Vblumé V1'7
Issue 1
Sept. - Nov.

14

20

24

28

31

34

42

o1

Editorial
News
Quite large Integers - Part 3
George Gwilt

A Serial Nightmare: The Story of the
Ser-USB Drivers - Part 3
Adrian Ives of Memory Lane Computing

More Assembler Discussions
George Gwilt & NormanDunbar

Glossary of Abbreviations and Terms
Part5-JtoL
Dilwyn Jones and Lee Privett

Assembler with a 68020+ George Gwilt
Prottes, Austria - 2012
"To Pig or not to Pig” Tony Firshman

|2C Interface for QL Emulators
lan Burkinshaw

Programming in Assembler, Part 31
LibGen - Library Generator - Part 2
Norman Dunbar

Jochen Merz

18th Year of QL Today

Jochen Merz Software (J-M-S) 23
QLlForum 27
Quanta 37
QuoVadisDesign 17

German office & Publisher:

+49 203 502011
+49 203 502012

Jochen Merz Software Tel.
Kaiser-Wilhelm-Str. 302 Fax

47169 Duisburg email: smsq@j-m-s.com
Germany email: QLToday@j-m-s.com
Editor:

Geoff Wicks Tel. +44 1332 271366
Flat 5b email: gtwicks@btinternet.com
Wordsworth Avenue email: QLToday@j-m-s.com
Derby DE24 9HQ

United Kingdom

Co-Editor & UK Office:

Bruce Nicholls Tel +44 2071930539
38 Derham Gardens Fax +44 870 0568755
Upminster email: gltoday@q-v-d.demon.co,uk

Essex RM14 3HA
United Kingdom

emall: QLToday@j-m-s.com

QL JToday is published four times a year our volume
begins on beginning of June. Please contact the German or
English office for current subscription rates or visit our
homepage www.QLTODAY.com.

We welcome your comments, suggestions and articles.
YOU make QL Today possible. We are constantly changing
and adjusting to meet your needs and requirements. Articles
for publication should be on a 35" disk {DD or HD) or sent
via Email. We prefer ASCIL Quill or text87 format. Pictures
may be in _SCR format, we can also handle GIF or TIF or
JPG. To enhance your article you may wish to include
Saved Screen dumps. PLEASE send a hardcopy of all
screens to be included. Don't forget to specify where in the
text you would like the screen placed.

QL Today reserves the right to publish or not publish any
material submitted. Under no circumstances will QL Today
be held iiable for any diect, indirect or consequential
damage or loss arising out of the use and/or inabiiity to use
any of the material published in QL Today. The opinions
expressed herein are those of the authors and are not
necessarily those of the publisher.

This magazine and all material within is Copyright 2012
Jochen Merz Software uniess otherwise stated. Written per-
mission is required from the publisher before the reproduc-
tion and distribution of any/all material published herein. Al
copyrights and trademarks are hereby acknowledged.

It you need more information about the UNZIP program
which is used by our BOOT program to unpack the files, we
suggest that you visit Dilwyn Jones' web site where you find
more information about lots of interesting QDOS software
and INFOZIP at http:/www.dilwyn.uké net/arch/index.html

- The deadline for the next issue
_ is the 14th of November 2012!

IR) m———

Ealitorial

Ty Gaoff Wids

lsi

Recently there has been a major Sinclair event in the UK about which you have read
nothing in either QL Today or the Quanta Magazine. The news came in too late for our
last issue and by the time you are reading this, the event wil have taken place.

This year it is the 30th Anniversary of the Spectrum and a celebratory show was held,
the details of which could make QL-ers jealous. It was planned for two days in four
rooms of a university campus next door to the original Sinclair building in Cambridge.
The snag was that tickets cost £18 for one day - which puts the Quanta subscription
into perspective - or £23 for two days. Nevertheless, the show website warned:

"We believe the demand is greater than the supply, so book your ticket early”.

Many years ago a group of us attended a general Sinclair show in Norwich. The event
was well attended, but we were hopelessly outnumbered by the Speccies and had our
little QL redoubt at one end of one of the two halls. What surprised us was how little had
changed in the Spectrum world. It was like stepping into the past with stall after stall
seling the games that had made the Spectrum famous. In contrast we QL-ers had
continued to develop both the hardware and the operating system to transform the
original black box into a serious computer.

You can see some of this in our news section. Our lead story is of Memory Lane
Computing leaving the QL scene. Unlike the Speccies our numbers are too few to
support hardware developers. It is not a simple matter of finance as many think. There is
also a huge demand on the time of a developer and much frustration for little reward as
you can read in Adrian lves” account of the SER-USB drivers. Our second news story is
of several innovative programs that have been released over the summer. These pro-
grams could not have been written without the continued development our operating
system.

Our own 30th Anniversary is in 2014, but so far only two people, Dilwyn Jones and Urs
Konig, have suggested celebrating it. If we are to celebrate we need to start planning
now, but we cannot have the lavish celebration of the Speccies. In the UK Quanta is no
longer the rich organisation it once was. Its QLis21 celebration cost £3167 and its QLis25
celebration £2,714 both financed out of the reserves. In 8 years these have fallen from
£16,239 to £8,191. Can Quanta justify taking a further £2,000 from the reserves to
finance a show that under 40 people will attend?

The challenge for Quanta would be to organise a prestige event for about £1,000. It is
possible because we ran QL2004 in Eindhoven as a no frils show for less. Sin_QL_Air
paid the costs. (One of the frills of QLis21 was spending £576 of members’ money on AA
signposting. It worked out at about £25 per car, and was the reason | resigned suddenly
from the Quanta committee)

The great strength of QL2004 was that for one day we gathered almost all of the QL
developers together. Few of us who attended will forget the atmosphere at the unofficial
after-show dinner. It gave a boost to the QL community at a time when enthusiasm was
beginning to flag. Just a thought, but could we recreate that again, somewhere on the
continent in 20147

o News)

QL-SD Development Halted

Adrian Ives has ceased work on the QL-SD
project, a mass storage device that would fit into
either a microdive or the ROM slot. In an an-
nouncement at the beginning of June he wrote:
"I 'am sorry to announce that | have taken the
decision to withdraw from developing QL hard-
ware. In the current economic climate, it is no
longer practical to devote resources to such a
small {almost non-existent) market, and | need
to concentrate my energies elsewhere.
Unfortunately this means that | have withdrawn
from the QL-SD project. | understand that Peter
(Graf) is talking with other parties who may be
more able to bring the QL-SD to market. | wish
them all the best and will make available the
source code for the already written drivers to
allow this to happen as painlessly as possible.
Plans for Q-BUS have also been shelved

Thank you to the few people who have ex-
pressed a genuine interest in new QL hardware.”
The project was originally conceived by Peter
Graf who had developed it to an advanced stage
until time pressures prevented further develop-
ment. He passed further development over to
Memory Lane Computing who continued work
on the project.

In reply to questions about the future of his pro-
jects Adrian said he would be publishing the
schematics and code of Q-Bus online, but only
when he had the time to do so. As far as the
QL-SD was concerned he had forwarded all his
work onto Peter Graf for a decision on how to
proceed further Memory Lane Computing could
not offer further support for the drivers as they
were moving onto other projects.

In a discussion on the QL-users email group
comparisons were drawn between QL hardware
projects and those of the Spectrum and the
ZX81. Several people pointed out that sales of
the QL predecessors had far outstripped sales
of the QL.

For comparison Rich Mellor said he had sold over
540 QL keyboard membranes in approximately 4
years and had had 1227 customers. He had sold
over 1050 ZX81 keyboard membranes to 722
customers. He was of the opinion that, given the
right product, there still was potential for new QL
hardware. If only 1 in 20 of his customers pur-
chased a QL-SD that would still be 50 units.
Following the discussion Adrian Ives amplified his
reasons for leaving the QL market:

‘It's a bit of an oversimplification to lay the rea-
soning for my decision to withdraw solely on
the lack of interest. It has more to do with sim-
ple economics. It costs money to buy the stock
to build the units. As | have said before about
the Ser-USB, unless the stock can be bought in
bulk, it is not possible to obtain worthwhile dis-
counts. This makes the product more expensive
and thus reduces the lkely number of sales.
Add to that a severely depressed economy and
the continued mismanagement of the Euro
crisis, which further depresses any market from
continental Europe, and you have a pretty dire
situation. Almost a perfect storm, in fact.

| wish | could afford to do this as a hobby, but |
can't. | considered a number of ways of moving
it forward, including seeking funding from Quanta
(banks in the UK don't lend to small businesses
any more, so that route is closed and, anyway,
what kind of a business case is it to say "Two or
three people have said that they will buy one
and then, when other people know they are
available, a lot more people will buy them'?).

In the end, and to be absolutely blunt about it, it
simply wasn't worth the effort required for the
small return.

But the root cause of this is that there are signi-
ficantly less QLs in circulation than ZX81s or
Spectrums. It always was a niche machine and,
even in today's more retro-friendly environment,
it is a minor player. This is a great shame but it
is a true and unavoidable fact and it will always
influence decisions about resourcing new pro-
jects for it’

Summer Software

Some innovative QL programs have been
released over the summer months.

QJEWELS
This is a.GD2 game with SSS written by Tobias
Froschle.

Dilwyn Jones writes:
"Be prepared to waste a lot of time on this one!
QJewels is a free new game for GD2 systems
(e.g. QPC2), based on the popular Jewels genre.
QJewels is a colourful and (if you have the
Sampled Sound System installed on your
system)
noisy
game.
Arrange
three or
more je-
wels in a |
horizontal
or vertical *
line to re-
move them
and eamn .-
points - to
move a
jewel just
drag and
drop it one
square
away to
form a line
of three or
more of
those je-
wels.
Standard
or com- .
pact ‘
screen dis- - K
play. "Hint"
mode. Automatic 'no more moves” display. Poin-
ter driven program.
To be able to run this game you'll need a GD2
hi-res display system and SMSQ/E. Sampled
Sound System optional - get sound accom-
paniment if you have that system. Most basic
requirement - lots of timel If you're anything like
me you'll waste a lot of time on this game,
written for QL systems by Tobias Fréschle. It's
great to see authors writing software 1o use the
modern QL systems.
The game {173Kb) can be downloaded from:
hitp://www.dilwyn.me.uk/games/index.htm|

ANALOGUE CLOCK

Also from Tobias Froschle is an Analogue Clock
program, that runs on GD2 systems and features
a choice of clock faces.

It can be downloaded (60Kb) from:
http://www.dilwyn.me.uk/utils/index.htmi

== s /.-,.EW ‘:% . &

e e e e

P

5

- F

SQRview

New from Bob Spelten is a screen viewer,
SQRview, that can display BMP PIC, PSA, SCR
and SPR modes. The program only runs on High
Colour systems. Displayed images can be saved
in _pic and sometimes _spr formats.

i Py
-3 DOsy.
23

3 3492298

SuQcess QDOS VERSION ‘

Bob has also now released a QDOS version of
the spreadsheet program SuQcess. It is not as
powerful as the SMSQ/E version.

Both programs appear on a rewritten website
that also contains on its utilities page a new tool
for chaining sprites and an update to the Qwatch
clock program.

http://members.upc.nl/b.spelten/ql/

SETW

George Gwilt has updated his SETW program to
version 7.09 ‘
http://gwiltprogs.info/

He writes that the new version improves the
appearance of _asm output on the lines of
suggestions made by Norman Dunbar in the last
issue of QL Today. Also SETW allows a user to
present lists of text items, sprites, blobs and
patterns by preset files rather than typing them in
while SETW is running. This feature, which did
not work on some previous versions, is nNow
again operational.

QSTRIPPER '
Norman Dunbar has set up a dedicated website
for Qstripper and has published a number of
upgrades. Most of the conversion codes for
accented characters in the PC version have now
been added and he has continued to increase
the number of platforms on which the program
will run, including the Raspberry Pi. An export
option to Open Office format has also been
added.

hitp:// gstripper.sourceforge.net

The program has received recognition outside
the QL World with its inclusion in Softpedia's

e

;_»:»/"'9
= Noms L L
A e Newsgzm

database. The site informed Norman Dunbar:

‘It is featured with a description text, screen-
shots, download links and technical details.”
http://www.softpedia.com/get/Office-tools/Other-Office-
Tools/QStripper.shtml

QLToday Index

Brian Kemmett has updated his index of QL
Today to include volume 16. The complete index
of volumes 1 to 16 can be downloaded as a PDF
file from Dilwyn Jones' website:
http:/wwwdilwynme.uk/gen/dltoday/gltodayhtml
Once again QL Today is grateful for Brian's index,
which is extensively used by the editor.

Q]__Toclay]ndex 1cor\/o}ume lto 16

"
=3
»

L R I
-
w
E

" MODES2BMP rror ' - o w4 7

JUST WORDS! first Year Results

In its first year the new Just Words! website has
had 4,159 visitors, although many of these were

e

not QL-ers. The most popular page on the site
was QL news followed by freeware downloads:
1: QL News (433 hits)

2: Freeware Downloads (385 hits)

3: Advice and Help (278 hits)

4: Maps (264 hits)

5: Dictionaries (227 hits)

6: QL maps (66 hits - launched half way through

~ the year)

The top five Advice and Help articles were:

1: GD2 Colour Tutorial (93 hits)

2: User Friendly Programming (90 hits)

3: Transferring Spreadsheets (78 hits)

4: Transferring LineDesign pages to a PC (64 hits)
5: Compiling Dictionaries (59 hits)

ltems 2 and 5 were among 4 articles republished
on an eBook download site.

The most popular freeware download by far was
Roger Godley's GD2 version of Xchange:
1: GD2 Xchange (39 downloads)
2: Postcodes (19 downloads)
Solvit Plus 2 {19 downloads)
4: Style-Check (15 downloads)
5: Spelling Crib (12 downloads)

Where operating systems were known 81% of
visitors used Windows, 10% MacOS and 9%
Linux. Mozilla (Firefox) was the most popular
browser (62%) followed by Internet Explorer
(18%).

www.gwicks.net/justwords.html

RASPBERRY PI

As we close the main news pages there are

reports that a QL emulator for the Raspberry

Pl is imminent. Tobias Froschle has success-

fully run uglx on the machine and several
people are alpha testing the program. Tobias
does not wish to have a full
release until he is satisfied
it is bug free.

| Quitte [arge Infegers - Part §

In previous articles | showed how an assembler language program L,&W@.."@ @Wﬂ[{ﬁ
could perform arithmetic on large integers. | show here how an
S*¥BASIC program could make use of this with the CALL procedure.

Before any arithmetic can be done the assembler routines have to be loaded and the space for the
numbers has to be set up.

Loading the Assembler routines

In QL Today, Volume 11 Issue 3 | described the use of a program called Set_Hex which produces a
function used to load assembler code. The function is called Load_Hex and it returns the address
where the code is loaded. In the sample program listed below, the routine Set_Up loads the code and
sets the address in a variable called asad (for ASsembly ADdress).

Setting the Numbers Space

The procedure Init, which immediately follows the call to Set_Up, uses the assembler code to set up
space for a set of numbers of the required size.

The Arithmetic

Once the first two actions have been taken numbers can be entered into the system and manipulated.
This is done by a set of procedures and functions.

The first procedure for entering numbers is Push (number, a%). this will set number" in space a%. Thus
Push 456, 3
will put the number 456 in the fourth space.

Since Push cannot enter integers greater than 2°31-1 (2147483647) the procedure Adj has been
provided. To use this, the number must be sliced into sections nine digits long, starting at the least
significant end.

The most significant portion, which, of course, may be less than nine digits long, must now be entered
using Push. The second section is now entered by Push into a second space. Adj is now used on the
two spaces. The next nine digits are now entered and the operation Adj is repeated. When there are
no more sections to be entered the complete number is set.

For example, to enter
14223496784072601046391
it is first split into the numbers
14223, 496784072, 601046391
To set the complete number in position O we use the commands:

Push 14223,0
push 496784072, 1
Adj 0,1,0

Push 601046391,1
Adj 0,1,0

If you want to enter a negative number it is necessary to enter it positively and then use Neg to make
It negative,

The full list of procedures and functions is given below. Three of these have been made possible by
an addition to the CALLed assembler routine described previously. These are the procedure Sat and
the functions Bits and Numad.

) - — - S o
—_—y T e
B — _— £ 3 . P T o
= == @w\/ 4 - f;;y,__\j(_

PROCEDURES

Add a%,b%,c% - adds a% to b% and puts the answer to c¢%
Adj a%,b%,c% - sets a%*1079 + b% to c%
Clra% - sets a% to zero
Divda%,b%,c% - sets a% DIV b% to c%
Dupla%,b% — duplicates a% in b%
Initsize,set —produces space for "set’ numbers of "size” long words
Modua%,b%,c% - sets a% MOD b% to c%
Multa%,b%,c% - sets a%*b% to c%
Nega% - negates a%
Powera%,n%,b% - puts a% n% to b%
Pushk, a% - sets the number k to a%
Sqta%,b% - puts INT(SQRT{a%)) to b%
Subta%,b%,c% - subtracts b% from a% and puts the answer to c%
FUNCTIONS ,
Bitsa%,n - returns for a% the position of bit -n or the number of bits
(n=0)
Comp a%,b% - returns 0 if a% = b% else 1
Count af - returns -1, 0 or 11f a%-1is negative zero or positive
It also sets a% to a%-1
Countba%,b? - Same as Count but subtracts b% instead of 1

FAdd, FAdj, FDivd, FModu, FMult, FNeg, FPower and FSqt
- all perform the same actions as Add, Adj etc but return
1if the action was successful and 0 otherwise

Numad a% - returns the address of a%

Range% - returns the number of integers which can be stored
Size% - returns the number of longwords holding an integer
Testa% —returns -1, 0 or +1 for <0, 0 or >0

The code itself is given here.

