local (var;> I (,<var>) I 
Within a procedure, forces the following list of variables to be local 
variables. These variables exist only within the procedure in which they 
are declared and are undefined in any other procedure. Their values 
are destroyed on exit from the procedure. 

Syntax: locate (exp) I(, (exp)) I 
Finds the first record whose field contents match the expression(s) The 
record is located much more quickly than if you used find, but the file 
must first have been sorted. Each expression must explicitly refer to 
the contents of a particular sort field. In the case of a string field the 
match is case-dependent 

If you have ordered the file on more than one field you can specify 
several fields to locate (one for each sort field) separated by commas. 
The order of the items in the list must correspond to the order in the 
preceeding order command. For example, 

order animal$ ; a , colour$ ; a 
locate "Elephant" , "grey" 

will find the first record in which the fields animal$ and colour$ contain 
the text "Elephant" and "grey" respectively 

Syntax: load (fnm > 
Loads the specified procedure file from a Microdrive cartridge into 
memory. 

Syntax: look fnm as lfn 

Opens the named file for read access only If the logical file name is 
not specified it is given the default value "main". 

Syntax: lprint exp I ptm (; exp I ptm ) 

Displays the values of the following list of items on a printer, in the 
same way as for PRINT 



r tt u , 1 ~, u i't n i.. 
MODE 

NEW 

NEXT 

OPEN 

ORDER 

PAPER 

POSITION 

PRINT 

QUIT 

Syntax mode (var1,(var> 

Changes the form of the display. The first variable may have a value 
of O or 1. A value of O joins the control, display and work areas into 
a single region. A value of 1 separates them back into three distinct 
areas. 

The second variable may have a value of 4, 6 or 8 and switches the 
display between showing 40, 64 or 80 characters per line. 

The initial setting, when you load ARCHIVE, is equivalent to: 

mode 1,8 

Syntax: new 

Closes all files and deletes all procedures, ready for a fresh start. Any 
open files are NOT updated when they are closed. 

Syntax: next I (lfn) I 
Moves the file pointer to the next record in the specified file, or in the 
current file if you do not specify a logical file name. 

Syntax: open (fnm) I as (lfn) I 
Opens the specified file for both reading and writing. The file is given 
a logical file name "main" if you do not specify one. 

Syntax order (var) ;ajd I(, (var);ajd) I 
Orders the records of the file according to the contents of the specified 
fields. The first field specified in the list is the primary sort field. Records 
which have equal contents of their primary sort field are further sorted 
according to the contents of the next field in the list (if it is specified) 
and so on. For each specified field an ordering direction must be given. 
This must be either "a" or "d" to specify ascending or descending 
order respectively. 

Syntax paper (n.exp) 

Sets the background colour for all following text to the colour specified 
by the value of the expression. The colours are: 

O and 1 black 
2 and 3 red 
4 and 5 green 
6 and 7 white 

If the expression evaluates to more than 7, the value taken is the 
remainder after division by 8, i.e. paper 11 is equivalent to paper 3, both 
setting the print colour to red. 

If paper is used within a print command it will only change the 
background colour for the duration of that command. 

Syntax: position <n.exp) 

Makes the record whose record number is given by the expression the 
current record. 

Syntax: print I (exp) l<ptm) 1 (;(exp) I (ptm) l I r ; 11 
Displays the values of the following list of items, which must be 
separated by semicolons. If the list has a final semicolon the cursor 
will not move to a new line after the display. 

Syntax: quit 
Closes all files and returns to SuperBASIC. 

65 



REM 

RESET 

RETURN 

RUN 

SAVE 

SCREEN 

SEARCH 

SEDIT 

SELECT 

SIN PUT 

SLOAD 

SPRINT 

SSAVE 

66 

PROVISIONAL 
Syntax: rem 

When used within a procedure, it marks the rest of the line as containing 
a comment. Any following text on that line is ignored when the 
procedure is executed. 

Syntax: reset 

This command restores all the records in the current file which were 
removed by an earlier use of select. 

Syntax: return 

Used within a procedure to cause an immediate termination of the 
procedure by returning to the calling procedure 

Syntax: run <fnrn'> 

Loads the specified procedure file into memory and starts execution 
of the procedure called "start". 

Syntax: save <fnm) 

Saves all procedures currently in memory as a named file on a 
Microdrive cartridge 

Syntax: screen 

Displays the formatted screen layout previously SLOADed. It does 
nothing if there is no screen layout present. It does not display any of 
the variables in the screen. 

Syntax: search (n.exp) 

Searches the current file from the beginning until a record is found in 
which the specified expression is true. This record becomes the current 
record 

Calls the screen editor, to enable you to define c1 new screen layout. 
See Chapter 7. 

Syntax: select (n.exp) 

Scans the whole file selecting only those records for which the specified 
expression is true. The file then behaves as if only the selected records 
are present. 

You can restore all the discarded records with the reset command. 

Syntax: sinput <.var) I (,<var>) I 
Waits for input to one or more variables in the following list. All the 
variables in the list must be currently displayed in an active screen 
format. 

Syntax: sload (fnm) 

Loads a previously defined and saved display screen format. It also 
displays this screen layout and activates the display of any variables 
within the screen. The displayed values are then updated automatically 
whenever control returns from a procedure to the keyboard interpreter 

Syntax: sprint 

Forces a display of the fields of the current record. There must be an 
active screen format (the screen format is made active by a previous 
use of screen, sload or display). If there is no active screen format the 
command will have no effect. 

Syntax: ssave (fnm> 

Saves, as a named file on a Microdrive cartridge, the current display 
area as a defined screen format It saves the text of the screen and 
a list of the variables in the display, together with their positions. 



STOP 

TRACE 

UPDATE 

USE 

PRUVISIUNl\l 
Syntax: stop 

Terminates the execution of all procedures and returns control to the 
keyboard interpreter. 

Syntax: trace 

Switches the trace mode on and off. In trace mode each line of the 
program is displayed in the work area of the screen, as it is executed 

Syntax: update r < lfn) I 

Replaces the current record in the specified file (or the current file if 
no logical file name is given) with a record containing the current values 
of the field variables. 

Syntax: use I (lfn) I 
Makes the specified file the current file. 

WHILE Syntax while (n.exp;> endwhile 

Repeatedly executes the statements between WHILE and ENDWHILE 
for as long as the value of the expression is non-zero (true). 

You can think of a function as a kind of recipe which converts one or more initial values, 
known as the function's arguments, into a different value, which is said to be the value 
that is returned by the function. 

The functions provided by ARCHIVE may take three, two, one or no arguments The 13.10 FUNCTIONS 
arguments for a function are placed in brackets after its name. You must not leave a 
space between the name and the opening bracket, but spaces are allowed between items 
within the brackets. If a function takes more than one argument, the arguments are 
separated by commas. All functions must be followed by the brackets, even if they take 
no arguments. The presence of the brackets is a useful reminder that you are referring 
to a function. They allow you to distinguish between a variable and a function, even 
if they have the same name. 

In the descriptions of the functions; 

n.exp is a numeric expression, 
s.exp is a text string expression, 
lfn is a file identifier. 

The following functions are provided. 

ABS 
( n.exp 
CHR 
( n.exp 

CODE 
( s.exp 

COUNT 
( lfn ) 
DA TEO 

EOF( lfn 

Returns the absolute value of the argument 

This function returns the ASCII character whose code is n. Characters 
with ASCII codes less than 32 have no effect on the screen, but may 
be sent to the printer if they are preceeded by an ASCII null, ie, chr(O). 
For example, chr(O) + chr( 13) passes the ASCII character for a carriage 
return to a printer. This is useful if your printer needs control code 
sequences to produce special effects - refer to your printer manual for 
any special codes that it needs. · 

You can, tor example, send an "A" to the screen with: print chr(651 

This returns the ASCII value of the first character found in the specified 
text 

Returns the count of the number of records in the current file. 

Returns today's date as a text string in the form: 

"DD/MM/YYYY 
You must first have set the system clock, as described in the technical 
manual. 

Returns a value indicating the position of the record pointer in the current 
file, or the specified file if a file identifier is given. The value returned 
is one if you have attempted to read past the end of the file, otherwise 
it is zero. 

67 



ERRNUMO 

FIELDT 

FIELDV 

FOUND() 

GETKEYO 

INKEYO 

INSTR 

INT( n.exp ) 

LEN( s.exp 

LOWER 

MEMORY() 

MONTH 
( n.exp ) 

NUMFLD 
( lfn ) 

RECNUM 
( lfn ) 

REPT 

68 

rKUVf~f!~ :, ? " 
Returns the number of the last error which occurred (an error number 
of zero indicates no errors). The error number is the same as that 
displayed together with the error message when ARCHIVE reports a 
detected error. 

( n.exp , lfn 

Returns the type of the specified field in the current record of the 
specified file (or the current file if no logical file name is given). 

( n.exp , lfn 

Returns the value of the specified field in the current record of the 
specified file (or the current file if no logical file name is given). 

Returns one if a record is found by use of SEARCH or FIND, otherwise 
returns zero. 

Waits for a key to be pressed and returns the ASCII code of the key 

Returns the ASCII code of any key pressed at the time the function is 
called - it does not wait for a keypress but will return zero if no key is 
pressed. 

( s.exp1 , s.exp2 ) 

This finds the first occurrence of s.exp2 within s.exp 1 and returns 
the position of the first character of s.exp2 in s.exp1 . It will return 
a value of zero if no match is found. The match is case-dependent. 

instr(" January"," Jan") returns 1 
instr(" January", "an") returns 2 
instr(" January"," AN") returns O 

Returns the integer value of the number, by truncating at the decimal 
point. The truncation always operates towards zero. Thus; 

int(3. 7) returns 3 
int(-4.8) returns -4 

Returns the number of characters in the specified text. 

( s.exp ) 

Converts the specified text to lower case. 

Returns the number of unused bytes of memory remaining. 

Returns, as text, the name of a month. 

For example month(3) returns the text "March". 

If an argument larger than 12 is used, it is replaced by the. remainder 
after division by 12 so that, for example, month( 13) and month( 1) will 
both give the result "January". 

Returns the number of fields in the records of the specified file (or the 
current file if you do not give a logical file name). 

Returns the number (counting from zero at the first record) of the current 
record of the specified file (or the current file if you do not give a logical 
name). 

( s.exp , n.exp ) 

This function returns a string consisting of a number of copies of the 
given text, which may be up to 255 characters in length. For example, 
print rept(" • ", 5) will print five asterisks print rept( "abc" ,3) prints three 
repetitions of "abc". 



PRUVISIONAl 
SGN 
( n exp 

Returns + 1, -1 or 0, depending on whether the argument is positive, 
negative or zero. 

STR ( n.exp1 , n.exp2 , n.exp3 ) 

Converts a number, n.exp1 , to the equivalent text string. The second 
parameter indicates the form of the converted string as follows; 

O decimal (floating point) 
1 exponential, or scientific, notation 
2 integer. 
3 general format 
4 monetary format 
5 percentage 

The third parameter indicates the number of figures after the decimal 
point in the converted string. It should always be specified, although 
its value is ignored for integer, general and monetary formats. 

SOR 
( n.exp 
TIME() 

Returns the square root of the argument, which must not be negative. 

Returns, as text, the time of day in the format HH:MM:SS. You must 
first have set the system clock, as described in the technical manual. 

UPPER 
( s exp ) 
VAL( s.exp 

Converts the specified string to upper case 

Val converts the text to its equivalent numeric value. It will only convert 
text composed of valid numeric characters and the conversion will stop 
at the first character that can not be interpreted as a digit. For example, 
val("1.1ABC") will return the value I.I, and val("ABC") will reurn 0.0 

A procedure is a named section of program, starting with a procedure declaration of 13. 11 PROCEDURES 
the form: 

proc pnm 
or 
proc pnm 

and ending with 

endproc 

It may be referred to by name from any other program or procedure, including itself. 
It acts as though its code had been inserted at the point from which it is called. 

var (. var ) 

In ARCHIVE, the proc and endproc commands can not be used directly from the keyboard, 
but are added automatically when you use the procedure editor to create a procedure. 

The line editor is always available to modify the contents of the input line. 

Key(s) 

Left cursor 
Right cursor 
Up cursor 
Down cursor 

Action 

Move one character to the left 
Move one character to the right 
Move one word to the left 
Move one word to the right 

Delete one character to the left 
Delete one character to the right 
Delete all text to the left 
Delete all text to the right 

CTRL + Left cursor 
CTRL + Right cursor 
CTRL + Up cursor 
CTRL + Down cursor 

SHIFT + Left cursor Move left by one word 
SHIFT + Right cursor Move right by one word 

The program editor is entered by means of the Edit command. 

If there are no procedures present in memory you will immediately be offered the option 
of creating a new procedure, as described later. 

Otherwise you are given a list of all the procedures in memory at the left hand side 
of the display area. The first procedure is highlighted, and is listed in full on the right 

13.12 THE LINE 
EDITOR 

13.13 THE PROGRAM 
EDITOR 

69 



13.13.1 Select 
Procedure 

13.13.2 Select Line 

13.13.3 The Editing 
Commands 

PROVISlnN1\.I 
of the display. The first line of the procedure is highlighted. This highlighting marks the 
current procedure and the current line of the procedure. 

You then have five options which are to: 

Select a procedure 
Select a line in the current procedure 
Call an editing command 
Insert text in the current procedure 
Edit a line of text in the current procedure 

Press TABULATE to move down the list of procedures. Pross SHIFT and TABULA TE 
to move up the list. 

The listing on the right of the screen always shows the current procedure. 

Press the down cursor key to move to a lower line and the up cursor key to 1110'"" to 
an earlier line m the current procedure 

Press F3 for the menu of editing commands There me lour· commands. '.>t1lectcri tr. 
pressing the key corresponding to the first letter 

Delete procedure - delete the cur rent procedure. 
Press ENTER to delete the procedure il1~1l1i19t1t0d on the lett ct t!-: .;1.,r .r , 
Press any other key to IHave the command \.l\/1th(,1J t du!et1n~J the P' uce:'.i1 .r · · 

~fow procedure - creates a new p1 ocedu.e 
Type m the name ol Lhe new procedure anc! prc:-,s ENTER If a procedure; 
of that name already exists vou will not create a new procedure but will hi, 
offered the opportunnv to edn the named procedure. 