1000 Set_Up

1002 DEFine PROCedure Init(length,number)
1004 REMark Sets up "number" numbers of size "length" long words
1006 1IF agad=0:Prerror 1:RETurn

1008 CALL asad,0,length,number

1010 END DEFine

1012 :

1014 DEFine PROCedure Add(a%,b%,c%)

1016 REMark Adds a% to b% and puts the answer in c%
1018 Do_It 1

1020 END DEFine

1022 :

1024 DEFine PROCedure Subt(a%,b%,c%)

1026 REMark a% — b% to c%

1028 Do_It 2

1030 END DEFine

1032 :

1034 DEFine PROCedure Mult(a%,b%,c%)

1036 REMark a%*b% to c%

1038 Do_It 3

1040 END DEFine

1042 :

1044 DEFine PROCedure Divd(a%,b%,c%)

1046 REMark a%/b% to c%

S S 3
[—l\, .

1048
1050
1052
1054
1056
1058
1060
1062
1064
1066
1068
1070
1072
1074
1076
1078
1080
1082
1084
1086
1088
1090
1092
1094
1096
1098
1100
1102
1104
1106
1108
1110
1112
1114
1116
1118
1120
1122
1124
1126
1128
1130
1132
1134
1136
1138
1140
1142
1144
1146
1148
1150
1152
1154
1156
1158
1160
1162
1164
1166

Do_It 4
END DEFine

DEFine PROCedure Push(number,a%)
REMark put "number'" to a%
IF asad=0:Prerror 1:RETurn
CALL asad,5,a%,number
END DEFine

DEFine PROCedure Dupl(a%,b%)
REMark copy a% to b%
IF asad=0:Prerror 1l:RETurn
CALL asad,6,a%,b%
END DEFine

DEFine PROCedure Clr(a%)
REMark a% is set to zero
IF asad=0:Prerror 1:RETurn
CALL asad,7,a%

END DEFine

DEFine PROCedure Neg(a%)
REMark a% is negated
IF asad=0:Prerror 1:RETurn
CALL asad,8,a%
END DEFine

DEFine FuNction Test(a%)
REMark a% is tested

IF asad=0:Prerror 1:RETurn 0
CALL asad,9,a%

RETurn PEEK W(asad+2)
END DEFine

DEFine FuNction Decimal$(a%)

REMark returns a% as a string of decimal digits

IF asad=0:Prerror 1:RETurn O
CALL asad,10,a%

RETurn PEEK$(PEEK_L(asad+4),PEEK W(asad+2))

END DEFine

DEFine FuNction Comp(a%,b%)

REMark returns 1 if a%=b% and 0 otherwise

IF asad=0:Prerror 1:RETurn O

CALL asad,11,a%,b%

RETurn (PEEK_W(asad+2)=0)
END DEFine

DEFine PROCedure Adj(a%,b%,c%)
REMark a%*1079 + b% to c%
Do_It 12

END DEFine

DEFine PROCedure Modu(a%,b%,c%)
REMark sets a% MOD b% to c%
Do_It 13

END DEFine

DEFine PROCedure Power(a%,b%,c%)
REMark a% b% to c%

S) I N

1168
1170

Do_It 14
END DEFine

1172

1174
1176
1178
1180
1182
1184
1186
1188
1190
1192
1194

DEFine FuNection Size%

IF gsad=0:Prerror 1:RETurn 0
CALL asad, 15

RETurn PEEK_W(agad+2)
END DEFine

DEFine FuNction Range%

IF asad=0:Prerror 1:RETurn O
CALL asad, 16

RETurn PEEK_W(asad+2)
END DEFine

1196 :

1198
1200
1202
1204
1206
1208
1210
1212
1214
1216

DEFine FuNction Count(a%)
REMark Subtracts 1 from a%
IF asad=0:Prerror 1:RETurn O
CALL asad,l17,a%

RETurn PEEK W(asad+2)

END DEFine

DEFlne FuNetion FAdd(a%,b%,c7)
RETurn Do_Itf(1)
END DEFine :

1218 :

1220
1222
1224

DEFine FuNetion FSubt(a%,b%,c%)
RETurn Do_Itf(2)
END DEFine

1226

1228
1230
1232

DEFine FuNction FMult(a%,b%,c%)
RETurn Do_Itf(3)
END DEFine

1234

1236
1238
1240

DEFine FuNction FDivd(a%,b%,c%)
RETurn Do_Itf(4)
END DEFine

1242

1244
1246
1248
1250

DEFine FuNction FNeg(a%)
Neg a%

IF asad=0:RETurn 0:ELSE RETurn (PEEX_W(asad+2)=0)

END DEFine

1252

1254
1256
1258

DEFine FuNetion FAdj(aZ%,b%,c%)
RETurn Do_Itf(12)
END DEFine

1260 :

1262
1264
1266

DEFine FuNction FModu(a%,b%,c%)
RETurn Do_Itf(13)
END DEFine

1268

1270
1272
1274

DEFine FuNction FPower(a%,b%,c%)
RETurn Do_Itf(14)
END DEFine

1276 :

1278
1280
1282

DEFine PROCedure Finish
IF asad=0:RETurn

and returns 0 if a% =0

Init 0,0 :

REMark to return space

1284 RECHP asad:asad=0
1286 END DEFine

1288 :
1290 DEFine FuNetion Countb(a%,b%)

1292 REMark Subtracts b% from a% and sets TEST result in asad+2

1294 IF asad=0:Prerror 1:RETurn 0
1296 CALL asad,18,a%,b%

1298 RETurn PEEK W(asad+2)

1300 END DEFine

1302 :

1304 DEFine PROCedure Do_It(o%)
1306 IF asad=0:Prerror 1:RETurn
1308 CALL asad,o%,c%,a%,b%

1310 END DEFine

1312 :

1314 DEFine FuNction Do_Itf({o%)
1316 IF asad=0:Prerror 1:RETurn O
1318 CALL asad,o0%,c%,a%,b%

1320 RETurn (PEEK_W(asad+2)=0)
1322 END DEFine

1324

1730 DEFine PROCedure Sqt(a%,b%)
1740 IF asad=0:Prerror 1:RETurn
1750 CALL asad,21,b%,a%

1760 END DEFine

1770

1780 DEFine FuNction FSqt(a%,b%)
1790 1IF asad=0:Prerror 1:RETurn 0O
1800 CALL asad,21,b%,a%

1810 RETurn PEEK_W(asad+2)

1820 END DEFine

1830 :

2000 DEFine FuNction Load_Hex

2010 REMark This returns the address of an
2020 REMark ALCHPd area containing the HEX

2030 REMark DATA at line 2160

2040 REMark If a mistake occurs -1 is returned

2050 LOCal m,asad,adr,top,x,k,wd%
2060 RESTORE 2160:READ top

2070 1IF top«=0:RETurn -1

2080 asad=ALCHP(top)

2090 IF asad«0:RETurn -1

2100 k=INT(top/2):adr=asad

2110 m=top-2¥k:top=asad+top

2120 FOR x=1 TO k:READ wd%:IF adr+2>top:RECHP asad:RETurn -1:ELSE :

POKE_W adr,wd%:adr=adr+2

2130 IF m:READ wd%:IF adr+1> top:RECHP asad:RETurn —1:ELSE :POKE adr,wd%

2140 RETurn asad
2150 END DEFine
2160 DATA 2398

¥¥%%¥ Here follow the DATA lines which contain the assembled code ¥*#%

3000 DEFine PROCedure Set_Up
3010 asad=Load_Hex

3020 END DEFine

3030

3040 DEFine PROCedure Prerror(n%)
3050 IF n%=1:PRINT "NO GOOD"
3060 END DEFine

3070

11

e

7 = e NP

O ——

ST &

Ny

Example of Use

The code shown above is not a complete program. If you run it all it does is to load the assembler
code and name its address "asad’. You can now type commands on the keyboard and experiment
with the various arithmetic operations.

As an example of the use of this code I give below the instructions which perform the calculation of
Pl The key procedure is Set_Pi. If you call this the result will, eventually, be a listing of Pl to the number
of places you have requested. Shortish lengths will give a virtually instantaneous result. But if you ask
for 20,000 places you will have to be prepared to wait. On my Apple MAC with Windows XP running
under VMware this takes three hours which is shorter than on any other of my machines.

Set_Pi asks for the number of places of Pl and calls Piple to get the answer.

Piple opens a window filing the whole screen, indicates the number of places of Pl requested, calls
CalcPI to do the work and finally prints the answer together with a note of the time taken.

My BOOT sets a procedure in the polled list which adds 1 to the long word at $DC of the system
variables every 1/50th of a second. This was described in QL Today Volume 12 Issues 3 and 4 and
this what | use for timing events.

CalcPI does the calculation. It first assesses the number of long words needed to hold the integers
involved in the calculations and uses Init to set this. It then sets the scaling factor z. This is a power of
10 two more than the number of places requested (in the hope that at least the places of Pl up to two
before the end will be accurate). It then calculates Pl by Machin's formula:

4%PT = 4¥atan(1/5) - atan(1/239)

The calculations of atan are performed by Ain. Atn continues to add terms while they are greater than
1/z. Since this can take some time | have arranged that every few seconds a noise wil be made. This
is intended to indicate that something is happening rather than the computer lying idle nursing a
crashed program.

Here, then, is the code

5000 DEFine PROCedure Set_Pi

5010 LOCal 1p

5020 OPEN#4, con:WINDOW#4,300,40,20,SCR_YLIM-80: PAPER#4, WHITEZ : INK#4 , BLACKY% :
BORDER#4,2,2:82%=3

5030 REPeat 1p

5040 CLS#4:PRINT#4,"Give the size (Zero to EXIT): ";

5050 sz%=EDIT%(#4,52%,6):IF 82%=0:EXIT 1p: ELSE :Piple sz%

5060 END REPeat lp

5070 END DEFine

5080 :

5090 DEFine PROCedure Piple(n%)

5100 10Cal ch%,p$(10)

5110 IF ch%=0

5120 ch%=3:0PEN#ch%, scr: WINDOW#ch%, SCR_XLIM, SCR_YLIM, 0,0: INK#ch%, WHITEY

5130 END IF

5140 USE ch%

5150 +tp=PEEK_L($280DC):CLS:PRINT "PI to "&n%&" decimal places":CalcPI n%:
+m=PEEK_L($280DC)—tp

5160 DIM p$(n%+2) :p$=Decimal$(10):Pr_P(p$):PRINT:Pr_T:Noisel

5170 USE

5180 SUSPEND_TASK 300

5190 END DEFine

5200 :

5210 DEFine PROCedure CalcPI(m%)

5220 REMark to get pi to m% places in [10]

5230 LOCal n%

5240 IF m%<3 OR m%> 32000:Do_FEr 5240

5250 n%=2+INT((m%+2)/9.63296)

5260 Init n%,11:REMark space for 11 integers each n% long words

5270 Push 10,3:REMark put 10 in [3]

e,
e —— il A e Y.
= = A3

5280
5290
5300
5310
5320
5330
5340

IF NOT FPower(3,m%+2,3):Do_Er 5280:REMark Set 107 (m%+2)=2 in [3]
Atn 5,9:Atn 239,10

Push 4,7

IF NOT FMult(7,9,9):Do_Er 5310

IF NOT FSubt(9,10,10):Do_Er 5320

IF NOT FMult(7,10,10):Do_Er 5330
END DEFine

5350 :

5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580

DEFine PROCedure Atn(o%,k%)
10Cal 1p,s,t_base,t_end,bp%
REMark puts atan(l/0%)¥z to [k%]
§=0:C1lr k%:REMark clear answer space
Push 1,0:REMark set 1st of 2r+l
Push 2,1: REMark [1] =
Push 0%,2:REMark [2] = t of o%~(2r+1)
Mult 2,2,5:REMark [5] = o%"2
t_basezPEEK;L($280DC):bp%=l
REPeat 1p
IF NOT FMult(0,2,6):Do_Er 5460:REMark (2r+1)%o%~(2r+1)
IF NOT FSubt(6,3,4):Do_Er 5470:REMark (2r+1)%o%~(2r+l) — z
t_bend=PEEK_L($280DC)
IF t_bend-t_base>150:Noise:t_base=t_bend
IF Test(4) = 1:EXIT 1lp:REMark finished
IF NOT FDivd(3,6,6):Do_Er 5510:REMark z/[(2r+1)%0%~(2r+1)]
IF s:Neg 6
§=1""s
IF NOT FAdd(6,X%,%%):Do_Er 5540
Add 0,1,0:REMark 2r+1
IF NOT FMult(2,5,2):Do_Er 5560:REMark o%((2r+1)
END REPeat 1p
END DEFine

5590 :

5600
5610
5620

DEFine PROCedure Do_Er(p%)

5630 :

5640
5650
5660
5670

USE: CLS:PRINT "Not good pi @ "&p%:STOP
END DEFine
DEFine PROCedure Noise

BEEP 9000, 167,6,23,bp%
bp%=bp%+1:IF bp%> 6:bp%=1
END DEFine

5680 :

5690
5700
5710

DEFine PROCedure Noisel
BEEP 31000,52,97,2,381
END DEFine

5720 :

5730
5740
5750

DEFine PROCedure Pr_P(p$)
PRINT:PRINT p$(1)&"."&p$(2 TO LEN(p$)-2)
END DEFine

5760 :

5770
5780
5790
5800
5810
5820
5830

DEFine PROCedure Pr_T

LOCal sec,min%,hr%

hr%=1INT(tm/180000)

min%=INT(tm/3000)-60%hr%

sec=tm/50-3600%hr%-60%min% ‘

PRINT "Time "&FDEC$(hrZ%,3,0)&": "&G1$(FDEC$(min%,2,0))8&": "&G1$(FDECS(sec,5,2))
END DEFine

5840 :

5850
5860
5870
5880

DEFine FuNction G1$(a$)
IF d$(1)=" ":RETurn "0"&d$(2 TO)
RETurn d$

END DEFine

Finally I should say that the code shown assumes that it is running under SMSQ/E and that Turbo TK
code is loaded.

W_M::T B

28-APR-2011 Project Resumed

E@V A Tves @{% me @@mm‘

Between the 21st and 27th of April | received a
number of e-mails from potential customers
interested in buying a Ser-USB should they be-
come available. This seems to have been the
result of a “letter writing” campaign organised
by Tony Firshman. | am grateful that Tony did
this, because there is no doubt that without
those e-mails the Ser-USB project would have
been abandoned.

29-APR-2011 v0.92.014 Release Candidate 7
By now | had replaced QDOS Slave Blocks
with "Private Slave Blocks’, an area of heap
allocated by the driver at startup and managed
in exactly the same way as the QDOS slave
table. This broke the link with the QDOS slav-
ing system, saved memory and won the Battle
of the Slave Blocks.

The tide, it seemed, was turning.

05-MAY-2011 v0.92.023 Release Candidate 12
There followed a flurry of "Release Candidates’
until number twelve, at which point | was plan-

ning to release 1.0 on the following Monday;
May 9th, 2011.

This release removed the bulk of the debug-
ging code and | considered to be as stable as
it could be, given the hardware and OS limita-
tions.

07-MAY-2011 Beta testing extended by one week
By now | had received the PCBs for the pro-
duction prototypes, but there was a problem:
the space for the USBWiz module did not line
up correctly, making it impossible to mount the
boards in the case that | had chosen. To give
myself some time to come up with a fix, | ex-
tended the beta testing, thus putting back the
release date for 1.0.

08-MAY-2011 Production Prototype 001

After redesigning the physical layout and chan-
ging the case, Ser-USB Mark-|, serial number
001, was completed. It was to be the first of
only three such units to be built. Unit 001 has
special sentimental value because it was actu-
ally built using the USBWiz module taken from
the original (now defunct) prototype.

e S 14

Unit 001 is stil in use at Memory Lane
Computing today, where it is regularly used for
testing driver updates and for moving software
between machines.

lustration 4: Ser-USB 001

The Mark-Il was intended to be the real produc-
tion model. It would be in a smaller case and
have its sockets mounted directly on the PCB.
Instead of a 9 Pin D connector, the Mark-Il
would use an 8 pin mini-DIN socket for the
serial connection to save space.

13-MAY-2011 The first Ser-USB is shipped

The first commercial sale of a Ser-USB is com-
pleted as Mark-I unit 002 leaves the workshop,
accompanied by a floppy disk containing the
first release of the 1.0 driver (which would not
be publicly announced until the following
Monday).

16-MAY-2011 v1.0 Release

To be precise, this was actually version
1.00.024. The last three digits of the version
string represent the EDDE build number. It inclu-
ded the Queue Manager, the Driver Command

~ Manager, Partition Manager and USBWiz Termi-

nal. It had been nothing short of a marathon
getting to this point, but finally, it was done.

With 1.0 out of the door work immediately
furned to production of the Mark Il units and the
Inevitable bug fixes that would be needed as
new problems were discovered. There was
also the little matter of a ROM driver to be
dealt with,

21-MAY-2011 ROM Driver enters Alpha Testing
Creating the ROM driver introduced a new chal-
lenge: how to fit 18376 bytes of driver code
into a 16384 byte EPROM! The answer was not
to. Instead, some components from the driver,
mostly the S¥BASIC extensions were removed.
These would be loaded as a separate LRESPR
file.

However, this posed another problem. To use
the driver on standard QL hardware required
the Queue Manager You couldn't load the
Queue Manager from the Ser-USB because
you needed the Queue Manager running be-
fore you could access the drive.

The answer was to introduce a bootstrap loa-
der facility that allowed a code overlay to be
loaded from the Ser-USB before the device
driver itself was active. This was the first time
that bootstrapping (as opposed to BOOTing)
had been implemented for a QDOS device
driver. At the time | was very pleased with the
solution, but it did infroduce a lot of support
headaches, especially when issuing software
updates. The bootstrap data had to be stored
in a reserved area on the SD Card that could
only be written by a special utility. This made
upgrades difficult because it required the user
to perform this operation, and if they made a
mistake it could leave them without a functio-
ning system.

23-MAY-2011 v1.02 Release

* Fixed a bug that caused UMOUNT n fol-
lowed by MOUNT n to report 'Bad or
Changed Medium’.

e The default number of Private Slave Blocks
was increased to 64.

e The Debugging Service Interface was
brought in line with the other Installable
module interfaces (in other words a
complete replacement could be installed).

e The new QM_GO command in the
installable Queue Manager was a shortcut
way of doing a QM_START followed by
DRIVER_ASYNC_IO 3.

¢ The USBWiz Terminal could now run if the
Ser-USB driver was loaded.

¢ The ROM version of the driver was released.

27-MAY-2011 Production of Ser-USB Mark |l
units begin

With the arrival of the redesigned circuit
boards, it was now possible to start producing
the Ser-USB as originally designed.

llustration 5: The Ser-USB Mark I

02-JUN-2011 v1.03 Release

DRIVER_FLUSH command was moved
from the core driver to the extensions.

DRIVE_CAPACITY command was moved
from the extensions into the core driver,

The ROM driver now also supported using
non-superHermes serial ports greater than
2 under SMSQ.

Fixed the improper display of large block
counts as negative numbers in the Partition
Manager.

Fixed a memory corruption issue in the
Partition Manager.

The EDDE ECF Updater utility (needed to
update the bootstrap code) now had a
Config Block for setting the default location
of the files.

07-SEP-2011 v1.04 Release

Implemented limited integration with the
new Ser-USB FAT Driver that allowed both
drivers to be loaded at the same time.

USBWizlerm detected either Native or FAT
Ser-USB drivers and worked correctly with
either (or both) loaded.

Trap #2/3 1/0 Servicers were now run able
to run entirely with private stack space on
versions of the OS that supported it {only
Minerva).

The broken MOUNT command was fixed.

Fixed bug in ROM driver that tried fo
change the baud rate back to 9600 after
setting it to 4800 on standard QLs.

The ROM driver now did an automatic
QM_GO it it was started with a
configuration fo use a standard QL.

The equivalent of a QM_GO could be

N s 4 -
—~§\\/>' 1 5 i s TR

j S

invoked from machine code with a special long
function code argument to gm_do_async_op.

e A new QM_STOP command in the instal-
able Queue Manager switched to synchro-
nous /O and forced all Queue Manager
services to shut down.

e FEquivalent of a QM_STOP could be in-
voked from machine code with a special
long function code argument to
gm_do_async_op.

e New functions in the Driver S*BASIC Ex-
tensions were added to read drive and par-
tition information:

DRIVE_MAP(d)
Return the address of the drive's map

DRIVE_NAME$(d)
Return the name of the drive

DRIVE_PTCOUNT(d)
Return count of partitions on drive

DRIVE_PTSTART(d,n)
Return start LBA of partition on drive

DRIVE_PTNAMES(d,n)
Return name of partition on drive

¢ The default number of Private Slave Blocks
were increased from 64 to 128 in the light
of real-world user experience with the
driver.

¢ The Partition Manager no longer required
the Driver S¥BASIC Extensions or Toolkit |l
to be loaded.

Version 1.04 was the last of the 1.x series. It
was a major release in the sense that it intro-
duced the FAT Driver and a whole new way of
using the Ser-USB. Instead of loading the
native QDOS driver, users could use the FAT
Driver instead. This implemented a suite of
S*¥BASIC procedures and functions for mana-
ging files on FAT16 and FAT32 volumes, with all
of the file system handling taking place on the
Ser-USB. It was a far better solution for
resource-constrained standard QLs and is still

the way we normally use Ser-USBs here at .

Memory Lane.

JAN-2012 Ser-USB 2.0
[t would be three months before | returned to
the Ser-USB driver to make sweeping changes
to its driver architecture, abolish the Queue
Manager and create a driver that, finally, I was
happy with.

| had been collaborating with Peter on the
QL-SD project and, as a result, the EDDE core

became EDDE 2, introducing one very funda-
mental change that would definitely benefit the
Ser-USB: Write As You Go {WAYG) map handling.

Instead of waiting a set time after the last write
to a drive and then flushing the entire map to
the disk (as the QUBIDE driver did, and so
EDDE had inherited this behaviour) WAYG
writes individual map sectors as they become
dirty, massively reducing the overhead and re-
moving the need to repeatedly write the entire
map each time, most of which never changes.
This was also essential to reduce wear and
tear on flash memory devices. Not having to
send the entire map across the serial port five
seconds after the last write was also going to
be a huge performance benefit for Ser-USB.

| should thank Peter for WAYG, though. When
the very first EDDE driver ran with the QL-SD, it
was his comment that the map flushing was
lke "Taking a Coffee Break’ that made me
tackle the issuel WAYG was written in just two
days and it turned out to be a surprisingly sim-
ple algorithm. It's been in EDDE 2 ever since.

Returning to the Ser-USB driver, the first thing
to go was the Queue Manager As a solution |
have never liked it. It was messy, complex, and
unreliable. It would not be missed. What | chose
to do instead was to retain the Save State En-
gine and allow trap ®#3 calls down to the serial
driver to return all the way to the top calling
level if they were incomplete, suspending the
driver's state so that it could be re-entered on
the next scheduler loop.

This didn't take as much work as | had anticipa-
ted as all trap #3 serial I/O calls were already
routed through a mechanism known as the
Watchdog Timer. Unrelated to the d3 timeout
value passed to the traps, this is a timer that
limits all serial transactions to a set period of
time according to the QL's real time clock, thus
allowing the driver to recover from a serial I/0
operation that never completes.

In practice this means reading the clock on
entry to a "watched” trap #3, caling the trap,
testing the return code, and retrying if not

~ complete and the configured maximum elapsed

time hadn't been reached according to the
clock. Internally, a watchdog timeout returns the
new error code erwx, but application pro-
grams never see this as it is converted fo
errnc by the driver if a 'real” timeout has
occurred.

As al serial /0 was routed through the
watchdog ~ routines (watch_begin and

OUO vmus

Independ ant Information
D € S (1 l\/ Technology Services

www qI qu com

000 VADIS .
DES{GIy meperdant lformation QL/QDOS/SMSQ/E Software

News

Quo Vadis Design sells software for the Sinclair Quantum ¢ QVD GL News Blog - keep up to date
Leap computer (QL) and variants including a new OfS called

|smsae. News Blo

z4/02/2 2009

. |Welcome

3/OSINS/SOAD/10

e aLisa computer in its 25th year Annlversary.

i‘ Quo Vadis Demgn Website Launched
DI‘/D /2 uug G
o Euv chwr mé
- | Software emulations of the QL now exist which can runona il
PCMac with Windows{Linux or Mac Operating systems.
L | Conyright ©2009 Quo Viadis Design. Al Rights Reseryed, ==+ = = & = o0 ST F oweProduels | Suspod | Company | Contat] Privaty.

Special Offers available from
‘ Jochen Merz Software for its
25 years in QL Trading
Bruce@ql-qu com

Quo Vadis Deslgn | i Check the.QL News Blog on
38 Derham Gardens - our website for the special
Upminster | offers

RM14 3HA .

UK

: c . o a he QL magazine
Tel: +44 (0)20 71930539 .HL"J y F%ﬁgsmuie%}

- Fax: +44 (0)870 0568755

Subscriptions taken online

| TSR T £ 1 "ﬁ7 jgz'# m_\>;ﬂ; gl

vateh_trap3) it was easy to add the code neces-
sary to "put the driver into suspense’ by a call to
ss_save_state in the Save State Engine.

After making these changes | was rewarded by a
driver that was finally able to access the Ser-
USB on a black box QL without any need for the
Queue Manager.

Well, to be more accurate, | had a driver that
worked under Minerva 1.98.

When it was tested with JM and JS the whole
thing fell over. This led to a further "wobble mo-
ment” on January 11th, when | decided that the
new driver would have to be limited to Minerva.
This was not the first time that something which
worked under one version of the ROM would not
work under another. There are also differences
between SMSQ and QDOS that caused pro-
blems in the early days, such as the ability to
start a task from the scheduler loop service,
which SMSQ and Minerva can do, but JS cannot.

Eventually, though, a workaround was found. The
reason why it worked under Minerva and not JS
was connected with trap #2 io.open.

When Tony Tebby wrote QDOS he implemented
the 10SS Retry mechanism (this has been dis-
cussed earlier) for all trap #3 calls. It's a powerful
feature of QDOS that allows device drivers to be
written that would otherwise be far more com-
plex and allows non-blocking 1/0 to boost per-
formance. Unfortunately, the retry mechanism
does not extend to trap #2 and this is a real pain.
It means that trap #2 calls must complete atomi-
cally; they cannot return "Not Complete” and have
the 10SS retry them until all their processing is
done. This is not so bad for io.close, but io.open
has to do a lot of work and if it doesn't finish
what it is doing, subsequent trap #3 calls wil
likely fail with disastrous results.

This is no problem at all when the driver is mana-
ging the hardware directly, but when it is making
calls down to another driver, and that driver can-
not complete its operations immediately then you
are caught in a deadlock scenario.

That's why the code that handles trap #2 calls
into the Ser-USB driver has no option: it has to
pass a timeout in d3 to any trap #3 call it makes
to the serial driver, and this means that the sche-
duler will get re-entered with potentially disas-
trous consequences. Except that they weren't
disastrous under Minerva. Using timeouts
worked.

For JM, JS and the multi-ingual MG ROMs, an ad-
ditional workaround had to be introduced: the
Extended Open Handler. This is the most contro-

e
o

el

versial aspect of the 2.0 driver as it is working
around QDOS to introduce new behaviour The
principle is not very simple:

- When an io.open call is made, calls down to the
serial /0 driver are allowed to initiate a deferred
driver process that is executed on the frame
interrupt.

- A new return address is pushed on the user
stack, pointing to the Extended Open Handler; a
short piece of code which runs in user mode,
retrying the original call at 50 frame intervals until
the code returns something other than errnc - at
which point all of the processing has been com-
pleted.

- On each frame interrupt, the driver restores the
saved state established when the deferred driver
process was created and continues executing.
This process continues on each timer tick, retur-
ning errtnc until all of the io.open code has been
executed.

Complex though this arrangement is, it does
actually work .. unless an application program
tries to make an io.open call in supervisor mode.

The Extended Open Handler effectively converts
trap #2 io.open into a non-atomic call and, in fact,
the Ser-USB driver is the only device driver that
can return ertnc from such a call and not be
signalling an error. It's actually possible to set a
flag to disable the Extended Open Handler ‘and
tell the driver to do exactly this, leaving it up to
the application program to handle the retries.

There was one other issue to be solved that was

- related to trap #2. A call to ioclose could trigger

a similar deferred driver process, the difference
being that ioclose would always return. This
means that the situation can arise when the dri-
ver is busy still handling the residual processing
from a close or delete operation and is thus not
ready to perform another transaction. This
doesnt matter for trap #3 calls, because the
driver just returns errnc and the 10SS will retry
until it can handle the request, but a new trap #2
call has to handle this situation. The solution was
to invoke the Extended Open Handler for this as
well.

Job done. Well, not quite. There’s still the issue of
supervisor mode calls into the driver that will fail
(this is actually true of trap #2 and trap #3 calls)
and cannot be fixed due to the need to make
calls to the underlying serial driver And then,
there are programs that just don't like the Exten-
ded Open Handler. | don't blame them. I am hijack-
ing the user stack pointer, inserting a false return
address, and executing a chunk of code that

s R [| T DR e S

they don't even know is happening {like trap #1
mt.susjb calls).

For programs written in S¥BASIC and compiled
with TURBO or Q-Liberator, there are two
workarounds for this final issue: the extensions
SRU_BUSY and RETRY..OPEN, the latter allow-
ing io.open calls to be made with the Extended
Open Handler disabled.

There is, at the time of writing, no fix for super-
visor mode calls into the driver.

As the last section has shown, the 2.0 drivers
are very different. They represent a huge
investment of time and energy and come close
.. very close .. to achieving what | had con-
sidered impossible. | began to allow myself to
think that the nightmare might finally be over

Numerous other changes were also made in
2.0; | have listed the most significant of them
below:

e The Ser-USB native driver was split into
two versions: Destiny (for QL emuLators
running on Pcs, Macs and Linux systems)
and Legacy (for standard QLs and compa-
tibles).

¢ The device name was changed from USB
to SRU (i.e. USB1_ is now SRU1_).

e The driver core was changed to EDDE 2.
This has a more open architecture and is
less complex.

e Write As You Go (WAYG) map handling.
This removed the irritating delayed-action
map flush that brought the system to a halt
for long periods of time.

¢ The Queue Manager was no longer requi-
red (or supported).

o Tighter 10SS retry integration meant that
QDOS was handling the retry of serial I/O
operations and not the driver. This improved
overall reliability.

e A new Extended Open Handler emulates
IOSS retries on trap #2 io.open calls by
hi-jacking the user mode return address.

e The ROM driver did not need to load any
overlays.

¢ The ROM driver allowed the QL to boot
from a Ser-USB drive.

e The ROM driver presented an option at the
QL startup screen to either automatically
start the driver or to manually start it with
the SRU_START command.

e Updated S*BASIC procedures and func-
tions.

e

N
<2

e (Changes were made to the way that
FORMAT was implemented. In particular, a
new command SRU_FORMAT was intro-
duced for the legacy driver,

e The API system was replaced by the sepa-
rate EDDEZ2 Link Layer Driver, making it
possible for application programs to call
the EDDE API without any knowledge of
the underlying device.

| am sure that there are still more bugs to be
discovered. The Ser-USB driver is, after all,
doing something remarkable. It is abstracting a
block device driver across obsolete serial
hardware to bridge the 20th and 21st centuries.
But QDOS did not admit defeat easily. The
serial ports did not submit without a fight. This
war may stil not have been decisively won ...
but the last battle has definitely been fought!

The 2.0 driver has come too late to save the
Ser-USB. The future of QL hardware is now
with more advanced hardware such as QL-SD
or even Q-BUS, but the development of the
Ser-USB drivers has, in the final analysis, been
a journey that was worth taking.

It's just not one that | would want to take again.
Probably.

o= S FE aRes B T Tt

fllustration 6: Ser-USB 2.0 Legacy Driver, ROM version

EPILOGUE

10th February, 2012.
| am reading the report from one of the 2.0 beta

“testers, Urs Konig. He had what was going to be

the final version, intended for the public release
on the 20th of February. | am appalled by what |
see. Pages of problems ranging from unreliable
WCOPY commands to corrupted partitions to a
catastrophic system crash when saving a one
line BOOT program. It is nothing short of a
disaster and it is made much worse by the fact
that he is reporting things that have either all
been fixed or have never been reported before!

| have to make a decision. It is surprisingly easy
for me after twelve months of this serial
nightmare.

Enough is enough. | end the beta test, freeze
Ser-USB development and withdraw the product

from sale. The 2.0 drivers will be made available
as a ‘curiosity”; a glimpse of things that could
have been but were not to be.

| hadn't won the war after all. But at least | would
win the peace.

| More Assemibller Discussions

Norman's [NDI answers to George's [G
comments on Assembler - Part 31. Comments
inserted by the Editor are marked [ED].

[GG] | must say that | found Norman Dunbar's
article Part 31 both useful and interesting.

[NDI Thanks. | worked hard on it, and stil ma-
naged to spot a few errors when the magazine
arrived. Why is it that when | proof read some-
thing, I never see any (!) errors, but as soon as it
Is committed to hard copy, they are blatant? |
have detailed the errors at the end of this text.

[GGI Naturally | went through the process he
describes to produce a window definition for his
Library Generator. Unfortunately when it came
time to place the loose items in the window |
discovered that | had not entered all the items of
text that I should have, so | aborted the program
preparatory to a retry. At this point | remembered
that SETW allows a user to preset a list of text
items, putting them in a file called rami_text_list.
But when | fried this | found that the current
version of SETW would not accept such a list. As
a result | have produced version 7.09 of SETW
correcting this fault and was able to produce the
window suggested by Norman.

[ND1 | was aware that this could be done, but as |
had never had more than a few text items, |
never bothered. It seems that I'd have been stuck
had | done so! Thanks for the fix though.

[GGI | was surprised, however at two of his
amendments to the resulting _asm file. He set
the select key for ESC and MOVE to 3 and 5.
Though that is quite correct, | wondered why he
did not press these select keys when invited to
do so at an earlier stage. Thus pressing ESC
would automatically result in 3 being set for ESC.
Also pressing ALT/F4, which is the key for MOVE,
would result in the select key being set as 5.
How does he know that 5 is the correct key? |
certainly wouldn'!

g{ﬁ by Geoyge Guilk and Norman @uﬂmbarj

[NDI | didn't think to do so is the simple answer,
Maybe I'm too used to EasyPointer 3 which requi-
res me to enter the event number rather than the
keypress. If | press ESC in EasyPointer 3, | get a
key code of 27 and not the event number of 3.