Cut - removes text from the current procedure and 
transfers it to the paste buffer Use the up or down cursor keys to rnako the 
first (or last) line of the region to be removed the current line before caliin\J 
this command. Then use the up o, down cursor keys to mark the re(1ion 
of text to be removed. F'ress ENTER to remove the text into the paste butte, 
The new text replaces the old contents of tho paste buffer 

Paste - insert text from the paste buffer, below the 
current line of the current procedure 

13.13.4 Insert Text Press F4 to select the option to insert one or more 11evv lines of text below the current 
line of the current procedure. Then type the line of text and press ENTER You can lc,JVf.;; 
this option by pressing ENTER without any preceding text. 

13.13.5 Edit Text Press F5 to select the option to edit the current line of the current procedure. The lino 
of text is copied into the input line, with the cursor at the start of the editable text 111 
the line. You can then use the line editor, described in Section 9.2, to modify the text. 
Press ENTER to replace the old line of text and return to the main level of the Edit 
command. 

13.14 ERRORS When ARCHIVE detects an error in a command typed at the keyboard or in a procedure 
it displays an error number and a short error message Examp!es of errors that would 
be detected are: 

attempting to divide by zero 
if not matched with an endif 
supplying a procedure with the wrong number of parameters 

If you use the error command in your programs ARCHIVE will not report any error that 
it detects in any procedure marked with error. You are left to deal with any such error 
in any way that you want You can find which error has occurred by examining the 
value returned by errnum() This number is the same as the number which ARCHIVE 
would have given, together with the error message. 

70 

The list of error numbers and error messages is not available at the time of writing. 







sinc::lair 

QLEasel 





PROVISIONAL 

EASEL is a business graphics package with a difference. It is so easy to use that you 
will probably find that you hardly ever need to refer to this manual. 

Firstly it is fully interactive, which means that you see the results of everything you do 
immediately From the moment you start you can just type in a series of numbers and 
see them displayed as a graph, as you type them in. You never need to worry about 
building up tables of values; EASEL takes care of that kind of thing for you, and keeps 
them where they should be - out of sight. 

You can add text to the graph just as simply as you enter data and, once it is there, 
you can edit it or move it around (easily, of course!) until you are satisfied with the result 

EASEL has a pyramidal structure in that its facilities are organised in a series of levels. 
The top level, which is immediately available when you start, allows you to do the most 
commonly-needed operations, such as entering data or text Beneath the surface are 
many sophisticated commands, each of which has a whole series of sub-levels. The 
full power of EASEL becomes apparent as you become more familiar with it and dig 
more deeply into the pyramid. 

Despite this power, EASEL still remains simple to use at all levels You do not need to 
remember lots of numbers and commands, since you are guided through each process 
by a carefully-designed sequence of prompts which explain what you can do at each 
stage. In particular, EASEL has a design by example facility which allows you to select 
or design anything from a single line or bar to a whole graph, simply by choosing from 
a set of pictures With this facility you need never be in any doubt as to what the final 
appearance of your graph will be. 

You should now go on to Chapter 2 which explains how to load EASEL and start using 
it. Don't just read this manual: try everything out as you go along. Please experiment 
as much as you like - you can not harm the computer in any way. The more things 
you try out the faster you will discover how simple and powerful EASEL is to use. 

CHAPTER 1 
ABOUT 
EASEL 





PROVl~tUNAL 
CHAPTER 2 
BASIC 
OPERATIONS 

This chapter describes how to load EASEL and how to use the basic options, immediately 2.1 INTRODUCTION 
available when you start. By the end of the chapter you should be able to produce useful 
graphs and charts, using EASEL' s pre-defined displays. 

When you switch on the computer it will only respond to commands in SuperBASIC. 2.2 LOADING EASEL 
You will have to load EASEL from its Microdrive cartridge. You will normally do so by 
inserting the EASEL cartridge in drive 1 (the left hand drive) and then typing: 

LGO MDV1_EASEL ENTER 

After a few seconds the screen will show the message: 

EASEL - Copyright Psion Ltd 1 983 
Press any key to start 

You should then press any key on the keyboard to start EASEL 

Before going any further, try typing in a few numbers - for example, 3, 5, ·2, and so 
on - to see how easy EASEL is to use (don't forget to press ENTER after each number). 
See how your graph is displayed straight away, without your having to do anything else. 
Notice that the scale of the graph adjusts itself automatically to suit the numbers you 
type in. 

Try pressing a few other keys, and see what effect they have on the display. Don't worry 
about doing anything wrong - you can't do any harm. When you have realised that there 
is no way you can cause any damage you will be in a better position to find out what 
EASEL can do. 

HELP NUMBERS Move X-WIRES TEXT Move FORMULAE COMMANDS 
press F1 vertical wire rnove r x-wres press F3 
PROMPTS to entry posn with- .• type" Enter ESCAPE 
press F2 & type number keys i then text directly press ESC 

Title 
10- 

5- 

0- 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

X-axis Title 
~ ., 

7 

I FORMAl0 REP::BARt3 '°,~~=, CURRENT NAME 'Figures 
Figure 2.1: The Main Display. 

When you have loaded EASEL the display should look like that shown in Figure 2.1. 
The display is divided into four main areas, known as the control area, the display area, 
the input line and the status area. 

2.3 APPEARANCE 

3 



PROVISIONAL 
2.3.1 The Control Area The control area occupies the top four lines of the display and shows you your options. 

Its contents will change from time to time, depending on what you are doing, and it 
also confirms your choices. Initially it shows that you have eight main choices which are to: 

press the Help key, 
turn off the prompts 
type in a number, 
move the cross wires, 
type in text, 
type in a formula, 
use a command, 
press the ESC key. 

:oooa 

Figure 2.2: The Control Area. 

BDDDDB 

Figure 2.3 The Display Area. 

2.3.2 The Display Area The display area is, as its name suggests, where all graphs produced by EASEL are 
displayed. Before you add any data this area shows an empty grid (dependent on the 
display format) ready for you to type in some figures. 

BDDDDB 

Figure 2.4: The Input Line. 

BDDDDB 

I '{, ·I 

Figure 2.5: The Status Area. 

2.3.3 The Input Line The third line from the bottom of the screen starts with a question mark. (In 40-column, 
ie TV, mode the 'input line' occupies two lines of the display.) It is known as the input 
line, and is where anything that you type at the keyboard will appear. You should always 
indicate the end of your typed input by pressing ENTER.In many of the commands, EASEL 
will place suggested input in this line. You may accept this input by just pressing ENTER, 
or you may type in your own input which will replace that suggested by EASEL. 

2.3.4 The Status Area The status area uses the bottom two lines of the screen and tell you about the current 
state of the display. The format tells you how the values you type in will be displayed. 
There are eight different display formats (numbered Oto 7) to choose from, pre-defined 
to give an assortment of bar, line and pie chart displays. (In Chapter 6 you will find out 
how to change them to suit your own purposes.) When you have just loaded EASEL, 
the format is set to give you a bar graph display (format 0). 

4 



PHUVl~IUNAL 
You are also told the name of the current figures. This is the set of figures that is changed 
when you type in numbers. In addition you are told the style (as a bar, line or pie number) 
which will be used to represent them. Don't worry 2-4 if some of this information does 
not mean very much at first - you will find it useful when you have used EASEL for a 
short time. 

The status area also tells you the current mode of operation; this is initially set to data 
entry, ready for you to type in some numbers. The final piece of information in the status 
area is the amount of memory that is currently being used, as a percentage of the total. 
The status area is also used to display error messages, should you make a mistake. These 
error messages tell you what has gone wrong and, if necessary, how to put it right. 

BDDDDB 

Figure 2.6: Help. 

The first option, displayed at the top left of the control area, shows that you may ask 
for Help by pressing function key (Fl). Regardless of any other changes in the control 
area display, the Help option will always be shown (unless you have switched off the 
prompts - see Section 2 5) This indicates that the Help facility is always available, no 
matter what you are doing. 
Try pressing the Help key now. When you do, the current display will disappear, to be 
replaced by one giving brief details of your options. At the bottom of this display there 
is a list of topics. You can ask for further information about any one of these topics by 
typing in its name and pressing ENTER. You do not need to type the whole of a name; 
you need only to type in the first few letters - enough to distinguish it from any of the 
other names in the list. 

When, after typing in one of these names, you press ENTER you will find that further, 
more detailed, information is shown about the command you have selected, and another 
list of sub-topics will be shown. You may then select one of these sub-topics by typing 
in the first few letters of its name, as described before. You may continue this process 
until no further information is available. 
At any stage you may return to the previous screen by simply pressing ENTER. Repeatedly 
pressing ENTER will eventually take you back to the main display, with the control, display 
and work areas. At this point you will have left the Help facility and will have been returned 
to the exact state before you pressed the Help key A faster way to return from Help 
is to press ESC. This will return you from any point with Help, back to the state from 
which it was first called. 
Try using the Help facility to examine some of the pathways through the information. 
Don't worry if you do not understand some of the information that is shown - it will 
make sense when you actually need to use it. All you need to do at the moment is to 
become familiar with the way in which the Help facility is used. When you have finished, 
press ESC to return to the main display. 
It must be emphasized that Help is always available, at any time. Whenever you are 
not sure what you should be doing, just press the Help key even if you are, for example, 
in the middle of typing in numbers or text as part of a command. You will not always 
start at the same point in Help, but will be presented with the information most relevant 
to what you were doing when you pressed the Help key. 

When you have found the information you need and leave Help (by use of the ESC 
or ENTER keys) you will always be returned to the exact point from which you started, 
as though there had been no interruption. Use the Help key as often as you like - it is 
there to assist you and will usually be the quickest and simplest way of solving your 
problems. 

2.4 HELP 

5 



PROVISIONAL 
2.5 THE PROMPTS In addition to showing your options,the control area highlights your choice and, when 

necessary, suggests what you should do. These aids to using EASEL are known as prompt 
messages or just prompts. 

Try pressing function key 2 (F2). The display will be redrawn without the control area, 
leaving more room for your graph. You can bring back the control area by pressing F2 
again. EASEL works in exactly the same way, whether the prompts in the control area 
are displayed or not - you are free to choose either option. You will probably find it most 
useful to build up your graphs with the prompts in the control area visible, and then 
turn them off to look at the finished result. 

You can restore the control area display at any time by pressing F2 again. 

Figure 2.7: Prompts 

BDDDDB 

2.6 THE CROSSWIRES You can indicate any point in the display area by using the crosswires, shown as a vertical 
and a horizontal line superimposed over the display. Initially, when you are in data entry 
mode, the vertical crosswire is visible, positioned on the cell (a position in the graph or 
chart where a value can be displayed) which will show the next number you type in. 
As you type in numbers the crosswire moves from cell to cell automatically. The 
TABULA TE key moves the vertical crosswire from one cell to the next on the right, for 
data entry ( pressing SHIFT and TA BULA TE moves to the cell on the left). You can also 
move the vertical crosswire to any particular cell by pressing the left or the right cursor 
key until it is where you want it. These keys move the crosswire smoothly across the 
screen, rather than in cell-sized steps. ' 

If the crosswires are not visible you can display them by pressing the cursor keys; press 
either the left or the right cursor key to display the vertical crosswire, and either the up 
or down cursor key to show the horizontal crosswire. Once both crosswires are visible 
you can move them around the display area by means of the cursor keys. If you press 
one of these keys and release it immediately the crosswire will move a short distance 
in the appropriate direction, but if you hold the key down the crosswire will move more 
rapidly across the display area. Note that the crosswires move freely, to any point in 
the display area, in contrast to the behaviour of the vertical crosswire in the data entry 
mode. 

Try using the cursor keys to move the crosswires around the screen. 

Figure 2.8: The Crosswires. 

BDDDDB 

6. 



PROVISIONAL 
If you type in a number (and then press ENTER) it will be displayed immediately on the 2. 7 NUMBERS 
graph, at the current position of the vertical crosswire. Move the vertical crosswire to 
a point near the centre of the screen, type in a number and press ENTER. You will see 
the value displayed on the graph immediately and the vertical crosswire will move one 
cell to the right, ready for the next number to be entered. If you now try pressing either 
TABULATE, or SHIFT and TABULATE together, you will find that each press of the 
key makes the vertical crosswire move left or right by one cell. 

BDDDDB 

Figure 2.9 Entering Numbers. 

BDDDDB 

Figure 2.10: Entering Text. 

When you have displayed a few values on the graph you can try adding some text. 2.8 TEXT 
You can do this by typing a double or single quotation mark (" or ') as the first character 
to the input line. 

The crosswires will appear (if they were not already visible) and any following text that 
you type in will appear in the display area starting at the intersection of the crosswires. 
Don't worry if the text is not in the exact position that you want; it is very easy to move 
the text to another position. When you have typed in your text, press ENTER. You can 
now move your text to the exact position you want using the cursor keys. The crosswires 
will move across the screen, carrying the text with them. When the text is in the position 
you want, you should press ENTER to both drop the text and switch off the crosswire 
display. 

At this stage you might like to try adding a few messages at a number of different places 
in the display to see how it works. 

Remember that the text which labels the columns of the graph is treated specially and 
can only be altered using the Labels option of the Edit command. 

You will normally use a formula to produce a new set of data from existing sets, and 2.9 FORMULAE 
this will be described in Chapter 3. As a simple illustration of the use of formula, however, 
we can change the current set of the data (which, as you can see from the status area, 
has the name "figures"). EASEL interprets any keyboard input that does not start with 
a numeric digit or quotation marks as a formulae. An example of the formulae would be; 

figures = figures * 2 

try typing this in to see what effect it has. As you can see the new graph that is displayed 
looks just the same as the old one except that the vertical scale has been doubled. If 
you want to return to the original scale of the graph you can type in a further formula: 

figures = figures I 2 
A formula always starts with the name of a set of figures. This name could be, as in 
the previous two examples, the name of an existing set or it could be a new name. 
In either case the contents of that data set is defined by the expression to the right of 
the equals sign in the formula. It is important to realise that the formula will affect all 
the values in the set, rather than just one value. 

7 



BDDDDB 

Figure 2.11. Entering Formulae. 

PROVISIONAL 

BDDDDB 

I 
Figure 2.12 The Commands. 