Also, the EasyPointer Manual gives the numbers
required to be entered to get an event.

And finally, Some of the ALT+Fn keys combina-
tions, on Linux, do different things. For example, If
| press ALT+F1 or ALT+F2 or ALT+F3 or ALT+F4,
the key press is intercepted by the GUI system
(KDE in my case) and causes a desktop switch to
take place. | have 4 virtual desktops and this is
the key combination to switch between them.

| only have Windows running in an Emulator on
my laptop, so | cannot use those keys at all. This
made me unable to try the key combination to
see if it would enter the event number even
when running windows.

[GGI] Later on Norman sets the justification code
xjst to -1 for three loose items. Again | would like
to know why this was done. Setting -1 causes
the item to be printed so that it stops just one
pixel before the right hand margin of the item'’s
hit area. Now the width of the hit area for all three
loose items is just two pixels larger than the
width of the item itself. This means that setting
xjst to any of 1, 0 and -1 will result in the item
being placed in the middle of the area with one
pixel between both margins.

[NDI | hadn't realised that the object was so
large to be honest. | wanted the text to be right
justified and when running, it appears to be
correct.

[GG] My feeling is that this is in fact a veiled
criticism of SETW since it always sets both xjst
and yjst to zero and does not allow the user to
choose g value for himself.

s liffﬂ\é - 552—A@A :’::mrﬁr’f\:f‘ftfﬁ ;ﬁii"ﬁjﬁ e
ti‘fw—ng%zrc"\v — W, F;g;b::-:hi\/;:’:’é—“’ e

[ND] Not at all. Most of the time | only ever use
default left justification, | just wanted to try out
right justification on this utility. No criticism
intended at all

[GG] Norman has altered the item "flag” in the
main window section wd0. He has split this into
two bytes, 'flag’ and "shad’. In general this is
laudable. The flag, which deals with whether a
window is cleared or not and whether the arrow
keys move the pointer or not, can have either or
both of its most and least significant bits set. For

a shadow size of 2 and with both flag bits set’

SETW will set flag to a rather uninformative
33026. Had this been expressed in hexadecimal
it would have been set as $8102 which much
more clearly shows what is happening. Indeed
this was one of the changes | have been making
to SETW and | am glad that Norman thinks this a
reasonable alternative.

IND] This is indeed a good change - thanks.

[GG] However, once again, | have to point out
that Norman has been using an old faulty version
of SETW which erroneously sets the most
significant bit of the flag byte to signal that the
window must be cleared. If this flag bit is set it
signals that the window must not be cleared. So,
it is a relief to see that, in the event, Norman has
correctly set his new flag byte to zero.

[ND] Yes, in the code | set it to zero, but | left in a
comment in the text saying "feel free to leave it
at $80.." Oops!

It is at this point | shall relate the story of a
conversation, by email, between George and
myself on the matter of the clear window flag. |
found that with this utility, it made no difference at
all whether it (the flag) was set to Zero, $80 or
$81 - everything looked exactly the same when
the code was executed.

However, after a chat with George and more
experiments, | discovered that this flag affects
only the window. If you have Information or Appli-
cation Windows "on top of" the Window, you ne-
ver see the window being cleared or not.

What | did was to delete the application window
from LibGen and try running it with all possible
values of the flag. When set to $8x it did indeed
show the current SuperBasic background (a pro-
gram listing in my case} and when the window
was moved around, the section of the program
listing was displaying, moved around with it!

As LibGen has the entire window filled with Infor-

mation Windows 9 (at the top) and an Application
Window (at the bottom) then the whole of the
Window is covered and so, the background
doesn't show through regardless of the flag
setting.

Mystery solved!

[GG] Finally, Norman has cleaned up the _asm
fle by inserting blank lines between individual
items such as information windows. This seems
a good idea and one that | have incorporated in
SETW v7.09.

[NDI And | promise to only use this version, from
now on, untl a new one comes out of course.
Hopelully, we won't need to discuss the flag byte
again! And | won't have to remember to change it
either!

IND] And finally, the errors in the previous article
are as follows:

Page 48, Iltem 16.5. QL Toady" slipped in again. It
should of course be "QL Today". Thankfully the
code is correct,

Page 51. At the end of the last paragraph of text,
above the final code section, | have this "You can
leave the word set to $8002 if you wish™ This
should of course read "$0002" - again, thankfully,
the code is correct {final two lines on the page
show the bytes in question).

[ED! The dialogue continued over several emails.

[GGI Very interesting.

I'm amused about your remarks on the setting of
the selection key. The reason why the selection
key for ESC is 3, 1s, of course, that ESC is one of
the keystrokes that causes an event. The
selection key for any such keystroke is the event
code.

[ND] This is true, but 'm almost 100% certain that
when | pressed ESC in SETW, | got a key code
of 27 - which is what | would expect for the ESC
key. | was looking for 3 rather than 27. 1 might get
a chance to test a little program to see if
pressing ESC (and thus getting 27) does actually
generate a CANCEL event anyway. | need to
know for my own sanity!

[GGI I'm quite sure that SETW always gives 3 for
the key press ESC for a select key.

(ND)} Mind you, from what you say below, | have a

L
N e
e < \,Z@z&tua_ z’ﬂj \\/}*‘ S

suspicion that ESC will cause WMAN to trigger
the CANCEL event anyway.

[GGI Yes, WMAN always takes ESC to be the
event "cancel’. This can either be the select key
for a loose or menu item or can be processed
by the program as an event.

You say that Easyptr requires you to key "3" if
you want to set the selection key for ESC and
that if instead you press ESC Easyptr sets the
code to 27.

[NDI In EasyMenu, you select a keypress by
pressing the K key, then the keypress desired. To
set an event you press the C key, and enter the
event number. At least, in EasyMenu 3 you do.

[GGI If so | find this very odd. It means that if
you do set 27 as the selection key you will never
be able to select that loose item by pressing
ESC because the PE software will translate ESC
to the value 3.

[NDI This is exactly what [need to test, however,
the EasyMenu manual allows you to use C then
event and doing this causes the event to be
handled internally by EasyMenu's own code,
rather than the application having to handle
these events.

[GGI It a loose item's select key is set to 27
WMAN will never select the item by keypress.

[ND/ It's something | always used when writing
QLiberated SuperBasic programs because using
the internal event handling saved me having to
write code to handle sleep, move, cancel etc. I'm
a lazy developer!

[GGI Furthermore, you wil not be able to get
Easyptr to set keypresses 3 to 8, since it will,
presumably, set the selection code to one of 3 to
8 instead of 51 to 56.

[ND] EasyMenu does it differently from SETW.
you tell it whether you are giving it a key press
(K) or key code/event (C) then enter the details.

[GG] You also mention that with some emula-
tions you do not have access to some key com-
binations. | find this is true of the MAC. | have to
press the function key to get access to F1 to F4
when running QPC2. However, | would have
thought that if you can't get SETW to set a parti-
cular keypress as the selection keystroke that
you wouldn't be able to use that keystroke
anyway in the completed program.

=,

|

i

e o &

i

[ND] This is correct. The CTRL+Fn key combina-
tion, for example, cannot be used in SETW/Easy-
Menu to generate the menu and nor can it be
used in the generated application. Linux (in my
case) intercepts it long before it gets to the
application.

[GG] With my MAC and with one of my son's
window's 7 laptops you have to use the Fn key
with the Fx keys. Thus, given Fn/CTRL/F4 SETW
sets the select key to 5. Also Fn/SHIFT/F3 sets
the select key (correctly) to 243.

[NDI Unless | stick a Loose Item on the
application and set it to be the event code/key
press required - then if | can't use the keypress
shortcut key combination, at least | can click it
with the mouse!

[GGI | have now come to the conclusion that it is
a waste of time to set selection keystrokes to
any of the event loose items.

[ND] Agreed!

[GGI As far as | can see it makes no difference
to the actual operation of the final program. | may
have comments on those lines when | see what
your program is! ‘

[NDI As I've said before George, your comments
are most welcome.

[ED] There was a final test by Norman:

[GGI I'm quite sure that SETW always gives 3 for
the key press ESC for a select key.

[ND] | tested this just now, after instaling the
latest version of SETW - you'll be pleased to hear
- and it displays "Event - cancel” when | choose
the ESC key as my selection key for a loose
item. This is excelent, especially as | was
"certain” that | saw it print up a 27 which is why |

- "had’ to edit the source and put in a keycode of

3.

| shall not need this in future, SETW just does it
right”.

I

]

Kaiser-Wilhelm-Str. 302 Phone +49 203 502013
47169 Duisburg Fax 149 203 502012
Germany EMail: SMSQ@J-M-S.com
QPC2 Version 3 + SMSQ/E Software QL-Emulator for PC's ..., EUR 59,90
QPC2 Version 3 - Upgrade from QPC2 Version 2cooccooomomonvene coeveeeeerensn, EUR 19,90
QPC2 Version 3 - Upgrade from QPC2 Version 1cccccooovvviccceonnens oo, EUR 39,90
QPC Print - printer emulation driver for QPC et et rt b an s et EUR 39,90
BUNDLE: QPC2 and QPCPIintccooooooviireceeece e ONLY ... EUR 79,90
Agenda Agenda program for WMAN and PrOWESSc.cceureoniieseeessssessssseseeorsensenns [V1.09]EUR 14,90
Suqcess Database front-end for WMANccoeuiuernuiieineseeseieeneesses et ssscssse e [V2.05] EUR 19,90
QD2003 Pointer-Environment-EdItOrcc.erueeerescnssssssssissssssnssessessesssssssasssnsens [VB.01]EUR 29,90
QD2003 Upgrade from Version 9 and oldercccccoevneeeeeeeeceeeeeenne [VB.0O1]EUR 14,90
QMAKE Pointer-driven MAKE for GST/Quanta ASSEmbIercovvereeveeevreessnereesnnennes V4.3 1] ... EUR 14,90
BASIC LINKET ...ttt ns st s [V1.21]EUR 14,90
WINED FHoppy/Harddisk Sector & FIe-EItOrcccorvveceeeeeireeeresreeeeeeesesesereesseessssesssones [V1.26] ... EUR 14,90
FiFi 1l File-Finder - Extremely USefUl!c.coveiieiisereeiisisteseseseeeeetsssseeeeenersseeseessenesenss [V4.31] ... EUR 14,90
FiFi Il Upgrade from Fifi Version 3 or older ... [V4.31] ...EUR 9,90
EPROM MaRNUQET ...ttt sttt sase s [V3.02]EUR 14,90
QSpread2003 Spreadsheet Programceeeeeeeceresereeiieesresse s essenssessesasessones [V4.04] ... EUR 29,90
QSpread2003 Upgrade from Version 3 and olderccccovvveerervceenivnnrerne, [V4.04]EUR 14,90
QPAC | Utility Programsceeeeerevrcninieerieririssesiesesese et sessssesssssesssssessssessssessesossessns [V1.11}]EUR 19,90
QPAC 11 Files, Jobs & Other TRINGScvevevvveeereriieiiree e eiesises e sstsssssessssesssssserensnsssenes [V1.45] ... EUR 29,90
QITYP 11 Spell Checker «..ceveeesreeeseeeeseeesseeesssesssees e eessesees s e [V2.17]EUR 19,90
QPTR POINter TOOIKIE ..v.evvrresivrcereersitiecietess s sensesas e rsrese s s bbb esse b s e st sensesenssbssbessens [vV0.30]EUR 29,90
DISA Interactive DISSSembIEEcccviriueiiiesirieieesssesisssteeeessrstoresenesesssesssesesrencensseens [V3.04] EUR 29,90
LodTe | [V2.14]EUR 29,90
CueShell for QPC ... [V2.14]EUR 14,90
SER Mouse software mouse driver for serial Micec...o.o.oovoeeeieeceeeeeeeeeeeeeeseeer v, EUR 10,00
EasyPTR VErsion 4 ...ttt tes s V4] ... EUR 59,90
EasyPTR Version 4 - Upgrade from earlier versionscccccceevvmeevrcvcerccvevnnnen. (V4] ... EUR 39,90
QDT - QL Desktop program e R $eeseaaeeaniestsins EUR 59,90
QMENU Version 8 - with new, prmted Manual ..o [\/8 02]EUR 24,90
QMENU Version 8 - Update from earlier Versions, also with printed manual EUR 17,90

QMENU Version 8 - New/Update for QL Today subscribers, with prtd manual ONLY EUR 14,90

We accept VISA, MasterCard & Diners Club online and offline!
Details for money transfers:
e Deutschiand: Jochen Merz, Account 493 50 431, Postbank Essen, BLZ 360 100 43
o Osterreich: Jochen Merz, Account 85055317, PSK Wien, BLZ 60000
e Switzerland: Jochen Merz, Account 60-690080-4, PostFinance, Clearing-Nri. 09000
e The Netherlands: Jochen Merz, Gironummer 3258439, Postbank NL Amsterdam
¢ and from all other countries in EUR with IBAN and BIC to account
Jochen Merz, Deutsche Postbank AG, IBAN: DE21 3601 0043 0611 1004 37 / BIC: PBNKDEFF 360
e UK customers can pay in £ {convert EUR prices above to £ by multiplying with 0.83) to
Jochen Merz, Account 83795395, Citibank UK, Sort code 30-00-45
or send cheques in £ - no fee for UK sterling cheques! a\Jab e

e If you wish to pay via paypal, send money to P |@J-M-S. es P
y bay Vi bayp y 10 Faypa com - chedy Price list valid untl 301h of Nov, 2012

[

TR

B
(I

m=a";\\/‘; -

 Gllossary off Alb Ab{b)revn@m@[mgs and T@[FWDS
hﬁtg U{t@l - Fﬂw@ﬁﬂwsmﬂ

Agam. we continue here from where we ended last issue.

| and L Priveit

Jumper

JPEG

KB

Kernel
Keyed

KHz
LED

LCD

Linker

Linux

Logical Operators

LONG WORD

Loop

LQ

A connection on a circuit board that allows different circuits to be linked {ogether
by the specific location of a small metal loop. This allows different permutations
and configurations to be realised

Joint Photographics Expert Group, name of a body to agree on graphics compres-
sion standards for still pictures. Used generally to describe a file saved in this for-
mat. Not in widespread use on the QL, though there is a QL PD program to con-
vert between JPEG and GIf and there are several GIF file readers for the QL

Abbreviation for KiloByte, or 1,024 byte. The unit 1,024 is used rather than 1,000 as
it is a number which is a power of 2, which makes it easier and more logical to
handle in computer terms. 1,024 KB makes 1 MB or 1 MegaByte, see below

Special code at the heart of a computer's operating system.

Termed used to describe specific orientations of connectors and plugs so that
only the correct connection is made

KiloHertz, a measure of the number of cycles per second

Light Emitting Diode, small fairly low current device used to replace filament bulbs,
as their robustness and longevity made them much more reliable and ideal as indi-
cators. Available now in red, orange, yellow, green, blue & white colours

Liquid Crystal Display, sandwiched between two layers a liquid changes its opacity
when an electrical charge is passed though it, used in displays.

A special program which joins up two or more code flles and builds them into a
single executable or code file, and works out the "links" between the code so that
they are all joined up correctly tcgether

Operating system originally created by one Linus Torvalds (a former QL user him-
selfl). Allows us to use a QL emulator called uQLx. There is also a version of the
Qlay emulator which can run on Windows. Linux is an example of an open source
operating system originally based on Unix.

Used to determine if a condition being tested is true or false, e.g. IF x=0 AND y=1
THEN PRINT True” : ELSE PRINT "False”: END IF

2 Words or 4 bytes of computer memory. Sometimes referred to as a 32 bit value.
For those who understand binary numbers, this corresponds to a 32 digit binary
number, so a long word of computer memory can store quite large values

A programming structure which repeats a statement or block of code until a condi-
tion for ending the repetition occurs. FOR loops run a set number of times,
whereas a REPeat loop runs until a certain condition occurs then exits from the
loop when that condition occurs.

Letter quality, a term used to describe print quality

Least Significant Byte, the lowest 8 bits of a numeric value. When you write the
number as a binary form, this will be the rightmost 8 bits. Can also stand for Least
Significant Bit when specifically referring to one single bit of the data's value

Machine Code

Macro

Make

MB

Mbps
MDV

Menu

Menu Extension

MERGE
MESS

MHz
Microdrive

Minerva

MODEM

Machine Code is the name of the instructions that a processor can run directly, At
its simplest level, machine code is a sequence of numbers in memory. Rather than
program directly in machine code, programmers usually write code in what is called
Assembly Language, a human readable text form of machine code, which is then
converted by a program called an Assembler directly into machine code which the
computer can run without having to do any further conversion when the program
runs.

A piece of pre-written code or routine or value which is added to a program where
indicated to save having to type it in each time you write a program. You will often
come across this term when using assembler programs.

Make reads in a makefile, which is a list which specifies which source code files
are needed to build the final program. This sort of approach allows you to write a
program in sections, which can later be compiled into a single program. Writing
code in sections like this makes it easier to maintain very large programs.