2. 10 THE COMMANDS The commands allow you to use some of the more sophisticated aspects of EASEL 
As indicated in the control area you should press F3 to gain access to the commands. 
When you do this the contents of the control area will change so that the central region 
shows a list of the available commands (the command menu) Try it now and, when 
you have the display of the command menu, as illustrated in Figure 2.13, press the Help 
key (F1) 

The display will be replaced by a brief description of the commands and a list of topics 
for further information, as described in Section 2 4 You can follow this list to find out 
in more detail what each command does, pressing ENTER to go back one level, or 
pressing ESC to go back to the command menu 

When the command menu is displayed you can select any one command simply by 
typing its first letter on the keyboard As an example you can activate the Quit command 
by pressing the Q key This command causes you to leave EASEL and return to 
SuperBASIC, with an option to stay in EASEL (in case you called the command by 
mistake) If you decide you really do want to leave EASEL, you will be first asked if you 
want to save any files. 

The remaining commands are described in later chapters 

HELP COMMANDS Change Delete Files COMMANDS 
press F1 H1ghl1ght Load Move Newdata press F3 
PROMPTS Olddata Print Quit Rename ESCAPE 
press F2 Same View press ES[ 

.. .. 

Title 
10- 

' 

5- . 

I 
I 0- I 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
X-axis Title 

Command7 

I FORMAT: REP: 6AR1 -_.vr~] CURRENT NAME: Sales 

Figure 2.13: The Command Menu. 

8 



PROVISIONAL 
You can generally use the ESC key to cancel the current action, or to leave a particular 2.11 ESCAPE 
sequence of operations 

We have already seen how you can use the ESC key to leave Help, from any level (Section 
2 4) and to leave the command menu (Section 2 10) 

You can also use ESC to cancel input to the input line. Try typing in a number and, 
rather than pressing ENTER, press ESC. The entry is cancelled, as you would expect. 

BDDDDB 

hguru 2 11\ • Escape 

This key is used to delete numbers, text, axis labels and the key box (when you have 2.12 FUNCTION KEY 4 
more than one set of figures - see Chapter 3) You will find descriptions of how to delete 
text and the key box in Chapter 4. 

You can delete a number from a graph by positioning the? vertical crosswire on the cell 
containing the number to be deleted and pressing F4 The crosswiros will rnove to the 
next cell to the right automatically, so that it is easy to delete several numbers with a 
small number of keypresses. 

You can insert a new cell after the one marked by the vertical crosswire (in the case 
of line graphs and bar charts) or the highlighted box (for pie charts) by pressing F5. 
A gap is opened up, ready for you to type in the new number. The new value will not 
have a label, but you can add one at a later stage 

A further feature, available at all times that you are typing characters at the keyboard, 
is a full line editor. With its aid you can modify any or all of the editable text in the input line. 

The editable text excludes, for example, the command prompt in the input line when 
you are using a command. In general, any text that appears as the result of pressing 
a single key can not be edited since it has already been interpreted and acted upon 
You can edit any text that you have typed in full, before you press ENTER to pass the 
text to EASEL. 

At all times each character that you type will be inserted to the left of the input line cursor 
position, and the cursor will move one space to the right. Regardless of the position 
of the cursor, all the text in the input line is accepted as input when you press ENTER 

The line editor uses the four cursor keys, together with the CTRL and SHIFT keys. 

The left and right cursor keys, used on their own, move the input line cursor by one 
character to the left or right. 

If you press SHIFT and, while holding it down, press the left or right cursor key the 
input line cursor moves left or right by units of a word, that is to the next space or comma. 

If you press CTRL and, while holding it down, press the left cursor key you will delete 
the character to the left of the cursor. Pressing CTRL together with the right cursor key 
deletes the character under the cursor. The following text closes up to fill the gap. 

If you press the up cursor key the cursor moves to the beginning of the editable text 
in the input line; the down cursor key moves the cursor to the end of the text 

2.13 INSERTING A 
CELL 

2.14 THE LINE EDITOR 

Left and Right 
Cursor Keys 

Up and Down 
Cursor Keys 

9 



PROVISIONAL 
Holding down the CTRL key and pressing the up cursor key will delete all editable text 
to the left of the cursor Pressing CTRL and the down cursor key deletes all text to the 
riqht, including the character under the cursor. 

10 



PROVISIONAL 

So far we have only described how to create and display a single set of figures. On 
many occasions you may want to display two or more sets of data on the same graph, 
for example to compare the sales figures for two successive years This chapter describes 
the techniques you can use to produce, modify and display graphs containing several 
sets of figures 
Although you may have defined several sets of figures, you can only modify one set 
at a time. The set that you can add to or change is known as the current figures, and 
its name is shown in the status area Its display is not necessarily shown on the screen 
It will, however, always be displayed when you are actually making any changes. 

There are two methods that you can use to produce second and subsequent sets of 
figures and these are by using the Newdata command, or by using a formula These 
two methods are described in this and the following section. Suppose you have created 
a set of figures called "sales" containing monthly sales figures and now want to include 
a display of the monthly costs. You can do this by pressing F3 (to get the command 
menu and then pressing the N key which calls the Newdata command You are then 
asked for the name to be given to the new figures and should, for example, type m 

costs ENTER (no quotation marks are needed) 

you are immediately given a new, blank graph (assuming you are m a bar or a line format) 
with the vertical crosswire set on the first column, ready for typing in the new set of 
numbers. The status area shows that the current figures are the new set, with name 
"costs". All you have to do rs type in the new numbers which are immediately displayed 
on the graph as normal. 

If you want to create a third set of figures, you can use the Newdata command again, 
exactly as has been described, giving each set of figures a diftorent name. You can create 
as many sets as you like, th8 only limit is the amount of computer memory that you 
have available. 

The Newdata command rs useful for defining completely new sets of figures, but on 
many occasions you may want to produce a new set that is related in some way to 
one or more existing sets. You may, for example, have already entered sets of figures 
for sales and costs, and then want to include a set of figures which represent the resulting 
profits Rather than calculate the profit figures yourself and then enter them by means 
of the Newdata command, you can use a formula and let EASEL do the work for you 
All you have to do is type in the formula which describes the new set of figures that 
you want, for example 

profits = sales - costs 

This will create a new set of figures with the name "profits" and each value being the 
difference between the corresponding values of the sales and the costs figures. The 
"profits" graph will be displayed immediately, and becomes the current figures set. You 
could easily produce a result like that of Figure 3.1. 

When you use a formula in this way you will normally have an equal number of values 
in each of the sets of figures referred to in the formula This, however, is not essential; 
EASEL will calculate and display all possible values, even if the sets of figures contain 
different numbers of values. You can also use a formula without having to refer to existing 
sets of figures You could, for example, write a formula such as 

wave = 10 * sin(count/2) 

This formula creates and displays a new set of figures with the name "wave", whose 
values are calculated using the sin() function. In this formula we have also used "count". 
This provides a value which is the number of the cell of the graph, counting from the 
left hand side. The left-most column gives a value of 1, the next column is a value of 
2, and so on. To see how this works, type in the formula 

a = count 

CHAPTER 3 
MULTIPLE 
DATA SETS 
3.1 INTRODUCTION 

3.2 THE CURRENT 
FIGURES 

3.3 THE NEWDATA 
COMMAND 

3.4 USING A 
FORMULA 

11 



3.5 THE OLDDATA 
COMMAND 

3.6 VIEWING THE 
DATA 

12 

rrtUVh)IUnftL 

I 
HELP COMMANDS Change Delete Files COMMANDS 
press F1 H1ghl1ght Load Move Newdata press F3 
PROMPTS Olddata Print Quit Rename ESCAPE 
press F2 Same View press ESC 

Financial Summary 
~ Cost D Sales ~Profits 15 

$ 
m 

10 

I 5 
0 
n 

0 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1984 

Command? 
------------- ---· ---< 

FORMAT 1 REP LINES 
CURRENT NAME• Sales 

View Data • MODE 
23%MEMORY 

F,gure 3. 1 Profit Calculation 

and look at the graph that is drawn. When you use count in a formula, the number 
of values in the set of figures is made equal to the number of columns currently being 
displayed on the graph. 

When you use the Newdata command the sets of figures that you create becomes the 
current set. Remember that this is the set that can be added to or changed by typing 
in numbers. If you want to make some changes to an existing set of figures that is not 
the current set, you can do so by using the Olddata command. When you call this 
command you are asked to type in the name of a set of figures In this case the name 
you type in must be the name of an existing set, and that set becomes the current figures. 

Suppose that you have two sets of figures called "costs" and "sales", and that "sales" 
is the current set of figures. If you want to change or add to the "costs" figures you 
should select it by the Olddata command. The costs figures will then be displayed on 
the graph and you can modify the data by typing in numbers, as described in Chapter 2. 

You can see the effect of displaying all of your figures on a single graph by means of 
the View command. Try calling this command (by pressing F4 and then the V key). 
As you see, EASEL suggests that all the sets of figures should be displayed on the graph 
and you can accept this suggestion by pressing ENTER. EASEL then suggests the display 
format to be used and again you can accept this suggestion by pressing ENTER. A graph 
is displayed immediately, containing all the data that you have defined together with a 
key box which shows the name of each set of figures and the way that it is displayed 
(the key is not shown if you only have one set of figures on the graph). You can move 
the key if it is not in a convenient position and this is described in Chapter 4. 

If you have defined a large number of sets of figures the graph will be very crowded 
and have very little impact. In general it is a good idea to display only a small number 
of sets of figures on any one graph to make the best visual impact This does not mean 
that you should only define a small number of sets of figures, since the View command 
allows you to select which sets of figures that vou want displayed. A way that you can 
do this is by not accepting the "all figures" suggestion given in this command. Instead 
of just pressing return at this point, you can type ,n a list of the names of those sets 
of figures which you want to be displayed, separating the items in the list by commas. 
When you have typed in all the names of the sets of figures that you want to be displayed 
you should then press ENTER. 



PROVISIUNAL 
You may also select a different format for the display instead of accepting the suggestion 
made by EASEL. Instead of just pressing ENTER to accept the suggested format you 
can type in a number between O and 7. EASEL is provided with eight pre-defined formats, 
numbered O to 7, providing various styles of bar charts, lines or pie diagrams. Try using 
the View command to display three or four sets of figures in a number of the different 
formats available. Chapter 6 will describe how you can design your own graph format, 
or style of bar, line or pie chart. Figure 3.2 is an example of what you can produce 

TEXT Move II FORMULAE COMMANDS 
press F3 

HELP NUMBERS Move 
press F1 vertical wire 

~ROMPTS to entry posn 
press F2 & type number 

X-WIRES 
rnove r 
with+-., 
keys .J. 

x-wres 
type" 
then text 

Enter 
directly 

ESCAPE 
press ES[ 

Softco Production Figures 
20 

$ 
m 15 

10 

0 
n 

5 

0 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1984 

View Data, MOOE 
23%:MEMORY 

- 
FORMAl0 REP UNE16 
CllJRRENT NAME: profits 

Figure 3.2 Lines And Stacked Bars 

13 





PROVISIONAL 

Section 2 8 describes how you can add text at any point in the display by typing in the 
text, starting with quotation marks, and then moving it with the aid of the cursor keys. 
In this chapter we shall describe how you can edit existing text, or move it to another 
point in the display In addition we shall describe the changes you can make to the axis 
labels, the graph title and the key 

CHAPTER 4 
USING TEXT 
4.1 INTRODUCTION 

If you want to make changes to a piece of existing text you can use the Edit command, 
and then select the Text option by pressing the T key As indicated in the control area, 
you should then use the cursor keys to move the intersection of the crosswires close 
to the text which you want to change. It is not necessary to position the crosswires 
exactly on the start of the text When you have positioned the crosswires you should 
press any key and the crosswires will attach themselves to the nearest text. A copy of 
the text will also appear in the input line. 

4.2 EDITING AND 
MOVING TEXT 

You then have two choices: you may delete the text by pressing F4, or modify the text 
with the aid of the line editor (see section 2 14) If you choose to delete the text this 
will also end the command 

When you are completely satisfied with the wording of the text vou should press ENTER 
You are then given the opportunity to reposition the text using the cursor keys. Press 
ENTER when you are satisfied with the position. 

A further text option is to change the colour in which text rs printed You do this by 
means of the Change command which is described in Chapter 6 Any new text is displayed 
in the colour set by the last change of text colour. This includes any text that you edit 
after a change of colour. A convenient way of changing the colour of an existing piece 
of text is first to change the text colour and then to use the Edit command on the existing 
text, without actually changing its position. 

All graph displays in EASEL can use three titles; a qsnoral title, an x axis thorizontal axis) and 4.3 GRAPH TITLES 
a y axis I vertical axis) utie When you load EASEL these titles are shown with the text "TITLE", 
"X-axis Title" and "Y-axis Title" respectively 

EASEL treats a graph title in a similar way to any other text. There are a few slight differences; 
the initial colour of the title is not necessarily the same as for other text lit has a separate default 
colour set by the display format! and there is a special "edit title" prompt which appears in the 
input line when you attach the crosswires to a utle. Other than this, you can write a title, modify 
or move 1t exactly as described in the previous section. You can position the title anywhere in 
the display area, including the surrounding border. 

The cells of the graph are provided with labels which are initially set to show the months from 4.4 THE AXIS LABELS 
January to December. EASEL treats these labels specially, and you have to use the Labels option 
of the Edit command to change them When you do so the crosswires will attach themselves 
to the nearest label. This label will then be displayed in full I normally only the first few characters 
are shown, depending on the width of the cells) and the text is also copied into the input line. 
You can then delete the label by using F4, or edit it as described in Section 4.2. Press ENTER 
to finish editing the label. 

You cannot move an axis label; 11, for example, you attach the crosswires to an x-axis label and 
press either TABULATE or SHIFT and TABULATE together the label will not move. 

One of the options in the Edit command is to move the key If you select this option the crosswires 4. 5 THE KEY 
will attach themselves to the key immediately and you are then offered the option of either deleting 
the key by pressing F4, or moving the key by means of the cursor keys. It you choose the move 
option the cross wires will pull a box equal in size to the key around the display area. When 
you finally press ENTER the graph will be redrawn with the key in its new position. 

You may at some time want to restore the display of a key which you had deleted earlier. You 
can do this by using the Edit command and selecting the Key option The crosswires will attach 
themselves to the position of the (invisible) key and you may, if you want, move the key to a 
new location. Whether you move the kev or not, pressing ENTER will cause the graph to be 
redrawn, including a display of the key. 

15 



16 

PROVISIONAL 
The only change that you can make to the contents of the key box rs to change the colour of 
the text that it includes. This text is always drawn in the colour last set by using the Change 
command (see Chapter 6) The symbols shown in the key box will. of course, always match 
the symbols which you use to display the graphs. 



PROVISIONAL 

Apart from a brief mention of the line graph and pie chart formats in Chapter 3, we 
have so far described everything in terms of bar charts As you may have seen when 
you experimented with the different display formats, the sets of figures can also be 
represented by line graphs or by pie charts. This allows you to display a given set of 
ti 10 figures in many different ways so that you can choose the method most appropriate 
tor your needs EASEL has been designed so that the values themselves are kept 
completely separate from the way in which they are displayed, making it very simple 
for you to make such changes. 

Several of the pre-defined formats provided with EASEL use lines to display some of 
the sets of figures. Each value may be marked by a symbol and the values are joined 
by lines of various thicknesses and colours. You can also use "filled" lines where the 
space between the line and the zero level is completely filled with colour. You may find 
this form of display useful for showing "critical values", such as a break even level, as 
a background to your graph. Since bars and lines are both displayed on the same type 
of grid, you can mix bars and lines in any combination Titles, axis labels, qeneral text 
and the key box all behave in exactly the same way for both bars and lines. 
If you select a format which uses a line graph for your current figures, you can enter 
your data in exactly the same way as described for bar charts. 

As you type in the numbers the graph is drawn using a thin white line, or a filled line, 
depending on the format you have chosen You are completely free to move the vertical 
crosswire backwards and forwards to change the value in any cell, and the lines will 
be redrawn whenever you make a change. 

When you have finished entering your values you can use the View command to see 
your graph with your chosen colour and style of line. 

Although a pie chart is verv different in appearance from a bar chart or a line graph, 
EASEL allows you to create them in exactly the same way 

HELP NUMBERS Move X-WIRES TEXT Move FORMULAE COMMANDS 
press F1 vertical wire mover x-wres press F3 
PROMPTS to entry posn with •. ~ type" Enter ESCAPE 
press F2 & type number keys J. then text directly press ES( 

BRITAIN 
220 

~ 
SPAIN 
100 
L~ \ 

FRANCE 
GERMANY" .••.•••• _ •. -. ..• " 300 
225 v- 

ITALY 

!PORTUGAL] 
180 
COSTS 

FORMifi ~REP' PIE 
WRRENF NAME COSTS 

Data Entry,MOOE 
90%:MEMORY 

Figure 5.1 A Pie Chart 

CHAPTER 5 
LINE GRAPHS 
AND 
PIE CHARTS 
5.1 INTRODUCTION 

5.2 LINE GRAPHS 

5.3 DIRECT ENTRY 
FOR LINES 

5.4 PIE CHARTS 

17 



: .. : PROVISIONAL 
To illustrate entry into a pie chart, use the Newdata command to create a new set of 
figures called, for example, "costs". Now use the Change command to display "costs" 
(as yet there is nothing to see) with format 7, which is a pie chart format. Now try typing 
in a few numbers, just as if you were entering values into a bar chart. Figure 5 1 shows 
a pie chart with some numbers entered 

The first number you type in will produce a complete circle of colour in the display area,. 
This is simply the display of a pie chart which contains only one value. Now use the 
TABULATE key to move the the box cursor to another label. When you type in a second 
number the circle will be divided into two sections, showing the relative proportions of 
the two values. Note how each section is labelled, together with its value. 

During data entry into a pie chart the next cell to receive data can not be shown by 
a crosswire position, as in bar charts and line graphs. If the cell is being displayed on 
the pie chart, its label will be highlighted, otherwise it is indicated by a special highlighted 
display box at the bottom left of the display area In Figure 5.1 this is the label 
''PORTUGAL''. 

Pie charts are treated exactly as bar charts and line graphs. You can add, delete, and 
move text and titles exactly as described for lines and bars in the earlier chapters 

18 



PROVISIONAL 

By now you will be able to create graphic displays of your sets of figures, using bar 
charts, line graphs and pie diagrams The appearance of these graphs has so far been 
limited to use only the pre-defined types of display provided with EASEL. In this chapter 
you will learn how to modify the appearance of a display to match your own requirements. 

You have great tlexib-litv in changing the display, ranging from changing the appearance 
of a single value to make it stand out in the display, to designing a completely new display 
format with a new border, graph paper, axis markings and type of representation for 
all the figures in the graph 

There are two main routes to redesigning the display; design by example, and selection 
by style number. 

In many cases you may not know the number of the bar that you want to use or you 
might want to try out the effect of using several different formats to find the one you 
like best. In such a case you can take advantage of the ability to create a design by 
example. This is by far the easiest way of changing the design of any feature. 

Wherever you have the option to choose a numbered style feature you can, instead of 
typing in a number, just press ENTER. Try this method of selecting a bar by typing in 

F3 Change to BAR? ENTER 

The display changes to show examples of all the available bar styles, together with their 
associated numbers. This is shown in Figure 6.1. The first bar in the display is surrounded 
by a box which indicates that this is the bar that will be selected for use if you press 
ENTER. If you select a different bar you should use the left and right cursor keys to 
move this box from bar to bar until it is positioned on the one you want. When you 
press ENTER the bar you have chosen will be used in the display of the current set of 
figures. 

COMMANDS 
press F3 

HELP 
press F1 

CHOOSE OBJECT Make the section 
by moving the box cursor with the 
cursor keys and press RETURN For a 
new design select the last (7) 

PROMPTS 
press F2 

ESCAPE 
press ESC 

FORMAT: 0 REP BAR13 
CURRENT NAME: Figures 

View Data :MOOE 
11%:MEMORY 

Figure 6.1. Selecting A Bar 

CHAPTER 6 
DESIGNING A 
DISPLAY 
6.1 INTRODUCTION 

6.2 SELECTING A 
REPRESENTATION 

6.2.1 Design by 
Example 

19 



PROVISIONAL 

20 

You will notice that there is one bar present which shows a question mark in place of 
its number. You can select this bar if you want to make your own design, rather than 
using one of the pre-defined styles 

To see how this works, position the selection box on this bar and then press ENTER. 
The design by example continues by presenting you with a blank bar design and a list 
of options, illustrated in Figure 6.2. 

COMMANDS 
press F3 

HELP 
,eress F1 

DESIGN Use Tl keys to select design option 
and press return Use •..• keys to select 
colours then press return 
Continued change until satisfied 

ESCAPE 
press ESC 

PROMPTS 
press F2 

oo• 
Choose bar fill colour 

Choose bar border colour 

Choose border thickness 

Satisfied with this design 

FORM.AJ 0 REP: BARS 
CURRENT NAME Figures 

View Data• MODE 
11%MEMORY 

Figure 6.2: Designing A Bar 

The first option, which is highlighted, is to choose the bar colour from the palette shown 
across the top of the display. You have the choice of either moving to another option, 
by means of the up and down cursor keys, or of selecting the currently highlighted option 
by pressing ENTER. If you accept the bar fill option a box is drawn around the first colour 
in the palette and the specimen bar is filled with that colour. You can move from colour 
to colour by pressing the left or right cursor keys and make your selection by pressing 
ENTER when the bar is filled with the colour you want. 

The next option in the list, to select a border colour for the bar is then highlighted 
automatically Again you can either select this option by pressing ENTER, or move on 
to one of the other options, with the up and down cursor keys If you select this option 
you can choose the border colour for the bar in the same way as you chose the main 
fill colour. Again you should press return when you are satisfied with the result. 

The third option is to select the width of the border and, as with all the options, you 
can select it by pressing ENTER when the option is highlighted In this case you are 
asked to type in a number to represent the width of the border as a percentage of half 
the width of the bar. 

You are finally given the option of deciding whether you are satisfied with the design 
as shown. If you are you should press ENTER, when the new design will be added to 
the list of bar designs and it will automatically be used for display of the current set of 
figures. If vou are not satisfied with the design you can go back to one of the other 
options, using the up and down cursor keys, and try a new combination. At any time 
before you accept the design you can terminate the command by pressing ESC. This 
will cause you to leave the command without creating a new bar design. 



PROVISIONAL 
If you select the Line option of the Change command you will be offered the same design 
by example facility, where you can select one of a number of pre-defined lines or design 
a new one to your own specifications In this case you are able to select the line colour, 
thickness, and whether or not the line should be filled with colour down to the zero level 
In addition you are offered the option of choosing the shape and colour of the symbol 
to be attached to the line. 

The second method, which is useful when you are constantly using the same form of 
display for many sets of figures, is to specify the format and the style of bar and so 
on by number. EASEL is provided with 8 main display formats (numbered O to 7) and 
you can use this number to specify which format should be used each time you use 
the View command. In addition to using different styles of border, background and bar 
colour, these formats give you a range of display styles 

In addition, each style of bar, line and pie chart has a number which is shown in the 
status area when you are displaying a single set of figures. This makes the choice of 
style very simple, provided you know the number of the style that you want. Suppose, 
for example, that you are displaying a single set of figures with bar style 13 and you 
know that you want to use bar style 8 You can make this modification very simply by 
means of the Change command, by typing in the following 

F3 Change to BARS RETURN 

Remember that vou only' need to type in the first character of each word and EASEL 
fills m the rest of the command for vou. 

You can redesign the entire appearance of any or all of the eight different formats provided 
with EASEL Changing a format is one of the options in the Change command, so you 
would start by typing: 

F3 Change to Format ? ENTER 

As with all the Change options, you can choose your design either by typing in the style 
number of each feature, or use the design by example facility When EASEL asks you 
for the format number you can type in a number between O and 7, or Just press ENTER 
to select design by example, which is much more fun 

Assuming that you choose design by example, EASEL displays all eight formats on the 
screen, together with some specimen data so that you can see the exact appearance 
of each. You can select any one of the formats by typing in its number pressing ENTER. 

You would normally select the one that most closely resembles the appearance you want, 
and then modify it with some of the other options of the Change command. 

Once you have selected the format you can then modify any of the features described 
below. 

6.2.2 Selection by 
Style Number 

6.3 DESIGNING A 
FORMAT 

You can choose the background colour and the style of graph paper markings. 6.3.1 Graph Paper 

You can choose from several styles of display for the scales marking the axes of bar 6.3.2 Axis 
charts and line graphs. 

21 





PROVISIONAL 

When you have created a graph you may want to save it for later use or modification 
You can do this by means of the Save command. This command saves all the data 
for your graph as a named file on a Microdnve cartridge. 

You will be asked to type in a name for the file. Note that this will be the name for 
the whole graph, so do not confuse it with the name of a set of figures You may type 
in a question mark (followed by ENTER) to get a list of files already saved on the 
Microdrive. See section 8 3.2 for the ways of listing all or Just a sub-set of the files. 

EASEL will save all the information, including the graph format and the colours and 
positions of any text labels, titles and keys that you have added 

CHAPTER 7 
INPUT AND 
OUTPUT 
7,1 SAVING FILES 

You use the Load command to recover a graph that you have previously saved (with 7, 2 LOADING FILES 
the Save command) on a Microdrive cartridge. 

You are asked to type in the file name that you gave the graph when you saved it It 
you can not remember the name you can type a question mark (followed by ENTER) 
when EASEL will show you a list of the files present on the current Microdrive cartridge 
As with the Save command, you can select whether you want to see the names of all 
the files or Just a sub-set. See Section 8.3.2 for details of how to do this. 

This command allows you to delete, rename or copy an EASEL file previously saved 
on a Microdrive cartridge. It also allows you to transfer data between EASEL and the 
other programs in the Psion 40 package. 

This option of the Files command allows you to make a copy of an EASEL tile. You 
can also use it to make a copy of the EASEL program itself You would be wise to make 
at least one copy of EASEL on another cartridge, just in case of accidents. 

You can copy EASEL from the cartridge in drive 1 to a blank, formatted cartridge in 
drive 2 in the following way: 

F3 F B MDV1 _EASEL ENTER MDV2_EASEL ENTER 

7,3 THE FILES 
COMMAND 

7 ,3, 1 Backup 

With this option of the Files command you can delete an entire file from a Microdrive 7,3,2 Delete 
cartridge. EASEL asks you to type in the name of the file to be deleted. 

Always remember that you can not recover a file which you have deleted, so make 
sure you really do not want to use that graph again before deleting it, 

These two options allow you to transfer data between EASEL and the spreadsheet and 
database programs. 

You use the Export option to send the data from your graph to the other programs. It 
sends all the sets of figures, together with their names and the axis labels, but ignores 
the graph and axis titles and any key or other labels that you have added 

If you export data to the spreadsheet, the names of the sets of figures are interpreted 
as cell labels. They label each set of figures, the values of which appear in successive 
cells of a row (or column). The axis labels are interpreted as labels for the columns (or 
rows) of values. 

In the case of exporting to the database, the names of the sets of figures become text 
fields in database records, with one set of figures in each record. The axis labels are 
taken as the field names for the values in each set of figures. 

You should only import a file that has been exported by either the spreadsheet or the 
database. The imported figures are displayed in the format which you select by the options 
of the Change command .. 

When you import sets of figures Easel gives them names which correspond to text 
exported with the data from the original application. 

7 .3.3 IMPORT AND 
EXPORT 

23 



PROVISIONAL 
A file exported from the spreadsheet in row order, tor example, will produce a set nf 
figures from the data in each row. The label at the beginning of each spreadsheet row 
becomes the name of each set of figures. The spreadsheet column labels are used as 
the graph axis labels 

When you import a file from the database, the data from each record becomes a new 
set of figures. The contents of the first text field in each record are used as the name 
for that set of figures. The field names of the numeric fields are used as the axis labels. 

7 .4 PRINTING If you have a printer you can make printed copies of your graphs. The Print command 
simply makes a printed copy of the graph currently shown on the screen. 

If you want to print a graph that you have previously saved on a Microdrive cartridge 
you must therefore first load it. When the appearance of the graph is exactly as you 
want it you simply type 

F3 P ENTER 

The exact appearance of the printed graph will depend on the make of printer that you 
are using. 

7. 5 PHOTOGRAPHY The simplest way of obtaining a permanent copy of one of your graphs is to take a 
photograph of the screen. You must, however, take a little care if you want to obtain 
good results. 