Megabyte, or 1.024 KiloBytes, or 1,024 times 1024 bytes. Nowadays, computer
memory is often so large that it is measured in MB rather than Bytes

Mega Bits Per Second, not to be confused with MBps (MegaBytes per second)

Device name for the microdrive tape loop storage devices on a Sinclair QL. MDV is
an abbreviation of microdrive. Two of these tape drives were supplied built into the
case of the QL and in theory up to 6 more could be plugged into a slot on the
right hand side of the QL. Each microdrive could store about 100 kilobytes of data

A list of items on the screen, from which you are invited by the computer to
choose one or more of those items

A handy little toolkit written by Jochen Merz to simplify the writing of programs of
your own which can be controlled by a mouse or cursor arrow keys and adds faci-
lities such as allowing you to create menus and lists for file selections, list selec-
tions, and so on. The term Menu Extensions refers to the software itself, whilst the
term Qmenu refers to the printed programming instruction manual. If, ike me, you
have difficulty remembering which term refers to what, try to remember the sen-
tence (from the manual) which says: "QMenu - How to program and use The Menu
Extension’

The act of joining two SuperBASIC programs together with a command called
MERGE.

Multiple Emulator Super System. An emulation engine which can emulate over 250
computer systems, including the QL

MegaHertz, a measure of the number of cycles per second

The original QL was supplied with two built in tape loop drives, called microdrives.
The tape cartridges which plugged into these drives were called Microdrive Car-
tridges and could each store up to about 100 kilobytes of data. The microdrives
were also known as MDVs, since the operating system called the drives MDV1_
and MDV2_. Now largely obsolete.

A replacement operating system chip for the QL. The original versions of the
QDOS operating system for the QL did have a few problems which were not sor-
ted out before the QL was discontinued. Minerva is produced by TF Services, and
fixes these problems and provides a few exlra facllities as well. A Minerva ROM
has the characters "JSL1" as its version identifier, which were the forename initials
of the designers Jonathan (Oakley), Stuart (McKnight) and Laurence (Reeves).

MOdulator/DEModulator. A device which plugs between a computer and a tele-
phone line allowing data to be sent over a telephone line.

"
j S

Monadic Operator A symbol which can precede a number, such as + - NOT and ™~ which tells us how

Mouse
MP
MSB

MT
Multi Tasking

Multi-Threading

Name

Nesting
NET
NIC

NLQ
OEM
Open Source

0S

0S X

e =

e 7
e e e

to interpret the value of the number, variable or function which follows, eg. LET
num=-(a_value) would ensure that num becomes the negated value of the variable
called "a_value’

Device for processing hand movements to a pointer system
Multi Processing

Most Significant Byte, the top 8 bits of a number (the leftmost part when written as
a binary string). Can also refer to Most Significant Bit when referring to one parti-
cular bit of a data's value

Multi Tasking

More than one program running at the same time, a bit like a secretary answering
the phone and typing a memo at the same time. Not the same as Task Switching
(qv) where more than one program may be in the computer's memory, but only
one running at a time, e.g. Quil and Archive in memory, but you type something
into Quill and then switch to Archive to type in something else and so on. A good
example of multi tasking is when you use Quill to type in a letter, and elsewhere
on the screen a little clock is running constantly showing you the current time and
date while you are typing.

The ability of a processor to run several threads of execution seemingly at the
same time. What the processor does is to run one program for a few micro-
seconds, then another for a few microseconds and so on, giving the impression of
running at the same time.

Term used to identify a variable, procedure or function. e.g. in the expression LET
a=1 the name is "a". The Name Table is a list of these names, including details such
as whether the name refers to a numeric variable, string variable, procedure, or
function.

Term used to describe structures one inside the other For example, a FOR loop
written to run inside another FOR loop.

Device name used for the QL's networking system. The QL network system was
also implemented on the QXL and Aurora cards.

Network Interface Card, allow the computer system to connect, transmit and
receive data to and from a network

Near Letter Quality, a term used to describe print quality
Original Equipment Manufacturer

Programs supplied with the source code (or the source code is available to
everyone). Anyone can study the source code to see how it works and make
changes if permitted by the software licence. Generally, the software licence would
prevent you being able to sell for profit any development you might make of the
package.

Operating System, the program or collection of routines that controls the computer
examples include MS-DOS, TOS, AMIGOS and QDOS

Name given to the current Apple Mac operating system. Its main virtue is that it
allows us to run Daniele Terdina's QL emulator, QemuLator for OSX.

A

I

| Assemibler with a 68020

Norman Dunbar's articles on assembler programmmg all assume that E &W©@ Gwilk 1

the processor is a simple 68000/8 as in the original QL. But all the

modifications to the hardware from the Super Gold Card onward make use of one or other of the
Motorola processors which contain the enhanced set of instructions available from the 68020
upwards. This enhanced instruction set is also available in the latest version of QPC2. If it is there, why
not use it by means of an appropriate assembler such as GWASS?

What | want to do here is to show how three of these 68020+ instructions can help to solve a
common problem. The three | will use are from the set of bit field instructions. Each of these eight
instructions operates on a set of contiguous bits - the bit field. The start of the field is determined by
the offset, measured in bits, from a specified effective address. The offset can be any number
between -2"31 and 2°31~1 inclusive. The width, or size, of the bit field can be any number from 1 to 32
inclusive. In general these instructions can take a value from, set a value to or simply test, a bit field.

The problem to be solved is the conversion of a set of bytes to an unsigned integer. These bytes can
be decimal, octal or hexadecimal. Other conditions are that there may be any number of characters,
that the integer must fit into a long word and that the last character must be a separator, or terminator.

Separator

Each character must be tested to seeif it is a separator If it is, the routine is finished. The obvious test
for a separator is to compare the character with the separator But what is a separator? If all the
characters are set each one on a new line the separator will simply be LE However if the numbers are
spread across lines the separators could be SPACEs as well as LF Or TABs may be allowed as well as
SPACE. Then again it may be that the input is part of some arithmetic expression. In this case such
characters as asterisk, back slash, brackets, curly brackets, square brackets and so on may be
needed. Clearly with such a large number of possible separators the voluminous code needed to test
each one explicitly is to be avoided. It was when | was faced with this problem that | turned to the bit
field instructions. It occurred to me that what you needed was a simple binary test to be applied to
any of the 256 characters which might appear in a byte. All | needed was an array of 256 bits, the
content of eight long words. The BFTST instruction would perform the separator test at one blow. If a
bit was zero the corresponding character would be a separator but if not, not. Thus if the tenth bit
were zero then TAB, having value 9, would be a separator,

From decimal, octal or hexadecimal to number

If the character just read in is not a separator it should be a character forming part of the number. At
this stage, therefore, a test must be made to ensure that the character is a proper one. This also can
be tested by using BFTST

Program

Now we come to the routines which convert the input to unsigned integers. All three of the routines
follow the same general form. The characters are read successively and processed until a separator is
found at which stage the operation is complete. Errors must be signalled if a character is neither a
separator nor a proper digit and also if the integer is too large to fit into a long word. Here, then is the
code for decimal digits.

; dec sets the value of the decimal string (AO0) to D1.L
; DO is set to O if OK: -1 if not

dec_reg reg d2

dec movem.l dec_reg,—(sp)
moveq #0,d0
moveq #0,d1

decl move.b (a0)+,do0 character — DO.L
bftst sep_tab{d0:1} separator? . .
beq dec_end . . yes so finished
bftst dec_tab{d0:1} Decimal digit? .
bne dec_err ——> . . no
subi.b #mom, do - 0 -9
move.l di,d2 ans copied to D2.L
asl.1l #2,d1 ans ¥ 4
bes dec_err —— overflow
add.l d2,d1 ans ¥ 5
bes dec_err — overflow
add.1l di,di ans ¥ 10
bes dec_err ——» overflow
add.1 d0,d1 add in new digit
bee decl OK so go for next digit
dec_err moveq #-1,d0 mark error
dec_end movem.l (sp)+,dec_reg
rts

You will see that the second and fourth instructions of the loop starting at decl are the BFTST
instructions testing for separators and correct digits. This is common to all three routines.

In this routine, the answer so far is multiplied by 10 by a set of instructions and the next digit added. At
each instruction in the performance of the multiplication it could be that a binary bit slips out from the
top of the register. This is noted and an error signalled. The first possible error occurs when the copy
of the answer so far is shifted up two bits. An astute reader will notice that the BCS test will only
indicate an error if the second top bit in the answer so far is 1 and that the top bit is ignored. Thus it
might appear that if the top nibble of the answer so far is in the range $8 to $B inclusive an erroneous
integer might slip through the net. This is, in fact, not so since in these cases one or other of the
following BCS tests must inevitably detect the overflow.

Now follows the code for hexadecimal digits. Here overflow is more simply detected since all we need
do is check that there are no more than eight digits. You wil notice that this routine contains the
instruction BFEXTU. This exiracts bits 5 and 6 from the character just read and places the value in D2.
The value is 1 for 0 to 9, 2 for A to F and 3 for a to f The adjustment of the character to its
hexadecimal value is then performed by table lookup from "ady".

; hex sets the value of the hex string (A0) to Di.L
; DO is set to 0 if OK: -1 if not!!

hex_reg reg d2/d3
hex movem.1l hex reg,—(sp)
moveq #0,d0
moveq #0,d1
moveq #8,d3 - count up to 8 hex digits
hex1 move.b (a0)+,d0 character t0 DO.L
bftst sep_tab{d0:1} separator? .
beq hex_end . yes so finished
bftst hex_tab{d0:1} hex character? .
bne hex_err ————» . nol
bfextu d0{25:2},d2 to see if 0-9, a-f, or A-F
add.b adj(d2.w),do set DO.L to 0 — 15
1s1.1 #4,41 ans * 16
or.b do,d1 add new character
dbf d3,hexl get the next one
hex_err moveq #-1,4d0 mark error
hex_end movem.l (sp)+,hex_reg
rts
adj de.b 0,-'0'",10-"A',10-"4a!

"™ T L,

p .

R s I et 4 29

—A 2) B :;:;j'zjgi\>7;~=; 7};1312:::7::;*:::

M

The third routine, which is for octal input, shows three instances of the use of BFTST As indicated in
the remarks following the routine dec the BCC instruction checks only the last bit shifted out from the
top of DLL. In the present case we need to check whether any of the three bits shifted out of D1 are
non zero. To do this we replace the shift instruction by ROL which not only performs the required shift
but also sets the three top bits in the bottom of the register. These are then tested by BFTST

; oct sets the value of the octal string (A0) to D1.L
;5 DO is set to 0 if OK: -1 if not!!

oct moveq #0,d0
moveq #0,d1 :
octl move.b (a0)+,d0 character to DO,L
bftst sep_tab{d0:1} separator? .
beq oct_end . yes so finished
bftst oct_tab{d0:1} octal character? .
bne oct_err ——» . no!
subi.b #'0',d0 DO — 0 to 7
rol.l #3,d1 ans ¥ 8 and overflow
H to bottom 3 bits of D1
bftst d1{29:3} did overflow occur? .
bne oct_err ——» . yes
or.b do,dl add new character
bra octl get the next character
oct_err moveq #-1,d0 mark error
oct_end rts
A Macro

The above routines require four tables indicating the correct characters in a group. They are for the
separators, decimal characters, hexadecimal characters and octal characters. Setting up these tables
by hand is tedious and can easily result in errors. The following macro, s_tabm, and the routine
set_tab are designed 1o do the task.

The macro has two parameters. The first is the name to be given to the table and the second is the
list of acceptable characters, To indicate the characters TAB and LFt and | can be used. T and L will do
just as well To clear the bit in the table corresponding to each character the macro calls the
subroutine set_tab. This subroutine uses BFCLR which is the third of the bit field instructions.

s_tabm macro where,what

bra w2\@
\1 deb. 1 8,-1 Set all characters to unacceptable
wi\@ de.b "\2",0 The zero is appended to indicate "end"
w2\@ lea \1,a0

lea wi\@,al

bsr set_stab

endm

; On entry A0 — where

; Al - what (1list ending O with t=TAB and 1=ENTRY)
set_stab moveq #0,d0
1p move.b (al1)+,do0 Ended? .
bne alt_DO . . ho
rts
alt_D0 ecmpi.b #'t',d0
beq altl - 9
cmpi.b #1771, d0
beq altl
cmpi.b #1'11,d40
beq alt2 - 10

v

— 7 I Wﬁf = S

cmpi.b #L", 40
beq alte

alt3 bfelr (a0){d0:1}
bra 1p

altl moveq #9,d0
bra alt3

alt2 moveq #10,d0
bra alt3

Set to acceptable

Get the next character

Here, finally, are the four instructions which can be used to set up the four tables.

s_tabm sep_tab,<tl ()*+,-
s_tabm dec_tab, «0123456789;
s_tabm oct_tab,<01234567>
s_tabm

JO:&0y b

hex_tab, <01234567890aAbBcCdDeELFs

Note the use of the less than and greater than signs, "¢ and ™', surrounding the parameters. These
characters show that anything between them is to be taken as part of that parameter including
spaces and commas which would otherwise denote the parameter's end. Also, to include ™" as part of
the parameter, it is necessary to set it as ™" inside the parameter to indicate that the »" is not to be

taken as the end marker.

" Profies, Austria - 2012
””T@ [Pig or mot to Pig”

Of course | had to go to the QL show at Prottes
last June, organised again by Gerhardt Plavec. It
is one of the perks of being seli-employed - tax-
deductible holid ... urmm business trips.

The pre-arranged condition was for Andrea and |
to share a massive Pig's leg at Prater - a memo-
rable feast in 2010.

| stayed in the central Holiday Inn along with
Jochen, Andrea, Marcel and his guest Sandra. ..
so a large twin room all for me (8- (#

Easylet was mightily expensive to Vienna.
Jochen gave me a clue - go to Salzburg and get
a train. That was really *not* the answer, as the
frain journey is five hours. However Bratislava
cost £65 via Ryanair, and a bus from the airport
to Vienna centre cost £14 return, including free
wifl. Easyjet to Vienna costed £230 return, plus
train to the centre. No decision. [Jochen adds:
not quite - Salzburg to Vienna is 3 hours, and
using a Westbahn Train you get free Wifi, and
the rate can be as low as 10 EUR - and you get
fresh and excellent coffee, cappuccino or latte
macchiato .. not included in the 10 EUR, of
coursel

| parked my motorbike for free (as usual) in short
term parking at Stansted, right next to the

[b)gy Tomy Fshomn gl

terminal. How many people know about this
non-advertised service? It applies to all major UK
arports.

The only hassle was the small (10kg) cabin bag
allowance from Ryanair That isn't quite true.
Everyone knows about the Ryanair tricks. See
http://www.youtube.com/watch?v=ZAgOIUYHHFc
That is all true, except the last one. "If you haven't
pre-paid for the steps you can PF¥¥¥kg jump’.
Not quite though. They do not charge for the
jacks’ (toilets). | am *sure* Michael O'Leary is well
familiar with the video, as he announced last
October that they would be charging for the
toilets. There was a mighty furore, and it even
featured on BBC news. They withdrew the
proposal, of course, the following day.

The first hurdle on the Ryanair site is the included
fravel insurance. This was a pre-filed checkbox,
which was not alterable. | found out how to
cancel the insurance. In the country of origin
drop-down further down, there was a country
well down the list called No thanks' - after
Nigeria. ‘United Kingdom' of course was right at
the top. Secondly there was no mention of free
baggage, All they said was "Checked baggage’
(what is that?) was £15 each item. On the nth

N PRy

s:::i:g:;%‘;::‘ — ff N =] B‘E A}b :mm;._\&_u{; W T el ==

page of the terms and conditions (who reads
those!) they mention that 10kg of cabin
baggage is free. Thirdly they charge £45 if
you don't check-in online. Online check-in
costs £12. Fourthly they charge £12 for using a
credit or debit card. Using the Ryanair Master-
card is free, but this has to be pre-filed with
cash and expires. Fifthly they try the same tra-
vel insurance trick when checking in. This time
though the country is called 'Don't want'

When interviewed on BBC Radio 4 about
these sorts of shenanigans, O'Leary said ‘It is
my company and | can do what | like. If people
don't like it they can go elsewhere’. | did until
this trip. He won, damn his eyes.

Now 10kg is not a lot, with one's mighty
Canon, so my 17" macbook was not on. | took
my Ipad. | bought this earlier this year for my
business’ trip o Bill Cable again for weight
reasons. | am sure you remember him as a QL
trader - Wood and Wind Computing. | ma-
naged to take my folding Brompton because
the iPad is so light. ... but that is another story.
The only hassle with the iPad is no ports to
upload photos. | use the brilliant Eyefi SD card.
It acts as an access point and send pictures
via wifi. My Austrian photos are here:
hitp://tinyurl.com/9fwfhju

On arriving in Bratislava, we exited through a
building site and marginal border control. The
-arrivals looked pretty good (noted for later)! If |
hadn't worked out in advance from the web
what buses were available, | would have been
totally lost. However the number codes on an
insignificant bus stop matched. No mention of
the bus company or the destination! | got on
the very plush Slovak Lines bus, and settled
down to what | guessed might be the only op-
portunity for a while to get my internet fix! 75
minutes later we were in central Vienna.

| had been to the central Holiday Inn before, so

the journey was easy. Jochen and Andrea ar-
rived later in the afternoon with a disaster
Andrea’s car had developed what seemed to
be an automatic transmission fault. ... so train
to Prottes the next day.

Andrea and | thought about Pig, but as Marcel
wanted to go to Figimi ller for the 'largest
Schnitzel in Austria® we did. Pig would wait
until Sunday after Marcel had left. We got
caught in mighty thunderstorm and the place
was full. Fortunately many people abandoned
the queue and we got the last table. | suppose
we had mainly dried out by the time we sat

b

tfes Central Station

%L
Pro

Cha t t venue -

Computing power ... or is this controlling Proties Railway
Central Station?

A &

X . L,)
S~ jj\‘f‘g - __&};: > | 3 2 I
gy AN

% KZ:,:“J:_‘E;}{ e

The Gril-atr -well done, as last tlm!

down. No WeiBbier for Jochen - actually no
beer at all.

We had an entertaining train journey to Prot-
tes, passing again through the largest active
inland oil field in Western Europe. Lots of
donkeys nodding in the midst of agriculture.
Quite bizarre. We arrived at a platform-less

-staff-less station next to a barrier-less level

crossing. | assume Prottes is not a major com-
muter station.

All the usual cronies were installed at Ger-
hardt's house and we had a splendid day
chatting, playing with frains and consuming
barbecued food. There were not too many
real QLs in evidence. One special visitor was
Louis Seidelmann who walked from the Czech
Republic. Well not quite - he did plan to come
by bicycle, but took a train to Ganserndorf
and walked the 10KM to Prottes. ronically we
had passed through the same station a little
while before. | supplied some microdrive car-
tridges to him last year, and was very pleased
to see him at the show. In fact he provided the
only new QL hardware at the show. He had
manufactured new micro drive rollers and
brought them for sale.

One diversion was a passing funeral proces-
sion complete with Los Angeles style band.

Back to Vienna and thence to what | an-
nounced was a really fantastic cellar restaurant
- Esterhazy Keller Well it would have been
great but | had forgotten the restaurant (actual-
ly closed by our arrival time) was the right
hand stairs. It goes down three stories into the
mediaeval brick lined caverns. In our second
best cavern, we had to make do with a cafe-
teria. Never mind - it had WeiBbier for Jochen!
Avoiding all the very good local beer houses,
we walked to the Danube and had a noisy
drink in a trendy waterside cocktail bar Andrea
and | were still looking forward to our statutory
Pig on Sunday.

Sunday was tram day at the StraBenbahn-
museum. We had a pleasant lunch under the
tfrees in view of a mooning gnome. | was
saving myself for the evening Pig. The tram
museum did not have any of the real drama of
Strasshof in 2010, but it was very interesting.
Engineering today is not nearly as solid as it
was a hundred years ago. We go for lightness,
economy, fragility and unreliability,

Come the evening, the weather was debat-
able. It was hard persuading anyone o ven-
ture out of the door, but I assured Andrea and

Jochen there was a good
restaurant a milisecond away.
Sure enough we had a good
meal (pizzal) a few raindrops
away. | managed to avoid see-
ing who won the Grand Prix - |
would watch that on my return!
.. 50 no Pig, and | had come &
under false pretences. ‘

Jochen and Andrea were going
by limping car to Salzburg and
made it just over the German
border to the next ADAC
breakdown services, who could
attend to their car They had no

intention of being stranded car-less in Vienna. In

fact the problem was a
mis-firing engine and
the car was returned
as good as new for the
home journey.

[went o central Vienna
for lunch. | was going
to try the *real* Ester-
hazy Keller this time.
When [got near my
phone suddenly went
wild - emails arrived. It
had automatically con-

nected to the free wifi Too many faces on the previous page - now something different...

~in the bar opposite. | had used

the wifi in 2011 on a church choir
trip to Vienna. | admitted defeat
and ate in that bar and got my

3 second internet fix.

' | took the bus back to the better
- half of the Bratislava terminal and
. thence home. | arrived lighter as |
. left my iPad on the plane! It was
. replaced under insurance, and the

police have been following up the
theft' for months! Apparently no-
one is seriously using it, as it has
not connected with Apple. If it did
it could probably be traced and

given to its present ‘owners’ - Aviva.

————— So ended yet another
~ memorable trip, and
Pig wil have to wait
until next time.

 [Jochen adds: once
~again, we would like
_ {0 say a big THANK
YOU to the organisers
of the Vienna meeting
for their hospitality! A
nice event every time!
Looking forward to
seeing you all
again!l

12C Interface for QL Emulators

In thls part | will deal with some updates and share my

experience of using the BV4221-V?2.

| will start with the BV4221-V2 from ByVac.

Bv4221

BV4221-v2

L L

R S 134

[bylanB Burldmshaw

The original version of the BV4221 was a PCB with the following dimensions 32mm x 25mm. The
version 2 PCB is 45mm x 40mm. Version 2 PCB also has screw fixing holes as well The other major
feature differences between the two version is shown below:

SPlinterface added

[2C address finder added

Master clock rate selectable

Inspector mode operates at 100k

5V or 3V3 logic switchable

Two on board voltage regulators

This does offer some interesting opportunities, one of which | have included in my new routines is the
[2C address finder. By using this, it is possible to check which 12C devices are connected to the
converter The return from the converter when the 'x' command is used, are the address(es) of all 12C
devices connected. From the address range it is possible to determine what types of device are
connected. This done from the first digit in the address hex code as follows:

Address in hex Device

"AX PCF8574 Parallel port

'4x MCP23017 Parallel port (More on this device later)
Bx' DS1803 Potentiometer

X PCF8574A Parallel port

'9x' PCF8591 AD/DA converter

AX PCF8570 RAM

DO DS1307 RTC (Real Time Clock)

Note the DS1307 has only one address, unlike the remaining devices, which use the second digit (x) to
select multiple devices on the I2C bus, up to 8 devices with the devices we having been using in this
series.

It is outside the scope of this series of articles, but the BV4221-V2 does have the other bus system,
which can be used with the 12C bus system. This is called SPI (Serial Peripheral Interface bus). By the
way if you wondering what the [2C ('l squared Cee’) means it is “Inter Integrated Circuit” bus. | will not
be going into the SPI now, but may revisit it in a later article. However, the two interfaces are not a
milion miles apart in that they are both serial interfaces, the 12C uses two wires, where the SPI bus
uses four. Having said that, the protocols used are very similar. Typical SPI devices are the same as
12C devices but SPI being much faster is also used on memory devices and displays. The MMC
standard (SD Cards) for example, have an SPI interface. It could be an interesting project, but after the
problems Adrian lves had with his SD Card products, not one | will try. So if you understand the
workings of one bus system, it is not a big step to the other Please see the references below for
further information. The ByVac 12C Foundation pages are a very good place to start.

In my original articles on using the USB 1o 12C converter | was using version 1 of the BV4221, which is
now no longer avalable. Recently | have purchased some BV4221-V2's, so | could test all my
programs using this version. Now in part one of this series, | did say and | quote, (Please note, | used
the original V1 of the BV4221, ByVac now supply V2 which also has a SPI interface. The commands
are the same, so the programs listed in the article should still work.). Well this remark was made on
the basis of the manual for the BV4221-V2, which | had read, just to make sure there was nothing that
would stop things working. However when it came to trying things practically it turned out not to be
the case. The protocols are nearly the same, but the BV4221-V2 responses are slightly different.
There are subtle differences between the original BV4221 and the version 2. This is stated in the
BV4221-V2 user manual, but the manual is not that clear on what these differences are.

This has meant | have had to rewrite the start up routines to reflect these differences. The first
difference is the time it takes for the BV4221-V2 to initiaise — around 4 seconds. The original
converter was virtually instant, or certainly less than 1 second. Or put another way | never caught
myself out with the original converter not being ready to go when | started things up.

. it) 3 5 J) ey EE

So you will now see that | have put in a couple of PAUSE statements to slow things down during to
first start up stages.

The second difference is that on V1 the end of the received strings was character 32 which is the
‘Space’ character. This affected my original extract_read_data routine. The third thing | found was the
returns to commands such as V' which asks for the version number of the converter was not as
expected or the same at the version 1 converter. Also the response to the first CR (carriage return)
was also not the same at the original converter Now in my original programs | set the converter into
decimal mode. This is where things caused the biggest problems. Since in Hex mode there was no
difference between V1 and V2. In decimal mode on V2 the converter does not issue a CR after the
version number. | informed ByVac and they agree this is a bug, and will be fixed in the next issue of
firmware. However 1 have no idea when or if this will happen. So it is better to run the BV4221 in Hex
mode. | also found the same problem with the new commands on V2 such as "x" which returns the
addresses if devices connected to the 12C bus. Useful command this one, as you will see from the
updated program below. So it is best to stay in hex mode. Other than the start up times and issuing
CR’s, there are no differences in using the commands between V1 and V2.

One other bug I discovered and also reported to ByVac is that in decimal mode, returns from the
converter are getting truncated to two digits. This causes problems in reading data from devices
because any return greater than 99 is now incorrect. So for example 255 gets returned as 551

Because | wrote the original routines in decimal mode, | was not aware the command strings are case
sensitive. So If the hex numbers are sent as is from the SMSQ, commands such as HEX which returns
the letiers in upper case, this can cause problems. For example if you send the line "s AQ p’, what
happens is you end up changing the device address to "00". Since upper case A’ is the change
address command for the converter However if you send s a0 p* then everything is OK. But note, the
converter returns these hex letter digits in upper case, confusing. So you will find in my revised
program below a routine to convert upper case hex letters to lower case, to be sent to the converter

| also took the opportunity to improve the user experience and error trapping as well as running the
BV4221-V2 in hex mode only, so as to keep away from the bugs outlined above. Also | added some
features which the version 2 converter has which the version 1 does not. As always, my programs are
just there to show what can be done, they are not fully developed, just to get you going for guidance
and examples of how to use the 12C bus with this converter.

So you will find the new common routines and start up routine below. As always, | have commented
them so you can see what is going on.

10 REMark I2C test routines
20 I20_init

30 I2C_Start

40

50 PRINT

60 PRINT "LED Flash"

70 ledflash

80 PRINT

90 PRINT "LED Binary Count"
100 ledcount

110 PRINT:PRINT

120 PRINT "Input Test (Press 'Space bar' to exit test"
130 input_test

183 non_print_reply

250 PRINT

260 :

270 PRINT "End ":CLOSE#3:STOP
280 :

500 DEFine PROCedure monitor
510 C$:””

520 REPeat test

530 ap=INKEY$(#3)

540 IF a$="" THEN GO TO 530
550 c$=c$&a}

560 END REPeat test

570 END DEFine monitor

580 :

I e

\7,7v§

Independent
QL Users Group

World-wide Membership is by subscription only,

Offering the following benefits: Bimonthly Magazine - up to 52 pages
Massive Software Library - All Free! : Free Helpline and Workshops
Regional Sub-Groups. One near you?
Advice on Software and Hardware problems
1 year Membership Subscription £18 (includes eMag)
If you want a printed copy of Quanta magazine,
add the 2012 postage rates below
UK & NI £2.50, Europe £10.00, Rest of World £14.00
PayPal Surcharge about 5% - PayPal (see QUANTA Web Site)
1 Cash, Cheques and Postal Orders Accepted
§ ***Now in our Twenty Ninth Year***
Further details from the Membership Secretary
John Gilpin, 181, Urmston Lane,Stretford
Manchester. M32 9EH(UK).
Tel. 0161 865 2872

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

1110
1120
1130
1140
1150
1160
1170

1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350

1360
1370
1380
1390
1400
1410
1420

1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640
1650
1660

DEFine PROCedure I2C_init

CLS

raml=174:ram1$="AE" :REMark PCF8570 address, all address links open, ie all address pins high
ram2=172:ram2$="AC":REMark PCF8570 address, A2=high, Al=high, AO=low
ram3=170:ram3$="AA":REMark PCF8570 address, A2=high, Al=low, AO=high

ram4=168: ram4$="A8" :REMark PCF8570 address, A2=high, Al=low, AO=low

ram5=166:ram5$="A6":REMark PCF8570 address, A2=1low, Al=high, AO=high

ramb=164; ram6$="A44":REMark PCF8570 address, A2=1low, Al=high, AO=low

ram7=162: ramn7$="A2":REMark PCF8570 address, A2=low, Al=low, AO=high

ram8=162: ram8$="A0" :REMark PCF8570 address, all address links closed, ie all address pins low.
parallelA1=126:parallelA1$="7E":REMark PCF8574A address, all address links open, ie all address
pins high

parallelA2=124:parallelA2$="7C":REMark PCF8574A address, A2=high, Al=high, AO=low
parallelA3=122:parallelA3$="7A":REMark PCF8574A address, A2=high, Al=low, AO=high
parallelA4=120:parallelA4$=""78":REMark PCF8574A address, A2=high, Al=low, AO=low
parallelA5=118:parallelA5$="76":REMark PCF8574A address, A2=low, Al=high, AO=high
parallelA6=116:parallelA5$="74":REMark PCF8574A address, A2=low, Al=high, AO=low
parallelA7=114:parallelA6$="72":REMark PCF8574A address, A2=low, Al=low, AQ=high
parallelA8=112:parallelA7$="70":REMark PCF8574A address, all address links closed, ie all
address pins low

parallell=78:parallell$="4E":REMark PCF8574 address, all links open, ie all address pins high
parallel2=76:parallel2$="4C":REMark PCF8574 address, A2=high, Al=high, AQ=low
parallel3=74:parallel3$="4A":REMark PCF8574 address, A2=High, Al=low, AQ=high
parallel4=72:parallel4$="48":REMark PCF8574 address, A2=High, Al=low, AO=low
parallel5=70:parallel5$="46":REMark PCF8574 address, A2=low, Al=high, AO=high
parallel6=68:parallel6$="44":REMark PCF8574 address, A2=low, Al=high, AO=low
parallel7=66:parallel7$="42":REMark PCF8574 address, A2=low, Al=low, AO=high
parallel8=64:parallel8$="40":REMark PCF8574 address, all links closed, ie all address pins low
addal=158:addal$="9E":REMark PCF8591 address, all address links open, ie all address pins high
adda2=156:adda2$="9C" :REMark PCF8591 address, A2=high, Al=high, AO=low
adda3=154:adda3$="9A" :REMark PCF8591 address, A2=high, Al=low, AO=high
adda4=152:adda4$="98":REMark PCF8591 address, A2=high, Al-low, AO=low
adda5=150:adda5$="96":REMark PCF8591 address, A2=1low, Al=high, AO=high
addab=148:addab$="94":REMark PCF8591 address, A2=low, Al=high, AO=low
adda7=146:adda7$="92" :REMark PCF8591 address, a2=low, Al=low, AO=high
adda8=144:adda8$="90" :REMark PCF8591 address, all address links closed, ie all address pins low.
rte=208:rtc$="D0":REMark DS1307 real time clock, one fixed address with this device.
digpot1=94:digpot1$="5E":REMark DS1803 Digital Poteniometer, all links open, IE all address pins
high.

digpot2=92:digpot2$="5C" :REMark DS1803 Digital Poteniometer, A2=high, Al=high, AO=low
digpot3=90:digpot3$="5A":REMark DS1803 Digital Poteniometer, A2=high, Al=low, AO=high
digpot4=88:digpot4$="58":REMark DS1803 Digital Poteniometer, A2=high, Al=low, AO=low
digpot5=86:digpot5%="56":REMark DS1803 Digital Poteniometer, A2-low, Al=high, AO=high
digpot6=84:digpot$="54" :REMark DS1803 Digital Poteniometer, A2=low, Al=high, AO=low
digpot7=82:digpot7$="52":REMark DS1803 Digital Poteniometer, A2=low, Al=low, AO=high
digpot8=80:digpot8%="50":REMark DS1803 Digital Poteniometer, all links closed, ie all address
pins low.

DIM tdata(7)

DIM days$(7,3)

RESTORE

FOR a=1 TO 7

READ d$

days$(a)=d$

NEXT a

DATA IIMonII B IITueII’ IlwedH , IIThuH) HFrill, IISatH’ IISunII

END DEFine I2C_init

DEFine PROCedure I2C_Start

REMark Utilities for exploring the USB to I2C BV products
REMark
REMark Start up
REMark
REMark Determine Com Port Number

CLS:PRINT

sererror=0

INPUT "Is USB to I2C connected (Y/N) ";i$

IF i$=="n" THEN PRINT "Program Abborted":STOP

PRINT "Please wait, USBtoI2C 1s resetting":PAUSE 200:REMark Wait for power up reset of the
USBtoI2C converter to finish, just making sure the converter is ready.

INPUT "Enter com port number 1,3, etc ";ser$

ser$="Ser"&kser$

PRINT "Opening Com Port ";ser$

5T 138 @ pm—

1670
1680
1690

1700

1710

1720
1730
1740
1750
1760
1770
1780
1790
1800
1810

1820
1830
1840
1850

1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2215
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

DoCom

PRINT "Please wait, ensuring USB to I2C converter ready after opening Com port"

PAUSE 200:REMark opening serial port, sends USB to I2C converter into reset. Note the SPI LEDS
flash during this process.If you do not see the flash then the converter may not be fully reset.
PRINT#3;CHR$(13); :REMark Carriage Return to set the baud in the USB to I2C converter, required
on first pass to inialise USB to I2C converter.

print_reply:print _reply:PRINT " Reply from USB to I2C converter after sending CR. The

print_reply is called twice to handle the first return from the USB to I2C converter which is an

echo of the CR sent"

PRINT#3; CHR$(13) ; : print_reply:print_reply:PRINT " Reply from second CR sent, just ignore this"
PRINT

PRINT#3;"V";CHR$(13); : REMark Command to USB to I2C converter for converter firmware version.
PRINT "Return USB Converter Version Number:-"

non_print_reply:extiract_read data:I2CVer$=d$:PRINT I2CVer$:non print_reply

PRINT

REMark print_reply:rem returns a device address in decimal.