One of the most common causes of a poor photograph of a television screen is using 
too short an exposure time. The picture is made up of 625 separate lines, displayed 
one after another It takes a 25th of a second to display all the lines in the picture and 
if you use an exposure time of about this length, or shorter, the picture will be unevenly 
lit It is best to use an exposure time of around a quarter of a second - this means that 
you must support the camera on a tripod. An average colour film (for prints or 
transparencies) with a speed of, say, 100 ASA will need an aperture of around f3.5 

Try to take the photograph in a darkened room, to avoid reflections of the surroundings 
from the surface of the screen. It is surprising how strongly such reflections show up 
on the photograph, even if you do not notice any when you look through the camera 
viewfinder. 

7 .6 THE MICRODRIVES You can put Microdrive cartridges in both drives and use either drive, provided that you 
include the drive specifier in the file name. (See Section 8. 3 for a full description of 
Microdrive file names ) 

You could, for example, load a file called "PICTURE_GRF" from drive 2 by using the 
Load command as: 

F3 L MDV2_PICTURE_GRF ENTER 
You do not need to include the extension. EASEL will assume that it is _GRF unless 
you type in something different You could therefore just use: 

F3 L MDV2_PICTURE ENTER 

Remember that this will make drive 2 the default drive so that you could now load another 
file, called "PLOT_GRF" from drive 2 by 

F3 L PLOT ENTER 

Drive 2 will remain the default drive until you specify a different drive specifier in a file name. 

24 



PROVISIONAL CHAPTER 8 
EASEL 
REFERENCE 

The arithmetic operations in EASEL follow the same rules as for the arithmetic in 8.1 ARITHMETIC 
SuperBASIC The valid range for numbers is from +-2.9E39 to + -1 7E + 38. All 
calculations are accurate to 17 significant digits but only a maximum of 16 significant 
digits may be displayed. 

The following arithmetic operations are provided: 

+ Addition 
~ Subtraction 
• Multiplication 
I Division 
~ Raising to a power 

Functions and operations have the following priorities 

Operation 
All functions 

Priority 
9 
8 
7 
6 

Unary minus (ie, minus Just used to negate something) 
': I 
-t .: (minus used to subtract one number 5 from another) 
not 
and 
or 

4 
3 
2 

The five function keys are used as follows: 

F1 
F2 
F3 
F4 

call the Help facility 
remove/restore control area 
call the commands 
delete 

F5 

text 
labels 
numbers 
the key 
user-defined objects 

Note user-defined objects are bars, lines, graph paper and axes. 
insert a cell 

The line editor is always available to modify the contents of the input line. 

Key(s) 
Left cursor 
Right cursor 
Up cursor 
Down cursor 

Action 
Move one character to the left 
Move one character to the right 
Move one word to the left 
Move one word to the right 

Delete one character to the left 
Delete one character to the right 
Delete all text to the left 
Delete all text to the right 

Move left by one word 
Move right by one word 

CTRL + Left cursor 
CTRL + Right cursor 
CTRL + Up cursor 
CTRL + Down cursor 
SHIFT + Left cursor 
SHIFT + Right cursor 

8.2 THE FUNCTION 
KEYS 

8.3 THE LINE EDITOR 

8.4 FILES 

A full file name consists of three sections, separated by underscores. The three 8.4.1 File Names 
components are: 

an optional drive specifier 
a file name of up to x characters 
an optional three-letter extension 

A full file name for an EASEL file could therefore be: 

eg MDV1 
eg PLOT 
eg GRF 

MDV2_PLOT _GRF 

2q. 



PROVISIONAL. 
If you do nor include a duve specifier in a file name then EASEL assumes that you arc: 
rctcrrinq to the current drive. that is, the drive that was l,1st used The one exception 
rs when vou are loadinq EASEL itself from SuperBASIC, i:lS described in Section 2 1. 
In this case you must include the dnve specifier in the file name 

You do not normally need to specitv an extension since r.:ASEI.. supplies a default extension 
for everv file access The Load and Save commands supply a default extension of _Gm: 
The default extension for Import ancJ Export files is EXP, and when you Print to a file 
the default extension is _LIS 

If you include an extension in any file name you type m then it will be used in preference 
to the default extension normally provided by EASEL 

8.4.2 Wild Cards Every time that an E:ASEL command asks you tu type in a tile name you have the option 
of pressing the ? key to obtain a list of the names of files on the current drive. The file 
name "• _'" (file name and extension I will appear m tho input line and, 1f you accept 
this by pressing ENTER, you will be given a list of all files on tho current drive 

In this context tho '' • '' character is a vv,lrl care/ which stands for ;my sequence of 
characters. You may also use tho character ";," to represent anv single character 111 

a file name. 

You have the option of using tho line editor to modify tho suqqest<~cl file mime. in 01clu1 
to obtain a list of the names of a paricular group ( ;f files 

If, for example, you edit tho file name to read "·. _ TS 1" and then press ENTER vou 
will be given a list of tho names of all tiles with an extension of ··-- TST Chanqinq th(, 
file name to "X * •" would result in ii listing of all filos, with any extension, whose 
names begin with X 

You could use the sinqlo character wild card c:1s, fur exampl« 

MYFILE? * 

which would result in a listing of all files with names such as 

MYFILE1 MYFILE2 MYFILE3 

and so on, with any extension 

Note that this facility is only available when you are requesting a list of file names before 
typing in a file name for any of the file based commands (Files. Load and Save) 

8.5 THE COMMANDS The commands give access to tho deeper levels of EASEL. and allow you to use many 
of the more advanced facilities The following commands are provided 

CHANGE The Change command allows you to modify the apperance of any feature of the graph. 

You are offered the following options 

Format - to redefine the appearance of the entire graph You may choose a 
defined format by its number. or by example. Selecting design by 
example allows you to change any feature, including the background 
colour, style of graph paper grid, the graph scales, colour and width 
of the border, plus any combination of the following options. 

Bar - to select or define the style of bar used to represent the current set 
of figures You may choose a previously-defined bar by its number, 
or by example The design by example option allows you to select a 
bar or to design a new one. You can choose the bar fill colour and 
the border colour and thickness. 

Line - to select or define the style of line used to represent the current set 
of figures You may choose a p-eviouslv-defined line by its number, 
or by example The design by example option allows you to select a 
line or to design a new one. You can choose the line colour and 
thickness, and the style of mark used for each point on the line, or 
select a "filled line" where the space between the line and the zero 
level on the graph is colour-filled 

26 



PROVISIONAL 
Pie to select or define the style of pie chart used to represent the current 

set of figures. You may choose a previously-defined pie chart by its 
number, or by example. The design by example option allows you to 
select a pie chart or to design a new one. You can choose the colour 
used for each sector. 

Graph __ paper 
to select both the background colour and the style and, colour of the 

grid markings. 

Axis to select the axis markings. You can alter the style and colour of the 
axes and the colour used for the numbers labeling the y axis 

Text_colour ~ to select the colour used for both the text 'and ns background. You 
can select a transparent background so that the underlying graph will 
show through. Any existing text will retain its original colour, but new 
text will appear in the selected style, until you change it again. The 
text in a key box is always drawn in the current text colour. 

The Defaults command allows you to select a number of features, such as whether you DEFAULTS 
use a 40 character (suitable for a domestic television) or 64 or 80 character (for a monitor) 
display. You can select an item by pressing the key corresponding to its first letter in 
the list of options shown 

After each selection you are allowed to make further selections in the sarne way. When 
you have finished you should press the X key to return to the display of your graph. 

The Edit command allows you to modify or move text, labels and the key EDIT 

You are asked to choose between the following three options 

Text · the crosswires lock on to the nearest piece of text and you can use 
the line editor to change the wording When you are satisfied with the 
text you should press ENTER You are then offered the option of moving 
the text to a new position with the cursor keys. Press ENTER when 
you are satisfied with the position. 

Labels - the crosswires lock on to the nearest axis label and you can then edit 
the text of the label as in the Text option. When you press ENTER at 
the end of your editing you are not offered the option of moving the 
label; labels can not be moved. 

Key - you are immediately offered the option of moving the key box with 
the cursor keys. When the outline of the key box is in the position you 
want you should press ENTER. The key box is then redrawn in its new 
position. 

This command allows you to modify EASEL files, previously saved on a Microdrive FILES 
cartridge, or to transfer data files to another of the Psion 40 programs. 

The options ask you to type in the names of files. Each time you are asked for a file 
name you can press ? for a list of all files on the current cartridge. You can then accept 
the suggestion of * _ * to display all the files (by pressing ENTER) or you can use the 
line editor to change either the file name or its extension, to list any particular subset. 
This is explained more fully in Section 6. 7. 

At the conclusion of any option you are left in the Files command menu, ready to use 
another Files option. You can return to the main display by pressing ESC. 

You are offered the following options: 

Files B used to make a backup copy of an EASEL file You me asked for the 
name of the file to be copied. Making copies of your files is strongly 
recommended, to protect yourself against accidental loss of, or damage 
to, the cartridge, and against making a mistake which causes your 
application to be corrupted or deleted. 

27 



PROVl~IUrtt-\l. 
Files D deletes a named file from a Mic,odrive cartndqe Note that this 

command is NOT reversible and should therefore be used with 
GREAT CARE. 

HIGHLIGHT This command allows you to use a special symbol 10 represent a particular number in 
a set of figures The value to be highlighted is the one at tho current position of the 
intersection of the crosswires. 

28 

Files E exports a named file. The file is saved 1n a form suitable for being read 
by the database 01 the spreadsheet Note that you should not send 
files to the word processor by means of the Export option Such files 
need additional formatting information and you should therefore use 
the Print command for this purpose. 

All the current sets of figures are written into the file. Each set of fiqures 
retains its name and (axis) labels All other text, including titles and user 
defined labels, is iqnored If you do not specify a file name extension 
for an exported file, EASEL will supply an extension of __ EXP 

Files I imports a named file. It allows EASEL to read files exported by any of 
the other programs in the Psion 40 package. 

If you do not specify a file name extension for a11 unportcd file, EASEL 
will assume an extension of _ EXP 

Files R renames a file. You are asked 10 type in the original file name, followed 
by the new name you want to give to the file. 

If you do not specify a file name extension for the original file EASEL 
will assume an extension of GRF If you do not specify a file name 
extension for the new file EASEL will assume that it should be the same 
as for the old file 

In the case of a bar graph you are allowed to choose a bar style to be used tor the 
value, either by its style number or by example, as in the Change command. 

On a pie diagram you indicate which sector is to be highlighted by moving the box cursor 
to its label The highlighted sector is shown as being slightly detached from the remainder 
of the pie. 

HELP ~ NUMBERS Move X-WIRES TEXT Move FORMULAE I COMMANDS 
press F1 vertical wire mover x-wires press F3 

'-'--·- 
PROMPTS to entry posn with •..• type" Enter ESCAPE 
press F2 & type number keys J. then text directly press ESC 

ZINC 
73 

'FORMAT·6 ·REP•PIE 
CURRENT NAME• METALS 

Figure 81 A Highlighted Pie Sector 



PROVISIONAL 
Dele.es one or more sets of figures from the graph and destroys the data. When you KILL 
select this command you are asked to type in a list of the names of the figures you 
want to delete, separated by commas and ening with ENTER. If you just press ENTER, 
EASEL will delete the current figures 

Loads a previously saved graph from a Microdrive cartridge. All the Design options are LOAD 
loaded with the data so that the graph of the loaded data has exactly the same appearance 
as it had when it was saved. 

This command allows you to create a new set of figures, which becomes the "current NEWDA TA 
figures". You are asked to type in the name of the new set (no quotation marks are 
needed) When you press ENTER you are returned in data entry mode, ready to type 
in some values. 

The Olddata command allows you to make an existing set of figures the "current figures" OLDDATA 
You are asked to type in the name of the old set (no quotation marks are needed) When 
you press ENTER you are returned in data entry mode, ready to change or add to the 
values. 

Prints the graph that is currently displayed on the screen. The exact appearance of the PRINT 
printed graph will depend on the make of printer that you use. 

You use this command to leave EASEL and return to SuperBASIC You are offered the QUIT 
options of: 

Return - to EASEL 
Exit - to SuperBASIC. 

If you choose this option you are asked if you want to save your files before exiting. 

This command allows you to rename an existing set of figures. You are asked to type RENAME 
in the old name and then the new name. You should type in both names without 
surrounding quotation marks. 

Saves all the sets of figures currently in the computer's memory on a Microdrive cartridge. SAVE 
You are asked to type in a name under which the figures will be saved You can load 
the graph back into the computer at a later date by using the Load command. 

All the properties of the graph, eg the bar colours and style of axes, are saved with the 
figures. 

You use this command to redisplay your graph, showing all, or a selected few, of your VIEW 
sets of figures. EASEL suggests that all sets of figures are to be displayed and you can , 
either accept this suggestion, by pressing ENTER, or type in a list of the names of those 
sets that you want to be displayed You should separate the names in the list by commas 
and end the list by pressing ENTER 

You are then offered a suggested format number for the display You can accept the 
suggested format, by pressing ENTER, or type in your own choice of format number, 
followed by ENTER 

You can think of a function as a kind of recipe which converts a number of initial values, 8.6 FUNCTIONS 
known as the function's arguments, into a different value, which is said to be the value 
that is returned by the function. 

The functions provided by EASEL take one or no arguments. The argument for a function 
is placed in brackets after its name. You must not leave a space between the name 
and the opening bracket, but spaces are allowed within the brackets. All function names 
must be followed by the brackets, even if they take no arguments. The presence of the 
brackets is a useful reminder that you are referring to a function. They allow you to 
distinguish between the name of a set of figures and a function, even if they have the 
same name. 

The following functions are provided 

ABS(n) Returns the absolute value, that is the numerical value irrespective of 
its sign, of the argument. For example, abs(5) and abs(-5) both return 
the value 5. 

29 



PROVl~IUNAL 

30 

ATN(n) 

COS(n) 

EXP(n) 

INT(n) 

LN(n) 

PIO 

SGN(n) 

SIN(n) 

SOR(n) 

TAN(n) 

Returns the angle,in radians, whose tangent is n 

Returns the cosine of the given (radian) angle. 

Returns the value of e (approximately 2 718) raised to the power n 
The returned value will be in error if n lies outside the range from -87 
to + 88, since the result will then exceed the numeric range of EASEL. 

Returns the integer value of the number, by truncating at the decimal 
point. The truncation always operates towards zero Thus; 

int(3. 7) returns 3 
int(-4.8) returns -4 

Returns the natural, or base e, logarithm of n. An error results if n is 
negative or zero, since logarithms are not defined in this range. 