PRINT#3;"x";CHR$(13); :REMark This command finds I2C device adresses on the I2C bus.

PRINT "I2C devices connected to the I2C bus :-"

extract_read_data:PRINT d$:I2CDev$=d$:non_print_reply:REMark This should return all the device
addresses that are on the I2C bus.

decode_I2C_device I2CDev$

display_I2C_devices_found

PRINT

REMark PRINT#3;"D";CHR$(13);:REMark send command to put USB to I2C Converter inte decimal mode.
Not recommended with V2 converters.

REMark non_print_reply

REMark PRINT "USBtoI2C Converter now in Decimal mode"

REMark PRINT#3;CHR$(13);

REMark print_reply:rem displays current address in decimal form.

PRINT

END DEFine I2C_Start

DEFine PROCedure print_reply
c$=uu

REPeat loop

a$=INKEY$(#3)

IF a$="" THEN GO TO 1960

IF a$=CHR$(13) THEN EXIT loop
c$=cP&ad

PRINT a$;

IF a$=">" THEN EXIT loop

END REPeat loop

END DEFine print_reply

DEFine PROCedure non_print_reply
c$=nu

REPeat loop

a$=INKEY$(#3)

IF a$="" THEN GO TO 2080

b$=a$

cP=c$&b$

IF a$=">" THEN EXIT loop

END REPeat loop

END DEFine non_print_reply

DEFine PROCedure extract_read_data
d$:uu

REPeat data_loop

a$=INKEY$(#3)

IF a$="" THEN GO TO 2190

IF a$=CHR$(13) THEN EXIT data_loop
IF a$=">" THEN EXIT data_loop
b$=a$

d$=ds&b$

END REPeat data_loop

END DEFine extract_read_data

DEFine PROCedure decode_I2C_device (I2CD$)
120Dev=1:DIM I2CDevices$(10,2):HexC=1:I2CTemp$=""
dlen=LEN(12CD$)

FOR count=1 TO dlen

IF 12CD$(count)="," THEN I2CDev=I2CDev+1:NEXT count

39

jy

I2CTemp$=I2CTemp$&I2CD$(count) : HexC=HexC+1

IF HexC=3 THEN HexC=1:I2CDevices$(I2CDev)=I12CDevices${I2CDev)&I2CTemp$: I2CTempG=""
NEXT count :
arrayt=10-I12CDev:arrayt=(10-arrayt)+1

FOR count=arrayt TO 10

I2CDevices$(count)="

NEXT count

END DEFine decode _I2C_device

DEFine PROCedure display_I2C_devices_found
PRINT

PRINT "Addresses"

PRINT " Hex Binary Decimal Type of device"
FOR count=1 TO 10

HexDec=0

12CDev$=12CDevices$(count)

HexDec=HEX(I2CDev$)

HexBin$=BIN$ (HexDec, 8)

IF count »>=1 AND count<=9 THEN PRINT count;" "&I2CDev3&" "&HexBin$&" ";HexDec;" ",
IF count »=10 THEN PRINT count;" "&I2CDev$&" "&HexBin$&" ";HexDec;" "
IF I2CDev$(1)=" " THEN PRINT "No Device Found"

IF I2CDev$(1)="4" THEN PRINT "PCF8574 or MCP23017 Parallel I/Q"
IF I2CDev$(1)="5" THEN PRINT "DS1803 Digital Potentiometer"

IF I2CDev$(1)="7" THEN PRINT "PCF8574A Parallel I/O"

IF I2CDev$(1)="9" THEN PRINT "PCF8591 A/D & D/A"

IF I2CDev$(1)="A" THEN PRINT "PCF8570 256 Byte RAM"

IF I2CDev$(1)="D" THEN PRINT "DS1307 RTC (Real Time Clock)"
NEXT count

END DEFine display_I2C_devices_found

DEFine PROCedure DoCom

WHEN ERRor

IF ERR_NI

gsererror=1

PRINT "Error opening com port ";ser$

PRINT "No Port open'"

END IF

END WHEN

REMark Set the size of the communications buffer to 16K

Combuff=8192%2

OPEN#3;ser$&"ir":REMark i=ignore hardware handshake, r=raw data
BAUD ser$, 115200

SER_BUFF ser$, Combuff, Combuff

IF sererror=0 THEN PRINT "Comport "&ser$&" open"

END DEFine DoCom

DEFine PROCedure hex_case_con (uhex$)
hexi$=uhex$(1)

hex2$=uhex$(2)

uh1=CODE (hex1$)

IF hex1$>="A" AND hex1$«="F" THEN uhi=uhl+32
uh2=CODE(hex2$)

IF hex2$>="A" AND hex2$«="F" THEN uh2= uh2+32
lhex$=CHR$(uh1) &CHR$ (uh2)

END DEFine hex_case_con

DEFine PROCedure ledflash

FOR a=1 TO 10

PRINT#3; "s—";parallelAl$;" £f p";CHR$(13);:REMark s=start message to USB to I2C converter, p=end
of message to USB to I2C converter. »

non_print_reply:REMark Stops printing the USB to I2C reply also ensure serial buffer is cleared.
PAUSE 25

PRINT#3;"s-";parallelAl$;" 00 p";CHR$(13);

non_print_reply:REMark Stops printing the USB to I2C reply also ensure serial buffer is cleared.
PAUSE 25

NEXT a

END DEFine ledflash

DEFine PROCedure ledcount
FOR a=0 TO 255
hhex$=HEX$(a,8)

PRINT a;" ";hhex$;" ";

5040
5050
5060
5070
5080
5090
5100
6000
6010
6020

6030
6040

6050
6060
6070
6080
6090
6100
6110
6120
6130

Now it you run

this

hex_case_con hhex$:hhex$=1lhex$

PRINT#3; "s-"; parallelA1$;" "Bhhex$&" p";CHR$(13);

non_print_reply:REMark Stops printing the USB to I2C reply also ensure serial buffer is cleared.
PAUSE 5

NEXT a

END DEFine ledcount

DEFine PROCedure input_test

REMark REPeat input_loop

PRINT#3; "s—";parallelA1$;" ff p";CHR$(13);:REMark need to ensure any lines used as an input are
gset high.

non_print_reply:REMark Stops printing the USB to I2C reply also ensure serial buffer is cleared.
hexadd=HEX(parallelA1$) :hexadd=hexadd+1:parallelin$=HEX$(hexadd,8) :REMark adds 1 to the HEX
device address, for reading data from the device.

REPeat input_loop

PRINT#3;"s-";parallelin$;" g~1 p";CHR$(13); :REMark reads input data.

extract_read_data:AT 59,0:PRINT "Data return from selected device ";d$:non print reply

FOR a=1 TO 200:NEXT a

ax=KEYROW(1)

IF ax&&64 THEN EXIT input_loop

END REPeat input_loop

END DEFine input_test

program you

3 numbisr 1,3
should get a Sk b Sers

result like this. It is

the
my

which has all the
devices with the
exception of the
MCP23017, which
we wil come to

return from | et

test card (OEEREECLEL

next.

That is all for this

time. Next time | I
wil look at a 26
cheaper alter- 4
native, the g
PCF8574(A) paral- B
le! device.

References
hitp://www.byvac.com/bv3/index.php?route=product/
product&product_id=88

(Please note, | used the original V1 of the BV4221,
ByVac now supply V2 which also has a SPI
interface. The commands are the same, so the
programs listed in the article should still work)
hitp://www.byvac.com/bv3/index.php?route=product/
category8path=44

PCF8570 Ram Data Sheet
http://www.nxp.com/documents/data_sheet/PCF8570.pdf

PCF8574(A) Data Sheet
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
htp://focus.ti.com/lit/ds/symlink/pcf8574.pdf

PCF8591 Data Sheet
htip://www.nxp.com/documents/data_sheet/PCF8591.pdf

DS1307 RTC (Real Time Clock)
http://datasheets.maxim-ic.com/en/ds/DS1307.pdf

DS1803 Digital Potentiometer Data Sheet
http://datasheets.maxim-ic.com/en/ds/DS1803.pdf

MCP23017 Data Sheet
htp://www.microchip.com/wwwproducts/Devices.aspx?

dDocName=en023499

12C Tutorials
http://www.robot-electronics.co.uk/acatalog/I12C_Tutorial
html

http://www.i2¢c.byvac.com/ar_foundation.php
http://doc.byvac.com/index.php5?title=I2C_Foundation#SPI

TF Services 12C manual
hitp://www.dilwyn.me.uk/docs/manuals/index.html

Advanced 12C information, but still worth a read to
understand 12C protocols
http://www.nxp.com/documents/user_manual/UM10204.pdf

=t

- :

Programming fn Assembler, Part 31
1ibGen - by Generaor - Part 2

Introduction

[by Nosman Dumbar I~

In the last issue, | started the creation of the LibGen utility by explaining how to create the initial
window using the latest version of SETW. In this article, we shall add code gradually, to enable the
various features of the program, starting simple and getting more complicated as we go on.

LibGen Processing
The code for LibGen should work as follows:

1. The program starts with only the "Esc’, "Move" and "Sym file” loose items enabled. Everything else

is unavailable.

2. The user hits "Sym file”. This causes all loose items except 'Move” and "Esc’ to be set to unavaila-
ble - in case the edit is aborted, or an error occurs. The user then types in the name of the
sym_lIst file created by George's sym_bin utility. The user then terminates or aborts the edit.

On a successtul edit, the affected loose items are made available again {except "Save’). On an
aborted edit, or error, the loose items are left unavailable, except for "Sym file” which is reset to
available. The user will remain at this step until a successful edit completes.

3. The "Sym file” name entered by the user is changed by removing the "_sym_Ist” exiension and
adding "_lib" in it's place to form the "Lib file” default file name, and by having the extension "_bin’
added on to form the "Bin file" default value. These defaults are displayed in the appropriate

information windows.

4. When a suitable symbol file name has been entered, all the application specific loose items will be
enabled with the exception of "Save’. The user may use the ‘Lib file” and "Bin file" loose items to
amend the default file names for the two files that will be created by LibGen on hitting "Save”.

B

o A y " g, I}_‘:ﬂ?iﬁ e
—— e A 2 4. 2 _ ‘&.,;ﬂ;,#fxﬁsfi;z e
N A . X

5. When the user hits the "Load’, the "Sym file" is opened and read in two passes. The first counts the
number of code offset lines that will be added to the menu. The second pass will add each one to
the buffer allocated, dynamically, for this purpose.

At end of file, the file will be closed and the buffer added to the application sub-window as a menu,
All items in the menu will be selected by default. If the file loads correctly, the "Save” loose item will
be enabled.

6. When the user hits "Save’, the currently selected items in the application sub—window menu will be
written out to the "Lib file’, followed by a command to import the "Bin file’. When complete, the file
will be closed and all items will be set to the starting position where only "Sym file” is available.

LibGen Code

The first version of the code does nothing more than display the window on the screen and enter the
loop to read the pointer and. as usual, this will only return (from WMAN) when an event happens or an
error occurs in either a loose item hit routine or the application menu hit routine.

The following code is pretty much a template for any SETW/EasyPEasy built applications. It displays
the window on screen and that's about all it does - pressing the ESC key or HITting/DQing the "Esc’
loose item will end the program.

start
0
$bafh

bra
de.w
de.

=

fname

fname_e

de.
de.
ds.
ds.

fname_e~fname-2
"LibGen - Library Generator"

0
0

= o o=

; We need the various equates files ete.

in
in
in
in
in
in

winl georgegwilt_peass_keys_pe
winl georgegwilt_peass_qdos_pt
winl_georgegwilt _peass_keys_wwork

winl georgegwilt_peass_keys_wstatus

winl georgegwilt peass_keys_wman
winl georgegwilt_peass_keys_wdef

3
; Offsets into the data area for working storage.

7

id equ 0 Channel id storage.
wmvec equ 4 WMAN vector storage.
slimit equ 8 IOP_FLIM output buffer.

Departing from the template next, | define meaningful names for my loose items and information
windows. It's much easier to determine which loose item or information window is being affecled
when reading the code back in 6 months or so, when you read names as opposed to a list of
numbers. '

| could have simply used an "IN" directive and a separate file at this point, which may prove useful for
larger applications, but for now, I'm simply including the equates directly into my template.

You will note that the three strings I'm defining storage for are initialised to be zero length.

This is important because when we come to allow the user enter the symbol filename, the existing
string is presented for editing. If we left the data uninitialised, we could get some interesting results as
random strings were presented for editing. It's much better to initialise to an empty string as part of
the program initialisation.

— A 4 e 1 ~ e
ﬁ:_ii%§§@3@~—~=am&:hé\;>,%QZQEGZKQSA 4@25 ;ﬁgzﬂmgﬁg@ﬁ;gvgi;zﬁxzb:;Exgljzziizm

e T

;
; Loose items we may need.

2

1i_symfile equ 2
1i_libfile equ 3
1i_load equ 4
1i_save equ 5
1i_binfile equ 6

5
; Information windows we may need.

b

iw_gymfile equ 2
iw_1libfile equ 3
iw_binfile equ 5

Working buffer for the three file names. 40 characters allowed. The
three strings are initialised to be of zero length.

we ar aa s

sym_buffer dec.w O A zero word count is useful!
ds.w 20 Space for 40 characters inc N/L.

1lib_buffer dc.w O
ds.w 20

bin_buffer dc.w O
ds.w 20

Buffer for the 2 extra filename extensions we desire. These will be
added to the end of the supplied sym file name from the user.

3

3

H

2

1lib_extn dec.w 1lib_extn_e-1ib_extn-2
de.b '_1ib!

lib_extn_e equ *

bin_extn dec.w bin_extn e-bin extn-2
de.b '_bin'
bin_extn_e equ *

The remainder of the code is back to the template again.

;
; Console definition, and code to open it.

)

con de.w con_e—con-2 Size of channel definition.
de.b 'con !
con_e equ *
op_con lea con,al We want a console.
moveq #-1,dl For this job.
moveq #0,43 Timeout.
moveq #io_open,d0
trap #2 Do it.
rts

5
; The main code itself.

A L

_ P
[=i RN 4 4;
T = L\/f .

start lea (ab,a4.1),ab Make A6 point to the job's dataspace.

bsr op_con Open a con channel.

move.l a0,id(a6) And store the channel id.

moveq #iop_pinf,d0 Trap to get Pointer Information,

moveq #-1,d3 Timeout.

trap #3 Do it.

tst.1 40 Is ptr_gen present?

bne sul No, bale out via SUI.

move.l al,wmvec(aé) Yes, store the WMAN vector.

beq sui QOops! WMAN wasn't actually found.
flim movea.l al,a2 The WMAN vector is required in A2.
; The chamnel id is already in AO.

lea slimit(aé),al Result buffer.

moveq #lop_flim,d0 Query maximum size of window.

moveq #0,d2 D2 is required to be zero.
; D3 is the timeout.

trap #3 Do it.

tst.1 40 Did it work?

bne sui No, exit via SUI.

subi.l #$C0008, (al) Minus 12 (width) & 8 (height).

lea wd0,a3 Get address of window definition.

move.l #ww0_0,d1 Get gize of the working definition.

bsr getsp Fasy PEasy - ALCHP memory and set AO.

movea.l a0, a4 Which we save in A4.

lea wst0,al Status area address.

movea.l al,a0 Copy to AC.

moveq #wstO_e-wst0-1,d1 How many bytes to clear - 1.

So far, we have seen most of this before. However, we depart from the normal template in the next
few lines, from label st_clr onwards.

st_clr clr.b (a0)+ Clear one byte.
dbf dl,st_clr Then the remainder.

st_loose lea ws_litem+li_libfile(al),a0 Status byte for Lib file.
moveq #3,41 Four status bytes to reset.

st_unav move.b #wsi unav,(a0)+ Set loose item to unavailable.
dbf di,st_unav And the rest.

First we initialise all of the status area, including the loose items, to a byte of zero, in the normal
manner with the small loop at st_cl. For the loose items, this happens to be the status code for
available.

However, as we don't wanfevery loose item to be available when the program starts, the code at
st_loose onwards will set the status byte for the 4 loose items in question, to unavailable — there is
another way | can set these 4 status bytes, as we shall see later on in the code.

These will be made available by the code in other loose item hit routines as appropriate. | can use a
loop at st_unav because of the order | created my loose items in SETW. The 4 loose items, "Lib file",
"Load’, "Save” and 'Bin file” are set to unavailable in this loop. If you created your loose items in a
different order, you may need to do each one individually,

Because of this status byte being set in the application’s initialisation, these four loose items will be
unavailable when the application displays its window on screen. Back to the template code again.

movea.l id(aé),a0 Channel ID in AOQ.
; Al = status area.
; A3 = window definition.

5 A4 = working definition.
move.l wd_xmin+wd_rbase(a3),dl Get minimum size.

y -

ST o ;
& K Bl

andi.l #$FFFOFFF,d1l
jer wm_setup(a2)

moveq #-1,d1
jsr wm_prpos(a2)
jsr wm_wdraw{a2)

Mask off scaling factors.
Set up the window.

Use the current pointer position.
Position as a primary window, then.
Draw the contents.

;
; The main Read Pointer loop.

J

wrpt Jsr wn_rptr(a2)
beq.s no_err
bra sui

no_err movea.l (a4),al

Enter read pointer loop in WMAN.
Since DO is zero D4 is non zero.
An error occurred exit via SUI.