Returns the value of the mathematical constant pi 

Returns + 1, -1, or 0, depending on whether the argument is positive, 
negative or zero. 

Returns the value of the sine of the specified (radian) angle 

Returns the square root of the number n, which must' not be negative. ..._, 
Returns the tangent of the specified (radian) angle. 





PROVISIONAL sinc::lair-· 

QL Information 



Sinclair Ol 

OL. Microdrives 

L~lrink Microdrive Cartridges 

Monitor Lead 

RS 232-C 

Post and Packing: 

Please note that there is no post and 
packing charge for orders for Blank 
Microdrive Cartridqes only. 

Annual Subscription to the OLUB 
(On joining the OLUB you will be sent a 
Ol.UB membership card) 

Please tick if you require a VAT receipt 

* I enclose ,-l cheque/postal order 
payable to Sinclair Research Limited for f 

Quantity Item Price If I Code lotal lf'I inc. VAT 

399 00 6000 
-- 

49.95 6010 

4.95 7200 
-------- •... -- ---·- -----· 

4.00 6030 
- ------~·- 

10 00 6040 
.. 

SUB TOTAL 
··---· 

under £90 2 95 0028 

£90-£390 4 95 0029 
··--···- ---·· ------ 

over £390 7 95 6999 
-----------·--- -----·--. -· - -------· ·- 

35 00 6100 
--------·-----·---------···- -·----·-·- 

TOTAL(£) 

[] 

• Please charqe rny Access/ 
Barclavcard/Trustcard Account nol I I I I I I I I I I I I I I I I 

·Pl,,: r d,•l,,1,•, •111'1 i, !c· .r. lpplH .ihlt 

PLEASE PRINT 

Signature 

Address 

* Mr IM rs/Miss -----------· _ 

Please send this form and your remittance (if paying by cheque or postal order) to: 

Sinclair Research Limited, 
Computer Division, 
FREEPOST, 
Camberley, 
SURREY GU 1 5 3BR 
Tel. Camberley (0276) 685311 

Please allow up to 28 days from receipt of order for delivery. 

Order Form 



To keep you in touch with developments we are introducing the OL Users Bureau. Membership is 
onlv available to OL owners for an annual subscription of f 3 5. The membership entitles vo: I to a 
number of benefits, including · 

Up to six newsletters will be published annually giving technical tips, information on new 
software and peripherals and possibly an opportunity U buy such new product; in 
advance of the general public. 

'2 Sinclair has made exclusive arrangements for OLUB members to obtain sottwaro assist 
ance from Psion If you have any queries concerning the use or applicatron of OL 
Abacus. OL Quill, OL Archive or OL Easel, all you hc1ve to do is write to Psion direct. 
quotinq your OL.UB membership number. Psion will reply, usuallv within 48 hours. 

:l An update to each of the four software packaqes supplied with your Ol (OL Abacus. OL 
Ouill. OL Archive and OL. Easel) will be issued Ire(·: ot charqe durinq your annual rnnrnbor 
ship 

To jrnn thf, Ol t JR, <irnplv return thP. order form enclosnrl rr1 lh1s manual dlonq with vour rnrr1ill2111<.f1 
lo· 

Sinclair Research Lirnitnd 
FREEPOST 
Camberlev 

Surrev GU 1 5 3BR 
(no stamp reouiredl 

QL USERS 
BUREAU 



MR/MRS/MISS 

ADDRESS 

If this address is different from the one to which we sent your OL, please indicate your old 
address:- 

·---------------- 

Please quote your acknowledgement number 

OLUB membership number (if any) 

Please describe the fault which has developed> 

Approximately how many hours a week have you been using your OL? 

hours per week 

How old is your OL? months 

RETURNS FORM 



RETURNS PROCEDURES 
1 . Guarantee 
Your Sinclair QL is covered by a 1 2-month comprehensive guarantee valid in the UK only 
and effective from date of despatch. If it should develop a fault within this 1 2-month 
period then it will be repaired or replaced free of charge provided 1 ) it has been put to 
normal use and 2) it has not been openecJ or modified by anyone other than Sinclair 
Research Limited or their agents. Sometimes however, it will not immediately be clear 
whether the fault lies with the QL itself, or with one of the QL applications software 
packages. Please follow the instructions below if you have a problem 

2. If you have a problem 
Check whether it is the QL computer or one of the QL applications software packages 
(QL Abacus, QL Quill, OL Easel and QL Archive) which is at fault, as follows: 

If none of the four software cartridges will load, then it is almost certainly your Oi. 
which is at fault, and if it is still under guarantee you should follow the instructions 
under (3) below. 

OR 
If the software packages run successfully but all display a similar fault while running, 
then it is almost certainly your QL which is at fault, and if it is still under quarantee you 
should follow the instructions under (3) below 

If one of the cartridges fails to load, check all the others 
OR 

If one or more of the software packages seems to have a fault, check all the others 

If any one of the four packages works correctly then it is the individual cartridge(s) 
which are at fault, and you should follow the instructions under ( 4) below 

3. Returning your OL within the 12-month guarantee period 
Please complete the "Returns Form" at the end of this section and send it with your QL, 
the leads, the power supply unit as well as all four software cartridges (QL Abacus, QL 
Quill, QL Easel and QL Archive) in their polystyrene box to Sinclair Research Limited, QL 
Department, Computer Division, Stanhope Road, Camberley, SURREY GU1 5 3BR. 
Please obtain and keep "proof of posting". PLEASE DO NOT RETURN YOUR QL 
MANUAL. 

Within a week of receiving your OL package we will return an equivalent fully-functioning 
package to the address you indicated on your "Returns Form". In some cases you will 
receive your original computer repaired In other cases we may send you a replacement 
OL. This will depend on the nature of the fault which you computer has developed. 

Please note that your 1 2-month guarantee extends from the date you received your first 
QL. It does not extend for 1 2 months from when you receive any subsequent repaired or 
replacement OL although this latter computer would also be covered under the original 
1 2-month guarantee. 

4. Returning one of your OL Applications Software Packages 
Please complete the "Returns Form" at the end of this section and send it with the faulty 
cartridge(s) to Sinclair Research Limited, Computer Division, Stanhope Road, 
Camberley, SURREY GU1 5 3BR. Please do not return all four cartridges - only those 
which are faulty 

We will replace the faulty cartridge(s) within one week from receipt 

5. If you have problems using your OL Applications Software Packages 
1 . Refer to your manual. 
2. Consider joining the QLUB (the OL Users Bureau) to which you may subscribe at any 

time irrespective of when you purchased your QL. You will find full details of what the 
OLUB can offer you and an order form at the back of this manual. 

3. Refer to books published about the QL. 
4. Please do not phone Sinclair Research unless this is your last resort. Our customer 

services department does not have detailed technical information. 



Sinclair QL Preservation Project (SQPP) 

=inC:lair- 
On January 12th 1984 Sir Clive Sinclair presented the Sinclair 
QL Professional Computer in a typical Sinclair-extravaganza 
type launch event at the Intercontinental Hotel, Hyde Park 
Corner, London. This was exactly 12 days earlier than Steve 
Jobs presented the Apple Macintosh. 

The QL is a very good example of an innovative, stylish, 
powerful and overall underestimated product and ecosystem. 
On one hand it failed in the market but on the other hand it 
influenced many developments which ended in many of 
today's computing devices. 

Check out the website http://sinclairql.net/ - The semi-official website related to the 
Sinclair QL Professional Computer. QL forever! 
Urs Konig (aka QLvsJAGUAR) 
http://sinclairql.net/about urs.html 
https:/ /www.youtube.com/QL vsJAG UAR 
https:/ /plus. go ogle .com/ +Q L vsJAG UAR 



Sinclair QL Preservation Project (SQPP) 

On January 12th 1984 Sir Clive Sinclair presented the Sinclair 
QL Professional Computer in a typical Sinclair-extravaganza 
type launch event at the Intercontinental Hotel, Hyde Park 
Corner, London. This was exactly 12 days earlier than Steve 
Jobs presented the Apple Macintosh. 

The QL is a very good example of an innovative, stylish, 
powerful and overall underestimated product and ecosystem. 
On one hand it failed in the market but on the other hand it 
influenced many developments which ended in many of 
today's computing devices. 

Document details 

{r'v,ck,~ y)L tlsev c~,d'e - L4u~cl, £;-,/k;;~ Topic: 

Notes: 

42/1, ...£~..,,c,,~t'r~y· ,-¢'.J',Py-~ ~'S: S,Lerr-'h'e oire 
I r > 

c·Qr:-. e tv//( c, pY« --,Pvo~ e /~~·-~ (?L 

Number of pages (including SOPP cover and back pages): .J 66 
Scanned: 

Check out the website http://sinclairql.net/ - The semi-official website related to the 
Sinclair QL Professional Computer. QL forever! 
Urs Konig (aka QLvsJAGUAR) 
http://sinclairql.net/about urs.html 
https:/ /www.youtube.com/OL vsJAG UAR 
https://plus.google.com/ +QLvsJAGUAR 


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Titles
	IMPORTANT WARNING 


	Page 4
	Titles
	DISCLAIMER 
	WARNING 
	© 1984 Sinclair Research Limited 
	© 1 984 PSION Limited 


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1
	Image 2


	Page 8
	Images
	Image 1


	Page 9
	Titles
	PROVISIONAL 
	Unpacking 
	peripheral -- \ 91 o:r=p ~11111111111111111111111~ 

	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Titles
	PROVl~IUNAL 

	Images
	Image 1


	Page 11
	Titles
	,ROVISIONAL 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 12
	Titles
	PIDVISIONAL 
	Use of the Keyboard 
	- 
	- 
	-- 
	Delete 
	� 

	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Titles
	PROVISIONAL 
	Beginner's Guide 

	Images
	Image 1


	Page 15
	Images
	Image 1
	Image 2
	Image 3


	Page 16
	Images
	Image 1


	Page 17
	Titles
	ABS 
	PROVISIONAL 


	Page 18
	Titles
	AUTO 
	PROVISti1..1 ~' 
	AUTO 
	AUTO 


	Page 19
	Titles
	>ROV?SIONAL 


	Page 20
	Titles
	r> Q fl \P ~ t Q ~I ,~ I 


	Page 21
	Titles
	BEEP 
	BEEP 
	PROVISIONAL 


	Page 22
	Titles
	PR OVl~IONA ~ 
	BLOCK 
	i. 


	Page 23
	Titles
	BORDER 

	Images
	Image 1


	Page 24
	Titles
	PROVISIONA,t 


	Page 25
	Titles
	P R O V IS I O ,~ . 
	CHR$ 


	Page 26
	Titles
	PROVISION;~~ 
	CIRCLE 


	Page 27
	Titles
	CLEAR 
	PROVISIONA t 


	Page 28
	Titles
	PROVISION~' 
	CLOSE 


	Page 29
	Titles
	CLS 
	PROVISION~.' 


	Page 30
	Titles
	CODE 

	Images
	Image 1


	Page 31
	Page 32
	Titles
	PROVISION~ I 
	CONTINUE 


	Page 33
	Titles
	COPY 
	PROVISIONAL 


	Page 34
	Titles
	PROVISIONAL 
	cos 


	Page 35
	Titles
	COT 
	PROVISIONAL 


	Page 36
	Titles
	PROVISION A I 
	CSIZE 

	Images
	Image 1


	Page 37
	Titles
	PRO\llt''"-'~ 11.' 


	Page 38
	Titles
	PROVISION A, 
	DATA 


	Page 39
	Titles
	PROVISIONAL 


	Page 40
	Titles
	PROVISIONAl 
	DEFine FuNction 


	Page 41
	Titles
	DEFlne PROCEDURE 
	D D O \I ' " '0 ~I .~ ~ 


	Page 42
	Titles
	PROVISIONAL 


	Page 43
	Titles
	DIMension 
	PROVISIONAi. 


	Page 44
	Titles
	PROVIS!~:~:·. 


	Page 45
	Titles
	EDIT 
	PROVISIONAL 


	Page 46
	Titles
	PROVISION t.: ·. 
	EXEC 
	I , 
	EXEC_N 


	Page 47
	Titles
	EXIT 
	'lDn11,~rnu4: 


	Page 48
	Titles
	PROVISIONAL 
	EXP 


	Page 49
	Titles
	FLASH 
	PROVISIONAL 


	Page 50
	Titles
	PROVISION A' 
	FOR END FOR 


	Page 51
	Titles
	FORMAT PR OVISIO NAt 


	Page 52
	Titles
	PROVISIONAL 
	compatibility 
	GOTO 


	Page 53
	Titles
	GOSUB 
	PROVISIONA' 
	syntax: 
	example 
	i. GOSUB 100 


	Page 54
	Titles
	PROVISIONAL 


	Page 55
	Titles
	INK 
	PROVISION:it 


	Page 56
	Titles
	PROVl:SION At 


	Page 57
	Titles
	RND 

	Images
	Image 1


	Page 58
	Titles
	PROVISIONAL 
	REMark 


	Page 59
	Titles
	PROVISIONAL 


	Page 60
	Titles
	PROVISION Al 
	PRINT 


	Page 61
	Titles
	RANDOM 
	~t(IJ V f SiONlLrBAS/C 


	Page 62
	Titles
	PROVISIONAL 
	PLOT 


	Page 63
	Titles
	POKE 
	PRnv,~,oM ~, 
	...... ·-'······- 


	Page 64
	Titles
	PROVISIONAL 
	PAUSE 
	, 


	Page 65
	Titles
	PEEK 
	!Ml I 
	nu�t' n~ . 
	. PRu �.�ll;a. 1~rBASIC 
	syntax: 
	word: == numetic.s.expresson range O to 1 
	example: 
	i. PEEK 12245 


	Page 66
	Titles
	PROVISIONAL 
	PAPER 


	Page 67
	Titles
	PAN 
	PROVISIONAL 


	Page 68
	Titles
	PROVISIONAL 
	OPEN (provisional) 
	syntax: 


	Page 69
	Titles
	OVER 
	PDQ\H~,~~, ~., 


	Page 70
	Titles
	PROVISIONAL 
	NEXT 


	Page 71
	Titles
	PRu ~;~:JNAL 


	Page 72
	Titles
	PROVISIONAL 
	MODE 


	Page 73
	Titles
	PP~H1SION ~ · 
	��� ..;,i n1. 


	Page 74
	Titles
	PROVISIONAL 


	Page 75
	Titles
	?ROVISIOH 


	Page 76
	Titles
	PROVISIUNAL 
	LOCAL 


	Page 77
	Titles
	LN 

	Images
	Image 1


	Page 78
	Titles
	PROVISIO Mt 
	LIST 


	Page 79
	Images
	Image 1


	Page 80
	Titles
	PROVISIONAL 


	Page 81
	Titles
	LET 
	PROVISIONA~ 
	i. LET a = 1 + 2 


	Page 82
	Titles
	PROVISIONAL 
	INT 


	Page 83
	Titles
	INVERSE 
	PROVISIONAL 


	Page 84
	Titles
	PROVISIONAL 
	conaition» 
	INKEY$ 


	Page 85
	Titles
	INPUT 

	Images
	Image 1


	Page 86
	Titles
	PROVISIONAi 
	RUN 
	RUN rnuiienc __ ( \fitussion 
	k--· 


	Page 87
	Titles
	SAVE 
	PROV!S!DNAL 


	Page 88
	Titles
	PROVISIONAL 
	SBYTES 


	Page 89
	Titles
	SIN 
	DDO\.lf~l!1M ~' 


	Page 90
	Titles
	PROVISIONAL 
	SCALE 
	i. SCALE 0.5 


	Page 91
	Titles
	SCROLL 
	PROVISIONAL 


	Page 92
	Titles
	PROVISIONAL 
	SE Leet 
	END SELect 


	Page 93
	Titles
	SQRT 
	PROVfSI0!-!1~~ 


	Page 94
	Titles
	PROVISIONAL 
	STOP 


	Page 95
	Titles
	PROVISIO M ,~' 


	Page 96
	Titles
	PROVISIONAL 
	·TAB 


	Page 97
	Titles
	TAN 

	Images
	Image 1


	Page 98
	Titles
	PROVISIONAi. 
	debugging 
	TRACE 
	TRACE I channel i numeric_express,on rarige O to 


	Page 99
	Titles
	UNDER 
	PR O V ! S ! 0 ~ ! .~u 


	Page 100
	Titles
	PROVISIONAL 
	USE 


	Page 101
	Titles
	USR 

	Images
	Image 1


	Page 102
	Titles
	e-ccctio. is 
	PROVISIONAL 
	WHEN 


	Page 103
	Titles
	WINDOW 
	WINDOW 30, 40, 10, 10 

	Images
	Image 1


	Page 104
	Images
	Image 1
	Image 2
	Image 3


	Page 105
	Titles
	PROVISIONAL 

	Images
	Image 1


	Page 106
	Titles
	Array Literals 
	example: 
	lo, 1,2,31 
	!llO, 1II2,3)1114,5116, 7111 
	30 let answer$ = l"ves", "no"] 


	Page 107
	Titles
	PROVISIONAL 


	Page 108
	Titles
	PROVISIONAL 


	Page 109
	Titles
	Coercion 

	Tables
	Table 1


	Page 110
	Titles
	Colour 
	Single 
	PROVISIONAL 
	2LJI 

	Images
	Image 1

	Tables
	Table 1


	Page 111
	Titles
	PROVISIONAL 
	Communications - 

	Tables
	Table 1


	Page 112
	Titles
	PROVISIONAL 


	Page 113
	Images
	Image 1


	Page 114
	Titles
	PROVISIONAL 
	Devices 
	CON __ wXhaxXy k Console 1/0 
	SCR_wXhaxXy 


	Page 115
	Titles
	PROVISIONAL 


	Page 116
	Titles
	Direct Command 
	PROVISIONAL 


	Page 117
	Titles
	PROVISIONAL 


	Page 118
	Titles
	PROVISIONAL 
	Expressions 


	Page 119
	Titles
	PROVIS l O ft~ l 
	Functions and 


	Page 120
	Titles
	Graphics 
	PROVISIONAL 

	Images
	Image 1


	Page 121
	Titles
	PROVISIONAL 
	111213141516171219101 

	Tables
	Table 1


	Page 122
	Titles
	Joystick 

	Tables
	Table 1


	Page 123
	Titles
	Keyword 

	Images
	Image 1


	Page 124
	Titles
	Machine Code 
	PROVISIONAL 


	Page 125
	Titles
	Microdrives 
	PROVISIONAL 


	Page 126
	Titles
	PROVISIONAL 


	Page 127
	Titles
	PROVISIONAL 
	monitor 


	Page 128
	Tables
	Table 1


	Page 129
	Titles
	PROVISIONAL 


	Page 130
	Titles
	PROVISIONA' 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 131
	Titles
	PROVISIONAL 


	Page 132
	Titles
	PROVJSIONAL 


	Page 133
	Titles
	PROVISIONAL 


	Page 134
	Titles
	ROM cartridge slot 


	Page 135
	Titles
	PROVISIONAL 
	screen 


	Page 136
	Images
	Image 1


	Page 137
	Titles
	sound 

	Images
	Image 1


	Page 138
	Titles
	· Ii ffVtS ION Al 


	Page 139
	Titles
	PROVISIONAL 
	RUN 
	start up 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 140
	Titles
	statement 
	LET a = 2 
	LET a = a + 2: PRINT a 

	Images
	Image 1


	Page 141
	Titles
	PROVIS\OMJ\l 
	C_ 


	Page 142
	Titles
	n n ",, � r, ros A � 


	Page 143
	Titles
	PROVISIONAt 
	c 


	Page 144
	Titles
	PROVISIONAL 
	II OR 
	I A I BI 
	* A * 


	Page 145
	Titles
	PROVISIDNAJ 

	Images
	Image 1


	Page 146
	Page 147
	Titles
	0 
	0 

	Images
	Image 1
	Image 2


	Page 148
	Images
	Image 1


	Page 149
	Page 150
	Titles
	PROVISIONAL 
	CHAPTER 1 


	Page 151
	Titles
	PROVl~IONAL 
	2.2 GENERAL 
	MOOE: INSERT 

	Images
	Image 1
	Image 2


	Page 152
	Titles
	PROVISIONAL 
	BDCJDB 

	Tables
	Table 1
	Table 2


	Page 153
	Titles
	PROVISIONAL 

	Tables
	Table 1


	Page 154
	Titles
	PROVISIONAL 
	BO[ 
	JOB 
	EJIT:][ __ 
	lDEJ 
	2. 5 THE CURSOR 


	Page 155
	Titles
	PROVISIONAL 
	EJD[ 
	JOB 
	BDI 
	JBB 


	Page 156
	Titles
	PROVISIONAL 
	EDCJDB 
	I 
	r~--- - . -- 

	Tables
	Table 1


	Page 157
	Titles
	PROVISIONAL 

	Tables
	Table 1
	Table 2


	Page 158
	Titles
	PROVISIONAL 

	Tables
	Table 1


	Page 159
	Titles
	2.11 THE 
	PROVISIONAL 
	F3 F B MDV1_QUILL ENTER MDV2_QUILL ENTER 


	Page 160
	Titles
	PROVISIONAL 
	MOOE INSERT 
	LtNf:4 PAG[:t 
	OOCUMENT:t''defautt. m� 

	Images
	Image 1


	Page 161
	Titles
	PROVISIONAL 
	MODE: OVERWfffTE 

	Images
	Image 1
	Image 2
	Image 3


	Page 162
	Titles
	PROVf('IONAL 
	4.1 INTRODUCTION 


	Page 163
	Titles
	PROVISIONAL 


	Page 164
	Titles
	I 

	Images
	Image 1


	Page 165
	Titles
	PRDVISIONAL 


	Page 166
	Titles
	PROVIS\ONAl 


	Page 167
	Titles
	PRov,\tUNAL 


	Page 168
	Titles
	PROVt310NAl 

	Tables
	Table 1


	Page 169
	Titles
	PROVISIONAL 


	Page 170
	Titles
	~.,QVl~IONAL 
	[MOOE: lNSERT 

	Images
	Image 1
	Image 2


	Page 171
	Titles
	PROVISIONAL 
	���� : ���� 1 ���� : ���� 2 ���� : ���� 3 ��.�� : ���� 4 ���� : ���� 5 ���� : ���� 6 ���� : ���� 7 ���� : ���� 8 
	I MOD[ 
	STYLE UNDERLINE 
	WORQS:.98 
	LINE: B PAGE:1 
	OOCUMENT:rdefault doc" I 


	Page 172
	Titles
	PROVISIONAL 
	MODE 
	LINE:4 PAGE:1 j 
	OOCUMENT"default. doc" · 
	..,., 


	Page 173
	Titles
	PROVISIONAL 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 174
	Titles
	PROVISIONAL 
	CHAPTER 8 
	8.1 INTRODUCTION 
	8.2 DEFINING A 
	8.3 USING A 
	8.4 REDEFINING A 
	8.5 KEEPING A 


	Page 175
	Page 176
	Titles
	PROVISIONAL 


	Page 177
	Titles
	~ROVISIONAL 


	Page 178
	Titles
	PROVISIONAL 


	Page 179
	Titles
	PROVISIONAL 


	Page 180
	Titles
	PROVISIONAL 
	HYPHENATE 
	JUSTIFY 
	LOAD 
	PAGE 


	Page 181
	Titles
	PROVISIONAL 


	Page 182
	Titles
	PROVISIONAl 


	Page 183
	Titles
	P:ROVISIONAL 


	Page 184
	Images
	Image 1
	Image 2


	Page 185
	Images
	Image 1


	Page 186
	Page 187
	Page 188
	Page 189
	Titles
	PROVISIONAL 
	LGO MDV1_ABACUS ENTER 
	Press any key to start 
	4 
	5 
	6 
	7 
	8 
	9 
	0 
	2. 1 INTRODUCTION 
	2.2 GENERAL 
	CURRENT .CELL: A1 . GRID USED At:A.1 
	CURRENT CELL EMPTY 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 190
	Titles
	PROVISIONAL 
	---- TEXT type" . - 1! 
	CURSOR 
	press+-� .�.. 
	GOTO cell 
	~LPF:cJ[ 
	A 
	DATA & FORMULA 
	enter directl y 
	& press ENTER 
	PROMPT F2 IC@MANDS F3 
	B 
	followed by 
	text & ENT . J 
	]I ESCAPE ESC==:] 
	t 
	II CURRENT CELL Al 
	[ CURRENT CELL EMPTY 
	GRID USED Al :A1 
	MEMORY REMALNING 101:ff I 
	!L _, 
	BDDDB 
	p ----- --- - - -- 
	~ 
	J 
	[:==== 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 191
	Titles
	PROVISIONAL 
	\E:3DDD9 
	2.3 HELP 

	Images
	Image 1
	Image 2


	Page 192
	Titles
	PROVISIONAL 
	BDDDB 
	1 
	·--~-~---- - ·==ii 
	[3DDDB] 
	I LJ 
	~ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 193
	Titles
	PRUVl~IONAL 


	Page 194
	Titles
	PROVISIONAL 
	[E-~[]O[]~J f3DDDB 
	~--==r- LJ 
	J 
	2. 7 ENTERING TEXT 
	C . 1 
	'ir -~~ - - ~I 
	5tJ[ JOBI f;JD[Jl]El 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 195
	Titles
	PROVISIONAL 
	~~I 
	RR.ENT CELL: Al .. · . &RID USED AtAI · .. MEMORY REMA.lNl.NG; ·:. ~.· · .. ~.·· .... 
	RRENT CELL EMPTY · · v, · 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 196
	Titles
	PRov,s,oNAL 
	BDDDB 
	r: 

	Images
	Image 1


	Page 197
	Titles
	PROVISIONAL 
	command) Un1ts,Oec1mals 
	~ENT CELL: Al . GRIO·U· SEO At:Al 
	[~ENT CEll VALUE 123.4567: 
	MEMORY '8EMAINING 98, 
	5 ENTER 

	Tables
	Table 1


	Page 198
	Titles
	2.12 THE 
	fKUVl~IUNAL 


	Page 199
	Titles
	PROVISIONAL 


	Page 200
	Page 201
	Titles
	r,~OVISIONAL 
	3.1 INTRODUCTION 


	Page 202
	Titles
	PROVISIONAL 


	Page 203
	Titles
	PROVISIONAL 
	3.5.1 Row and 
	" 
	CURRENT CELL: A1 GRID USED At:os 
	I CURRENT CELL EMPTY 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 204
	Titles
	PROVISIONAL 
	CURRENT CELL: At GRID USED At:(4 
	CURRENT ceu. . EMPTY 
	rHE;P If ;~;_;,R c ·1--o~T~~ ~ORM~Lt0lux·T-·;1-;-1 co0M.-MAN-o~ --·c:TI 
	A t e 1 c I fl I I F ~ 
	(URR~NT (Etl.: Al GR40 tlSfC ;tt;~1 "J~Off't lrtfMAlf.llN:fl:9.8!4 
	CUU£NT au. EMPTY 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 205
	Titles
	PROVISIONAL 
	B 
	G 
	f 
	E 
	c 
	8 
	9. 
	l 
	r, CURRfNT CEU:: Al GRID USEO;<AJ:05 
	CURRENT'CfU EMPTY 
	MEMOIW RfMAINtNG: 97 S 

	Images
	Image 1


	Page 206
	Page 207
	Titles
	PROVISIONAL 


	Page 208
	Titles
	4.3 A SIMPLE CASH 
	FLOW EXAMPLE A 
	I B 
	I c 
	I D 
	PROVISIONAL 
	I E 


	Page 209
	Titles
	PROVISIONAL 
	GAPS between lines on printers -----------------------------0 
	... , 
	CURRENT CELL:A1 GRID USED Al:A1. 
	CURRENT CEU EHPtY 
	.~Y RelAINING: IC 

	Tables
	Table 1


	Page 210
	Titles
	PROVISIONAL 


	Page 211
	Titles
	PROVISIONAL 
	5.1 ABOUT THE 
	5.2 CASH FLOW 


	Page 212
	Tables
	Table 1


	Page 213
	Titles
	PROVISIONAL 
	5.3 A SIMPLE 


	Page 214
	Titles
	PROVISION Al 
	c I D 
	51========================================== 
	IB31 "The 