Status area address.

btst #pt__can,wsp_weve(al) Check for CANCEL event.

bne suil

bra.s wrpt

Exit.

No more events, read pointer again.

| have only included a check for the CANCEL event in the above code. Normally there would be
SLEEP and SIZE event checking, probably as an absolute minimum. However, | need to keep the code
size to a minimum for the magazine, so these applications will only have the minimum required.

Next comes the loose items and application window hit routines. In this first version of the code, the
loose item hit routines for the following 4 loose items simply do nothing except reset the status from

selected back to available when hit.

)

; Dummy, for now, loose item action routines.

J

afun0_6 bra 1li reset
afun0_5 bra li_reset
afun0_4 bra 1li_reset
afun0_3 bra 1li_reset
afun0_2 bra 1i_reset

Bin file.
Save.
Load.
Lib file.
Sym file.

Before we delve into proper hit routines, the following table is a reminder of what registers are set on

entry to a loose item hit routine.

Register Description

D1.L High word = pointer X position, Low Word = pointer Y position.
D2.W Selection keystroke letter, in its upper cased format, or;

1 = Hit/SPACE or;

2 = DO/ENTER. :

D2.W may be an event code if an event triggered this action.

D4.B An event number - if an event triggered this action routine.
A0.L Channel id.
Al.L Pointer to the status area.
A2.L WMAN vector.
A3.L Pointer to loose menu item.
AL Pointer to window working definition.

Next up is the first of our working loose item hit routines. This one handles the "Move™ action. Also
showing in the following code is the routine where we reset the appropriate loose item's status back
to available from the currently selected status. You can see from the above, that the majority of the
loose items simple reset their status and exit back to WMAN. .

.
2

; MOVE hit. Move the window.

J
afun0_1 bsr move

Reset current loose item gtatus to available & redraw. Entry point
1li_reset resets the current loose item while entry at 1i_rest must
have a loose item number in D1.W.

3
;
3
3
;
1i_reset move.w wwl_item(a3),dl Get the loose item number.

li_rest move.b #wsi_mkav,ws_litem(al,dl.w) Set status to available.
moveq #-1,d3 Request selective redraw.
jer wm_ldraw(a2) Do it.
bra.s 1i_done

There are two entry points here, the first at li_reset handles the current loose item. If entry is at li_rest
then DIW should be holding the appropriate loose item number Within a hit routine, as you may
remember, Al holds the pointer to the status area and A3 points at the definition of the loose item
within the working definition. By extracting the loose item number from the definition and adding it to
Al plus the offset to the start of the status bytes for the loose items, we can change the status to
wsl_mkav which is actually the value available + redraw.

The code then calls wm_ldraw to redraw only those loose items which have the redraw bit set. This
avoids flicker and doing unnecessary work redrawing unchanged loose items. When redrawn, the
redraw it is cleared by WMAN, leaving the status at available.

The code finishes by exiting through li_done to clear out the DO and D4 registers to indicate no errors
and no events. After this, it returns back to WMAN and back into the pointer loop.

3
; ESC pressed, set cancel event and exit.

3

afun0_0 bset #pt__can,wsp_weve(al) Set the CANCEL event bit.
moveq #pt__can,d4 CANCEL event number in Dé.
bra.s 1li_exit

1i_done moveq #0,d4 No events.
li_exit moveq #0,d0 No errors.
rts Exit, and exit from wm_rptr too.

;
; Application sub-window hit routine

2
ahit0 moveq #0,d4 No events.
moveq #0,d0 No errors.
rts Exit back to the read pointer loop.

The code that handles a hit on the "Esc’ loose item shows the alternative manner of handling loose
items. It simply sets the CANCEL event bit in the event register in the status area (addressed by Al),
sets the event code in D4 and exits back to WMAN with DO set to show no errors.

Having an event code in D4 causes WMAN to exit from the pointer reading loop and returns back to
WMAN with D4 set. WMAN will see that an event has been set in D4 and this will cause a return to our
own application code at label no_err (a long way above!). The code there checks for the CANCEL
event and, if found, exits the program.

L

e { i:;%; e ~ i:.:;"‘“\‘ = = 4 7 o - ‘:"sz-: ti%ff::ji”::: :jfif‘—:

Note:

You may be wondering why we gave the ESC loose item a keystroke appropriate to the CANCEL
event number (3) when we did a litfle editing of the file created by SETW in the last article, and why
we have to have a loose item hit routine that sets the CANCEL event? Surely WMAN handles all that?

Well, if you comment out the first two instructions at afun0_0 above, reassemble and execute the
program and then HIT or DO the ESC loose item, you will see it become selected, but the program still
runs. However, if you press ESC, WMAN handles that and exits from the program.

So, we must have the hit routine cause the program to exit when the loose item is HIT or DOne
because WMAN isn't seeing the ESC key being pressed to cause an exit. The hit routine for the lose
item sets the CANCEL event which causes the return to WMAN to return to our code and thus, exits
from the program. Simple?

Even if there was no loose item to explicitly close the program, as long as the application checked for
a CANCEL event, as LibGen does, we can still close the program by pressing the ESC key because
WMAN intercepts the ESC key, generates the CANCEL event and exits back to our application code
where, hopefully, events are checked for.

Immediately following the "Esc” loose item code we have a dummy "does nothing yet routine for the
application window hit routine. Finally, the last few lines pull in the window definition created by SETW
and George's EasyPEasy library.

;
;3 Pull in our window definition file.

bl

in winl_source_gltoday_libgenWin _asm

; We need George's Easy PEasy code next.

in winl _georgegwilt_peass_peas_sym_lst
1ib winl _georgegwilt_peass_peas_bin

; And finally, George's sprites.

in winl_georgegwilt_peass_csprc_sym_lst
1ib winl georgegwilt_peass_csprc_bin

If you save and assemble the above, you should be able to execute the utility and see it in "action’.

You will only have the "Sym file” action, other than move or "Esc” available to you on startup and all the
flenames will be blank. At the moment though, even if the "Sym file” loose item is enabled, the hit
routine does nothing other than set the status back to available.

Now that we have the main part of the code to handle the initialisation, display and so on working, it's
time to add some meat to the bones of what we have.

Handling the Sym File Loose Item
Looking back at our LibGen processing description above, we have already completed the first step.

Step 2 requires us to let the user type in the symbol file name when the "Sym file” loose item is HIT or
DOne.

Additionally, the "Load" loose item becomes available when the action routine completes. Keeping it
simple for now, type in the following code at the location of the label afun0_2 which is currently
showing a branch to the li_reset routine.

I S S

e
e 7S
= P -

The following code replaces that which currently exists,

;
; SYM FILE loose item action routine.

2
afun0_2 movem.l d5-d7/a0-a4,-(a7) Preserve important registers.

bsr sym_hit Do it all.

movem.l (a7)+,d5-d7/a0-a4 Restore important registers.

moveq #1i_load,dl Load loose item.

bsr 1i_rest Make Load available.

bra 1i_reset Make Sym file available.
sym_hit vrts Temporary code for now.

Once again, assemble and execute the code. Now when you HIT or DO the "Sym file” loose item,

you should see the "Load” loose item become avallable.

The code preserves the registers we need to preserve over an action routine, branches out to our
temporary hit code and on return, restores the registers before setting the "Load’ loose item's status
byte to available.

Finally, the code exits via the li_reset routine which causes the current loose item ("Sym file") to be
reset to available and redrawn.

That's the easy bit done. The next part gets into the real code for a HIT or DO on the "Sym file” loose
item. Replace the current one line at label sym_hit with the following code.

5
; This code carries out all the nasty work for a hit on the Sym file
; loose item. It is called from afun0_2 above.

J
sym_hit moveq #iw_symfile,dl Info window number in dl.w.
lea sym_buffer,a3 Current sym file buffer.
moveq #1,d2 Blue Ink colour.
bsr iw_input Get input from desired info window.
blt.s sh_exit Something went wrong, bale out.

It's at this point that having some equates defined for the various information windows comes in
handy. The code above starts off by loading D1 with the number of the information window that wil
eventually allow us to type in the file name and which will also display the file name when we have
typed it.

A3 holds the address of a buffer, Wh|ch we set up way back at the start. On the first run of the
program, this buffer holds a zero length string.

After it has been run and used, whatever the last symbol file name that you typed in will be there.
D2 needs to hold the ink colour, blue in this case, as we will be clearing the information window shortly.

The code is written so that when any information window is being used to edit data, the ink colour is
blue, but when the data has been entered, it is printed with black ink.

We then branch off to a subroutine names iw_input to allow the user the abllity to type in a file name
directly into the appropriate information window. This routine will be discussed later.

On return, if any errors were detected, we bale out.

The caling code can handle this, as desired. In this example, LibGen does nothing with errors. The
program continues to run, in this case, and you can try again, if desired.

3
; Did we abort the edit?

b

sh_esc cmpi.w #27,d1 ESC?
beq.s sh_sym Yes.
A
R zﬁ;‘,ﬁl&% ST { 49 -

The iw_input routine sets the terminating character in D1. This can be ESC, ENTER or the Up or Down
Arrows. We are interested only in the ESC key as this implies that the user decided to abort the edit. If
we find the ESC key terminated the edit, we bale out via the sh_sym label, which tidies up the
potential garbage that is now showing in the information window.

The code at sh_sym also prints the file name in black ink as opposed to the editing colour of blue.

If the user terminated the edit normally, we have completed step 2 in our LibGen processing and are
ready to carry out step 3. The following code does exactly that.

;
; Copy sym filename to other buffers and add appropriate extensions.
; The sym file is assumed to have a '_sym lst' extension present.

2

sh_ok move.l a2,-(a7) Preserve WMAN vector.
lea 1lib_buffer,a2 Destination buffer.
lea sym_buffer,a3 Source buffer.
bsr cp_string Copy to lib file.
subi.w #8,(a2) Strip off '_sym lst'.
becs.s sh_err Negative is bad!
lea 1ib_extn,a3 Lib file extension.
bsr ap_string Add 1ib file extension.
lea bin buffer,a2 Destination buffer.
lea sym _buffer,a3 Source buffer.
bsr cp_string Copy to bin file.
subi.w #8,(a2) Strip off '_sym_lst!'.
bes.s sherr Negative is bad!
lea bin_extn, a3 Bin file extension.
bsr ap_string Add it to the bin file.
moveq #0,d2 Black ink required for filenames.
move.l (a7)+,a2 Restore WMAN vector.
moveq #iw_libfile,dl Info window required.
lea lib_buffer,a3 String address.
bsr iw_print Print 1ib file.
moveq #iw_binfile,dl Info window.
lea bin_buffer,a3 String address.
bsr iw_print Print bin file.
bra.s sh_sym Skip error handling.

; If the 1ib or bin filename lengths go negative after subtracting the
; 8 bytes necessary for the assumed '_sym lst' extension, we bale out

; but need to tidy the stack first.
;
s

h err move.l (a7)+,a2 Get the WMAN vector again.

The code above simply copies the file name entered by the user from the input buffer to the buffers
set aside for the "Lib file” and "Bin file".

For each of these, the "_sym_Ist" extension is removed and a new extension appropriate to the file
name being generated is appended.

Note:
You will note that there is not much in the way of error trapping going on here. This is, again, to keep
code to a minimum.

A proper application would do various checks to ensure that the symbol file actually existed, that it
had the correct extension and so on, before manipulating the file name to create the defaults for the
other two file names.

e P = 1 7 O
m ::{;:e AT _ ”{;\, ;}7 | 5 @ o <\/>
=3 F

The only error trapping that is happening is a check that when subtracting 8 from the string length -
to remove the characters "_sym_Ist' - that the string length doesn't go negative. If it does, we bale out
via sh_err and sh_sym where we tidy up the display again.

The strings are moved around and appended to using some more useful routines in one of my
libraries. These will be discussed later.

Finally, for this action routine, we have the following code which calls yet another of my library routines,
iw_print, to clear the information window in question, and print the contents of the correct buffer to it.

J

; Print the sym flle name. We do thig at the end of a normal edit and

; when the user aborts w1th ESC. This keeps the info window tldy

move.w di,- (a7)
moveq #iw_symfile,dl

sh_sym

Preserve the termlnator keypress
Information window degired.

moveq #0,d2 Black ink.
Jea sym buffer,a3 Filename to print.
bsr iw_print Print it.

move.w (a7)+,dl

sh_exit rts

Regtore the termintor keypress

Unfortunately, at this point, if you assemble the code, you wil see 8 errors. All caused by a lack of my
own library routines. The next section holds the code for the routines we are using, but have not yet

created.

Unfortunately, we have had to split this article at this point due to space limitations ... more in the next
iSSue.

First of all, | would like to thank you, the readers,
once again for re-subscribing. Many of you
subscribed early, which is not only encouraging
but also helps keeping the costs down. Sending
out reminders costs money .. and | rather invest
this money in more pages of the magazine, as
you were able to see in the past - and now .. 50
pages instead the "average™ 32. And the second
"Thanks™ goes to our authors - without them we
would not be able to fil so many pages - without
them, QL Today would not exist.

Every year | wonder whether we shall still have
enough readers and authors to continue. Going
back some years, when Roy Wood was handling
the UK issues, we set ourself 'red lines” where
we would stop (e.g. when the readership falls
under 400 .. and we continued .. then when the
readership falls under 300 .. and we continued. |
have given up on setting these lines, even
though we are under 200 readers now.

| was a bit worried that the DVD last volume
could have been interpreted as "we're finishing”. It
was not interpreted that way, we hope - and we
do not finish, as you can see.

Unfortunately, the QL scene does not have as
many supporters as the Spectrum scene (refer-
ring to Geoff's Editorial). Many people have left
the QL scene. Does anybody know what they
are doing nowadays? Whenever | think about the
past, SO many names come into mind - what has
happened to them? Are they stil connected to
the QL somehow? | only know one person,
Andreas Budde of former ABC-Ware, who stil
thinks about the QL and has tried to get Tony
Tebby's operating system into various hardware
in the past.

But what about all the other names? Freddy
Vaccha of Digital Precision, to name an
unforgettable person (everybody who saw him
live at Microfairs will not forget him). What is Ron
Dunnett doing? Nasta? How are the organizers of
earlier QL shows doing nowadays? So many
people we used to know and used to see at QL
shows - does anybody know what they are up
to nowadays? If you know anybody who knows
about these people, please let us know. If you
know these people and get them to write for us,
even better!

Unfortunately, not much to see here. Unfortunately, not many visitors in Vienna this time (see article and
pictures in this issue). It's a pity, as the organisers still try to add sightseeing, and not just the event -
which on its own has been a nice, social event. Vienna two years ago was a big success - visitors
from several countries - friends who have not met for some years!

Will there be a QL meeting somewhere in Europe? Is there any interest in a meeting somewhere? -
maybe this is the better question.

Traveling has become so expensive nowadays, that the realization of a meeting, combined with
holidays somewhere worth visiting, is probably the only way. Urs Konig did a great job with the
meeting in-Luzern, followed by the Austrian meeting a year later. Most visitors have not been to Vienna
at this time, so there was a good reason.

Are there any other places worth visiting? Definitely! Many! And probably in areas who would allow
people from many countries to visit. But do we have QLers in these areas who are prepared/wiling to
find a venue, or even have a venue like Gerhard Plavec in Prottes?

We have had Heidenreichstein and Vienna in the Eastern parts of Austria, Salzburg many years ago,
Berchtesgaden several times (many sightseeing places!), Luzern ... if we continue this way, then the
Schwarzwald/Freiburg/Basel area is still missing. Any Qlers up there wiling to do something? Any
visitors wiling to come? Please let us know! If anything is to be planned for next summer/autumn, then
we need to know before Christmas for issue 3 at the very latest - better in issue 2 ... the Xmas issue.
At the current exchange rate, Switzerland is probably unaffordable for us "EURo-sufferers’. Visiting
Germany. however, should be fairly cheap for Swiss visitors (and for UK visitors probably as well).

Or how about a meeting in the Hamburg area? This would allow people from the Northern countries to
come as well - QLers which we have not seen or met for many yearts! Anybody prepared?

We need feedback - and we need early planning in case something should happen. Some kind of
Holidays - at least an extended weekend - needs to be reserver and booked in advance. | can only
speak for myself, but traveling long distances “just” for a day or two is just too stressful - and we do
not talk about 100, 200km or so. Well, | guess we all are getting older.

You may be curious about the pictures on the cover. The small sheep is known to those who
remember Tony Firshman's reference to "Klein Schiffi” two years ago. The sheep is our mascot and is
travelling with us ... and it has seen many places so far. That's why it is looking forward to an unknown,
not yet visited place next year

The Schwarzwald/Freiburg/Basel area would definitely be interesting to me, Andrea and also Klein
Schniffi. And - maybe for 2014 - a visit to the UK. | have not been there for several years and would
love to come again and meet many of you which | have not seen for quite a while - remembering the
‘good old times’. But as said above: just driving to a meeting and back is out of the question - it really
has to be combined with some kind of holiday, sightseeing, touristical stuff.

S0, let's plan ahead! Even if there is not much QL news, there are still many supporters (as you can see
with the start of this volume of QL Today) and | feel that the QL scene is so unique, with so many nice
and friendly people - often way beyond customer/dealer relationship - that it would be a shame to let
this dry up. Please send us emails! How do you feel about events? Are you prepared to travel? Are
you prepared to do something? Looking forward to your replies,

all the best QW
OC

\