	Tables
	Table 1


	Page 215
	Titles
	?ROVISIONAL 


	Page 216
	Titles
	5.5 CHEQUE BOOK 
	PROVISIONAi. 
	A B C 

	Tables
	Table 1


	Page 217
	Titles
	PROVISIONAL 


	Page 218
	Titles
	PROVISIONAL 
	I c I D 


	Page 219
	Titles
	P'ROVl'SIONAL 
	5. 7 A HOUSEHOLD 


	Page 220
	Titles
	!cl o !El F IGI H -Id 
	r1tu,1~1urHH 

	Tables
	Table 1


	Page 221
	Titles
	RO VISION AL 

	Tables
	Table 1


	Page 222
	Titles
	PROVISIONA,t 


	Page 223
	Titles
	PR 0-V IS IO NA l 

	Tables
	Table 1


	Page 224
	Titles
	PROVISION Al 

	Tables
	Table 1


	Page 225
	Titles
	P R O v , ~ , " !,.i r. 1 


	Page 226
	Titles
	PROVISION~' 
	FUNCTION 
	TRANSFORM 
	B 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 227
	Titles
	PROVISIONA;, 
	5.10.1 Calculating the 


	Page 228
	Images
	Image 1


	Page 229
	Titles
	PROV'sln,: .. , 
	~-' . i r1: \. 
	5.10.3 Using the 


	Page 230
	Page 231
	Titles
	?ROVISION A. I 


	Page 232
	Titles
	- 
	17r~]q~~~~ 
	I c=J 
	i Leo 
	__ --:J 
	PROVISJijN A! 
	BDDDB 

	Images
	Image 1
	Image 2


	Page 233
	Titles
	IB[I_JDL] 
	CK]~ - - - - -FRUIT 
	~ t 

	Images
	Image 1
	Image 2


	Page 234
	Titles
	PROVISIONAL 


	Page 235
	Titles
	PROVl~IO N .~ I 


	Page 236
	Titles
	"" 
	0~nv,slONAL 


	Page 237
	Titles
	PROVISIONAi. 
	'4 
	" 
	8 
	Ct,RRf;NT CEt.4: At·.: --~CiRtO US£0 A1:A1 
	··:;~~~··�:j~ 
	. ~ .. ...: .. , - 

	Images
	Image 1
	Image 2


	Page 238
	Titles
	PROVISIONAL 


	Page 239
	Titles
	PROVISIONAi 


	Page 240
	Titles
	,. 
	r1, 
	·~ 
	PROVISIONAL 
	'f . , I G 
	tuRRER:T CW.::.lt GRID USED M.:07 
	CURREMT CELL EMPTY 
	LOAD (L) 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 241
	Titles
	ROVISIONAl 


	Page 242
	Titles
	PROVISIONAL 


	Page 243
	Titles
	0 
	p 
	0 
	8 
	CURRENT CELL: Al . · GRID USED At:Al 
	8 
	I ·CURRENT CELL __ .: A. 1 � 
	uilJB USED ·ar.-t 
	. "..,. �. _,- . '" 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1
	Table 2
	Table 3


	Page 244
	Titles
	PROVISIONAi. 


	Page 245
	Titles
	PROVISIONAL 


	Page 246
	Images
	Image 1


	Page 247
	Titles
	PROVISIONAL 

	Tables
	Table 1


	Page 248
	Titles
	PROVISIONAt 


	Page 249
	Titles
	PROVISIONAL 


	Page 250
	Page 251
	Titles
	0 
	§. 

	Images
	Image 1
	Image 2


	Page 252
	Images
	Image 1


	Page 253
	Page 254
	Titles
	PROVISIONAL 
	1 .1 INTRODUCTION 


	Page 255
	Page 256
	Titles
	PROV I~ I UN AL 
	2.1 LOADING ARCHIVE 
	2.2 GENERAL 

	Tables
	Table 1


	Page 257
	Titles
	'°) ROVISIONAL 

	Images
	Image 1
	Image 2
	Image 3


	Page 258
	Titles
	PROVISIUNAL 
	L 
	2. 5 USING THE 
	2.6 FURTHER 
	r= 
	I~ 
	--,, 

	Images
	Image 1
	Image 2


	Page 259
	Titles
	2.8 THE DISPLAY AND 
	PROVl!ilONAL 
	lEJ-~ 
	I .. 
	2.9 THE MODE 

	Images
	Image 1
	Image 2
	Image 3


	Page 260
	Titles
	fff UVt~IUNAL 
	>O 
	L . 

	Tables
	Table 1


	Page 261
	Page 262
	Titles
	PROVISIONAL 
	3. 1 FILES RECORDS 
	3. 1.2 Files 
	3. 1.3 Records 
	3. 1 .4 Fields 
	3. 1.5 ARCHIVE Files 
	3.2 THE CARD INDEX 
	3.2.1 The Additional 


	Page 263
	Titles
	PROVl:SIONAL 


	Page 264
	Titles
	PROVISIONAL 
	4.1 INTRODUCTION 
	4.2 OPENING A FILE 
	4.3 DISPLAYING A 


	Page 265
	Titles
	4.4 EXAMINING OTHER 
	l'HUVl~IUNAL 
	4.6 SEARCHING A FILE 


	Page 266
	Titles
	PROVISIONAL 


	Page 267
	Titles
	PROVISUINAl 


	Page 268
	Titles
	PROVISIONAL 


	Page 269
	Titles
	5.4 CHANGING A 
	PROVl!)IONAL 


	Page 270
	Titles
	PHUVISIUNAL 


	Page 271
	Titles
	PROVISIONAL 


	Page 272
	Titles
	PROVISIONAL 


	Page 273
	Titles
	7.3 ACTIVATING A 
	PROVISIONAL 
	7 .4 SAVING AND 
	7.5 THE DISPLAY 


	Page 274
	Titles
	PROVISIG: 
	···CHAPTER 8 


	Page 275
	Titles
	8.4 LISTING AND 
	8.5 SAVING AND 
	PROV.IS 10 NA l 
	'- 


	Page 276
	Titles
	PROVISIONAi.. 
	8.6 EXAMINING 


	Page 277
	Titles
	PRov,s,nN ,, t 


	Page 278
	Titles
	PROVISIQMAl 
	CHAPTER 9 
	9.1 INTRODUCTION 
	9.2 THE LINE EDITOR 
	9.3 THE PROGRAM 


	Page 279
	Titles
	9.3.1 Select a 
	9.3.2 Select a Line 
	9.3.3 Editing 
	PROV J.SlONA L 


	Page 280
	Titles
	9.3.4 Inserting Text 

	Images
	Image 1


	Page 281
	Titles
	PROVl<'P1~J ~ ~ 


	Page 282
	Titles
	PROVISIONAL 


	Page 283
	Titles
	PROVJSIONAI 
	10.3 THE MAIN TASKS 


	Page 284
	Titles
	PROVISION At 


	Page 285
	Titles
	rltUVl~IUi'tf\l 


	Page 286
	Titles
	PRUVISIONAL 

	Images
	Image 1


	Page 287
	Titles
	10.3. 7 Leaving the 
	10.3.8 Putting it 
	rKU.Vl~.IUNA! 


	Page 288
	Titles
	PROVISIONAL 
	10.4 THE RUN 


	Page 289
	Page 290
	Titles
	PROVi~1u1,it1. 


	Page 291
	Titles
	11.3 LOCAL 
	PROV .1 S·I ON Al 
	let u = 3 ENTER 


	Page 292
	Titles
	***** 
	PROVISION Al 


	Page 293
	Titles
	11 . 5 DISPLAYING 
	11 . 5. 1 Introduction 
	11.5.2 The Record 
	PROVISIONAi. 

	Images
	Image 1


	Page 294
	Titles
	PROVISIONAi 

	Tables
	Table 1


	Page 295
	Titles
	P RU. V I S 10 N A l 
	11.6 DATA ENTRY 


	Page 296
	Titles
	PROVISIONAL 


	Page 297
	Titles
	PROVlS,tONAl 


	Page 298
	Titles
	PROVISIONAi. 


	Page 299
	Titles
	PROV.l.SIONAl 


	Page 300
	Page 301
	Titles
	***** 
	PR.OVl.SlONAl. 


	Page 302
	Titles
	PROVISION Al 
	12.2 CHANGING THE 

	Images
	Image 1


	Page 303
	Titles
	PROVl.SIUNAL 


	Page 304
	Titles
	PR OVl'SIO NAL 
	12.4.3 The Supplier 
	'" 

	Tables
	Table 1
	Table 2
	Table 3


	Page 305
	Titles
	PROVISIONAL 


	Page 306
	Titles
	PROVISION i- 


	Page 307
	Titles
	PROV·ISIO NA l 


	Page 308
	Titles
	PRUVl~IUNAL 


	Page 309
	Page 310
	Titles
	PROVISIONAL 
	1 3. 1 THE FUNCTION 


	Page 311
	Titles
	r K U Y I ~ I U tl f\ t 
	13.5.1.4 Opening and 
	13.5.1.5 Logical File 
	13.5.2 Microdrive Files 


	Page 312
	Titles
	PROVISIONAL 


	Page 313
	Titles
	PROVISIONAL 


	Page 314
	Titles
	PROVI~ Ir,-::.~ ; 


	Page 315
	Images
	Image 1


	Page 316
	Titles
	PROVISIONAL 


	Page 317
	Page 318
	Titles
	PROVISIONAL 


	Page 319
	Titles
	r tt u , 1 ~, u i't n i.. 


	Page 320
	Titles
	REM 
	RESET 
	RETURN 
	RUN 
	SAVE 
	SCREEN 
	SEARCH 
	SEDIT 
	SELECT 
	SIN PUT 
	SLOAD 
	SPRINT 
	SSAVE 
	PROVISIONAL 


	Page 321
	Titles
	STOP 
	PRUVISIUNl\l 
	UPDATE 
	USE 
	ABS 
	CODE 
	COUNT 
	DA TEO 
	EOF( lfn 
	"DD/MM/YYYY 


	Page 322
	Titles
	rKUVf~f!~ :, ? " 


	Page 323
	Titles
	PRUVISIONAl 
	13.12 THE LINE 
	13.13 THE PROGRAM 


	Page 324
	Titles
	PROVISlnN1\.I 
	13.13.1 Select 
	13.13.2 Select Line 
	13.13.3 The Editing 


	Page 325
	Page 326
	Images
	Image 1
	Image 2


	Page 327
	Images
	Image 1


	Page 328
	Page 329
	Titles
	PROVISIONAL 


	Page 330
	Page 331
	Titles
	PROVl~tUNAL 

	Tables
	Table 1


	Page 332
	Titles
	PROVISIONAL 
	:oooa 
	BDDDDB 
	BDDDDB 

	Images
	Image 1

	Tables
	Table 1


	Page 333
	Titles
	PHUVl~IUNAL 
	BDDDDB 


	Page 334
	Titles
	PROVISIONAL 
	BDDDDB 
	BDDDDB 


	Page 335
	Titles
	PROVISIONAL 
	BDDDDB 
	BDDDDB 


	Page 336
	Titles
	PROVISIONAL 
	BDDDDB 

	Tables
	Table 1
	Table 2


	Page 337
	Titles
	PROVISIONAL 
	BDDDDB 
	Left and Right 


	Page 338
	Titles
	PROVISIONAL 


	Page 339
	Titles
	PROVISIONAL 
	a = count 
	3.1 INTRODUCTION 
	3.2 THE CURRENT 
	3.3 THE NEWDATA 
	3.4 USING A 


	Page 340
	Titles
	rrtUVh)IUnftL 
	10 

	Images
	Image 1
	Image 2


	Page 341
	Titles
	PROVISIUNAL 
	20 
	m 15 
	10 
	5 
	0 
	FORMAl0 REP UNE16 
	CllJRRENT NAME: profits 
	View Data, MOOE 

	Images
	Image 1
	Image 2
	Image 3


	Page 342
	Page 343
	Titles
	PROVISIONAL 
	CHAPTER 4 
	4.1 INTRODUCTION 
	4.2 EDITING AND 


	Page 344
	Titles
	PROVISIONAL 


	Page 345
	Titles
	PROVISIONAL 
	FORMifi ~REP' PIE 
	Data Entry,MOOE 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 346
	Titles
	: .. : PROVISIONAL 


	Page 347
	Titles
	PROVISIONAL 
	6.1 INTRODUCTION 
	6.2 SELECTING A 
	6.2.1 Design by 
	FORMAT: 0 REP BAR13 
	View Data :MOOE 

	Images
	Image 1


	Page 348
	Titles
	PROVISIONAL 
	oo� 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 349
	Titles
	PROVISIONAL 
	6.2.2 Selection by 
	6.3 DESIGNING A 


	Page 350
	Page 351
	Titles
	PROVISIONAL 
	7,1 SAVING FILES 
	7,3 THE FILES 
	7 ,3, 1 Backup 
	7 .3.3 IMPORT AND 


	Page 352
	Titles
	PROVISIONAL 
	F3 L MDV2_PICTURE_GRF ENTER 


	Page 353
	Titles
	PROVISIONAL 
	8.2 THE FUNCTION 
	8.3 THE LINE EDITOR 
	8.4 FILES 


	Page 354
	Titles
	PROVISIONAL. 


	Page 355
	Titles
	PROVISIONAL 
	EDIT 


	Page 356
	Titles
	PROVl~IUrtt-\l. 
	'FORMAT·6 ·REP�PIE 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 357
	Titles
	PROVISIONAL 


	Page 358
	Titles
	PROVl~IUNAL 
	PIO 
	..._, 


	Page 359
	Images
	Image 1


	Page 360
	Titles
	sinc::lair-· 

	Images
	Image 1


	Page 361
	Titles
	[] 
	Order Form 

	Tables
	Table 1


	Page 362
	Titles
	QL USERS 


	Page 363
	Titles
	RETURNS FORM 


	Page 364
	Titles
	RETURNS PROCEDURES 
	OR 


	Page 365
	Titles
	Sinclair QL Preservation Project (SQPP) 
	=inC:lair- 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 366
	Titles
	Sinclair QL Preservation Project (SQPP) 
	Topic: 
	Document details 
	{r'v,ck,~ y)L tlsev c~,d'e - L4u~cl, £;-,/k;;~ 
	Notes: 
	42/1, ...£~..,,c,,~t'r~y· ,-¢'.J',Py-~ ~'S: S,Lerr-'h'e oire 
	Number of pages (including SOPP cover and back pages): .J 66 
	Scanned: 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7



